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Abstract We present behavioural skeletons for the CoreGRID Component Model, which
are an abstraction aimed at simplifying the development of GCM-based self-
management applications. Behavioural skeletons abstract component self-man-
agent in component-based design as design patterns abstract class design in classic
OO development. As here we just wish to introduce the behavioural skeleton
framework, emphasis is placed on general skeleton structure rather than on their
autonomic management policies.
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1. Introduction and Related Work
While developing grid applications neither the target platforms nor their sta-

tus are fixed, statically or dynamically [12]. This makes application adaptivity
an essential feature in order to achieve high performance and to exploit effi-
ciently the available resources [1].

In recent years, several research initiatives exploiting component technology
[9] have investigated the possibilities related to component adaptation, i.e. the
process of changing the component for use in different contexts. This process
can be conceived as either a static or dynamic process.

The basic use of static adaptation covers straightforward but popular method-
ologies such as copy-paste and OO inheritance. A more advanced usage covers
the case in which adaptation happens at run-time. These systems enable dy-
namically defined adaptation by allowing adaptations, in the form of code,
scripts or rules, to be added, removed or modified at run-time [7]. Among
them it is worth distinguishing the systems where all possible adaptation cases
have been specified at compile time, but the conditions determining the actual
adaptation at any point in time can be dynamically changed [4]. Dynamically
adaptable systems rely on a clear separation of concerns between adaptation
and application logic. This approach has recently gained increased impetus in
the grid community, especially via its formalisation in terms of the Autonomic
Computing (AC) paradigm [15, 5, 3]. The AC term is emblematic of a vast
hierarchy of self-governing systems, many of which consist of many interact-
ing, self-governing components that in turn comprise a number of interacting,
self-governing components at the next level down [13]. An autonomic compo-
nent will typically consist of one or more managed components coupled with a
single autonomic manager that controls them. To pursue its goal the manager
may trigger an adaptation of the managed components to react to a run-time
change of application QoS requirements or to the platform status.

In this regard, an assembly of self-managed components implements, via
their managers, a distributed algorithm that manages the entire application.
Several existing programming frameworks aim to ease this task by providing a
set of mechanisms to dynamically install reactive rules within autonomic man-
agers. These rules are typically specified as a collection of when-event-if-
cond-then-act clauses, where event is raised by the monitoring of internal
or external component activity (e.g. the component server interface received
a request, and the platform running a component exceeded a threshold load,
respectively); cond is an expression over internal component attributes (e.g.
component life-cycle status); act represents an adaptation action (e.g. create,
destroy a component, wire, unwire components, notify events to another com-
ponent’s manager). Several programming frameworks implement variants of
this general idea, including ASSIST [20, 1], AutoMate [17], SAFRAN [10],
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and finally the forthcoming CoreGRID Grid Component Model (GCM) [9].
The latter two are derived from a common ancestor, i.e. the Fractal hierarchi-
cal component model [16]. All the named frameworks, except SAFRAN, are
targeted to distributed applications on grids.

Though such programming frameworks considerably ease the development
of an autonomic application for the grid (to various degrees), they rely fully on
the application programmer’s expertise for the set-up of the management code,
which can be quite difficult to write since it may involve the management of
black-box components, and, notably, is tailored for the particular component or
assembly of them. As a result, the introduction of dynamic adaptivity and self-
management might enable the management of grid dynamism and uncertainty
aspects but, at the same time, decreases the component reuse potential since it
further specialises components with application specific management code.

In this work, we propose behavioural skeletons as a novel way to describe
autonomic components in the GCM framework. Behavioural skeletons aim to
describe recurring patterns of component assemblies that can be (either statically
or dynamically) equipped with correct and effective management strategies with
respect to a given management goal. Behavioural skeletons help the application
designer to 1) design component assemblies that can be effectively reused, and
2) cope with management complexity by providing a component with an explicit
context with respect to top-down design (i.e. component nesting).

2. Grid Component Model
GCM is a hierarchical component model explicitly designed to support

component-based autonomic applications in grid contexts. GCM allows com-
ponent interactions to take place with several distinct mechanisms. In addition
to classical “RPC-like” use/provide ports (or client/server interfaces), GCM
allows data, stream and event ports to be used in component interaction. Fur-
thermore, collective interaction patterns (communication mechanisms) are also
supported. The full specification of GCM can be found in [9].

GCM is therefore assumed to provide several levels of autonomic managers
in components, that take care of the non-functional features of the component
programs. GCM components thus have two kinds of interfaces: functional
and non-functional ones. The functional interfaces host all those ports con-
cerned with implementation of the functional features of the component. The
non-functional interfaces host all those ports needed to support the component
management activity in the implementation of the non-functional features, i.e.
all those features contributing to the efficiency of the component in obtaining
the expected (functional) results but not directly involved in result computa-
tion. Each GCM component therefore contains an Autonomic Manager (AM),
interacting with other managers in other components via the component non-
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functional interfaces. The AM implements the autonomic cycle via a simple
program based on the reactive rules described above. In this, the AM leverages
on component controllers for the event monitoring and the execution of recon-
figuration actions. In GCM, the latter controller is called the Autonomic Be-
haviour Controller (ABC). This controller exposes server-only non-functional
interfaces, which can be accessed either from the AM or an external component
that logically surrogates the AM strategy. We call passive a GCM component
exhibiting just the ABC, whereas we call active a GCM component exhibiting
both the ABC and the AM.

3. Describing Adaptive Applications
The architecture of a component-based application is usually described via

an ADL (Architecture Description Language) text, which enumerates the com-
ponents and describes their relationships via the used-by relationship. In a
hierarchical component model, such as the GCM, the ADL describes also the
implemented-by relationship, which represents the component nesting.

Typically, the ADL supplies a static vision of an application, which is not
fully satisfactory for an application exhibiting autonomic behaviour since it
may autonomously change behaviour during its execution1. Such change may
be of several types:

Component lifecycle. Components can be started or stopped.
Component relationships. The used-by and/or implemented-by relation-
ships among components are changed. This may involve component
creation/destruction, and component wiring alteration.
Component attributes. A refinement of the behaviour of some compo-
nents (which does not involve structural changes) is required, usually
over a pre-determined parametric functionality.

In the most general case, an autonomic application may evolve along adaptation
steps that involve one or more changes belonging to these three classes. In this
regard, the ADL just represents a snapshot of the launch time configuration.

The evolution of a component is driven by its AM, which may request man-
agement action with the AM at the next level up in order to deal with manage-
ment issues it cannot solve locally. Overall, it is a part of a distributed system
that cooperatively manages the entire application.

In the general case, the management code executing in the AM of a com-
ponent depends both on the component’s functional behaviour and the goal of
the management. The AM should also be able to cooperate with other AMs,
which are unknown at design time due to the nature of component-based design.
Currently, programming frameworks supporting the AC paradigm (such as the

1However, note that with GCM the ADL provides a hook to accommodate a behavioural specification.
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ones mentioned in Sec. 1) just provide mechanisms to implement management
code. This approach has several disadvantages, especially when applied to a
hierarchical component model:

The management code is difficult to develop and to test since the context
in which it should work may be unknown.
The management code is tailored to the particular instance of the man-
agement elements (inner components), further restricting the component
possible reusability.

For this reason, we believe that the “ad-hoc” approach to management code is
unfit to be a cornerstone of the GCM component model.

4. Behavioural Skeletons
Behavioural skeletons aim to abstract parametric paradigms of GCM com-

ponent assembly, each of them specialised to solve one or more management
goals belonging to the classical AC classes, i.e. configuration, optimisation,
healing and protection.

Behavioural skeletons represent a specialisation of the algorithmic skeleton
concept for component management [8]. Algorithmic skeletons have been
traditionally used as a vehicle to provide efficient implementation templates of
parallel paradigms. Behavioural skeletons, as algorithmic skeletons, represent
patterns of parallel computations (which are expressed in GCM as graphs of
components), but in addition they exploit the inherent skeleton semantics to
design sound self-management schemes of parallel components.

Due to the hierarchical nature of GCM, behavioural skeletons can be identi-
fied with a composite component with no loss of generality (identifying skele-
tons as particular higher-order components [11]). Since component composi-
tion is defined independently from behavioural skeletons, they do not represent
the exclusive means of expressing applications, but can be freely mixed with
non-skeletal components. In this setting, a behavioural skeleton is a composite
component that

exposes a description of its functional behaviour;
establishes a parametric orchestration schema of inner components;
may carry constraints that inner components are required to comply with;
may carry a number of pre-defined plans aimed at coping with a given
self-management goal.

Behavioural skeleton usage helps designers in two main ways: the application
designer benefits from a library of skeletons, each of them carrying several pre-
defined, efficient self-management strategies; and, the component/application
designer is provided with a framework that helps the design of new skeletons
and their implementations.
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The former task is achieved because (1) skeletons exhibit an explicit higher-
order functional semantics, which delimits the skeleton usage and definition
domain; and (2) skeletons describe parametric interaction patterns and can be
designed in such a way that parameters affect non-functional behaviour but are
invariant for functional behaviour.

5. A Basic Set of Behavioural Skeletons
Here we present a basic set of behavioural skeletons for the sake of ex-

emplification. Despite their simplicity, they cover a significant set of parallel
computations in common usage.

One class of behavioural skeletons springs from the idea of functional repli-
cation. Let us assume the skeletons in this class have two functional interfaces:
a one-to-many stream server S, and a many-to-one client stream interface C
(see Fig. 1). The skeleton accepts requests on the server interface; and dis-
patches them to a number of instances of an inner component W, which may
propagate results outside the skeleton via C interface. Assume that replicas of
W can safely lose their internal state between different calls. For example, the
component has just a transient internal state and/or stores persistent data via an
external data-base component.

Farm. A stream of tasks is absorbed by a unicast S, each task is computed by
one instance of W and sent to C, which collect tasks from-any. This skeleton
can be equipped with a self-optimising policy because the number of Ws can
be dynamically changed in a sound way since they are stateless. The typical
QoS goal is to keep a given limit (possibly dynamically changing) of served
requests in a given time frame. The AM just checks the average time tasks need
to traverse the skeleton, and eventually reacts by creating/destroying instances
of Ws, and wiring/unwiring them to/from the interfaces.

Data-Parallel. A stream of tasks is absorbed by a scatter S; each task is split
in (possibly overlapping) partitions, which are distributed to replicas of W to be
computed. Results are gathered and assembled by G in a single item. As in the
previous case, the number of Ws can be dynamically changed (between different
requests) in a sound way since they are stateless. As in the previous case, the
skeleton can be equipped with a self-configuration goal, i.e. resource balancing
and tuning (e.g. disk space, load, memory usage), that can be achieved by
changing the partition-worker mapping in S (and C, accordingly).

Active-Replication. A stream of tasks is absorbed by a broadcast S, which
sends identical copies to the Ws. Results are sent to G, which reduces them.
This paradigm can be equipped with a self-healing policy because it can deal
with Ws that do not answer, produce an approximate or wrong answer by means
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of a result reduction function (e.g. by means of averaging or voting on results).

The presented behavioural skeletons can be easily adapted to the case that S
is a RPC interface. In this case, the C interface can be either a RPC interface or
missing. Also, the functional replication idea can be extended to the stateful case
by requiring the inner component Ws to expose suitable methods to serialise,
read and write the internal state. A suitable manipulation of the serialised state
enables the reconfiguration of workers (also in the data-parallel scenario [1]).

In order to achieve self-healing goals some additional requirements on the
GCM implementation level should be enforced. They are related to the imple-
mentation of GCM mechanisms, such as component membranes and their parts
(e.g. interfaces) and messaging system. At the current level of interest, they are
primitive mechanisms, in which correctness and robustness should be enforced
ex-ante, at least to achieve some of the described management policies.

The process of identification of other skeletons may benefit from the work
done within the software engineering community, which identified some com-
mon adaptation paradigms, such as proxies [18], which may be interposed
between interacting components to change their interaction relationships; and
dynamic wrappers [19]. Both of these can be used for self-protection purposes.
For example, a pair of encrypting proxies can be used to secure a communica-
tion between components. Wrapping can be used to hide one or more interfaces
when a component is deployed into an untrusted platform.

5.1 GCM implementation of Behavioural Skeletons
In terms of the GCM specification [9], a behavioural skeleton is a particu-

lar composite component exhibiting an autonomic conformance level strictly
greater than one, i.e. a component with passive or active autonomic control. The
component exposes pre-defined functional and non-functional client and server
interfaces according to the skeleton type; functional interfaces are usually col-
lective and configurable. Since skeletons are fully-fledged GCM components,
they can be wired and nested via standard GCM mechanisms. From the im-
plementation viewpoint, a behavioural skeleton is a partially defined composite
component, i.e. a component with placeholders, which may be used to instan-
tiate the skeleton. As sketched in Fig. 1, there are three classes of placeholders:

1 The functional interfaces S and C that are GCM membrane controllers.
2 The AM that is a particular inner component. It includes the management

plan, its goal, and exported non-functional interfaces.
3 Inner component W, implementing the functional behaviour.

The orchestration of the inner components is implicitly defined by the skeleton
type. In order to instantiate the skeleton, placeholders should be filled with
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skeleton
behaviour
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W
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Non-Functional
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Figure 1. GCM implementation of functional replication. ABC = Autonomic Behaviour
Controller, AM = Autonomic Manager, W = Worker component, S = Server interface (one-
to-many communication e.g. broadcast, data-parallel scatter, unicast), C = Client interface
(many-to-one communication e.g. from-any, data-parallel gather, reduce, select).

suitable entities. Observe that only entities in the former two classes are skeleton
specific.

In addition to a standard composite component, a behavioural skeleton is
further characterised by a formal (or semi-formal) description of the component
behaviour. This description can be attached to the ADL component definition
via the standard GCM ADL hook. In this work we propose a description based
on the Orc language, which appears suitable for specification of orchestration
in distributed systems [2].

6. Specifying Skeleton Behaviour
Autonomic management requires that, during execution of a system, com-

ponents of the system are replaced by other components, typically having the
same functional behaviour but exhibiting different non-functional characteris-
tics. The application programmer must be confident about the behaviour of the
replacements with respect to the original. The behavioural skeleton approach
proposed supports these requirements in two key ways:

1 The use of skeletons with its inherent parametrisation permits relatively
easy parameter-driven variation of non-functional behaviour while main-
taining functional equivalence.

2 The use of Orc to describe component behaviour gives the developer a
firm basis on which to compare the properties of alternative realisations
in the context of autonomic replacement.

In the following we present an Orc specification of the functional replication
example depicted in Fig. 1 followed by several alternative formulations of the
client and server interface behaviours. First, a brief overview of the Orc lan-
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guage is presented. A formal description of management plans is not presented
here. The skeleton designer can use the description to prove rigorously (man-
ually, at present) that a given management strategy will have predictable or no
impact on functional behaviour. The quantitative description of QoS values of
a component with respect to a goal, the automatic validation of management
plans w.r.t. a given functional behaviour are interesting related topics, which
are the subject of ongoing research but outside the scope of the present work.

6.1 The Orc notation
The orchestration language Orc of Misra and Cook [14] is targeted at the

description of systems where the challenge lies in organising a set of compu-
tations, rather than in the computations themselves. Orc has, as primitive, the
notion of a site call, which is intended to represent basic computations. A site,
either returns a single value or remains silent. Three operators (plus recursion)
are provided for the orchestration of site calls:
Sequential composition: E1 > x > E2(x) evaluates E1, receives a result
x, calls E2 with parameter x. If E1 produces two results, say a and b, then
E2 is evaluated twice, once with argument a and once with argument b. The
abbreviation E1 � E2 is used for E1 > x > E2 when evaluation of E2 is
independent of x.
Parallel composition: (E1 E2) evaluates E1 and E2 in parallel. Both eval-
uations may produce replies. Evaluation of the expression returns the merged
output streams of E1 and E2.
Asymmetric parallel composition: E1 where x :∈ E2 begins evaluation of
both E1 and x :∈ E2 in parallel. Expression E1 may name x in some of its site
calls. Evaluation of E1 may proceed until a dependency on x is encountered;
evaluation is then suspended. The first value delivered by E2 is returned in x;
evaluation of E1 can proceed and the thread E2 is terminated.

Orc has a number of special sites: “0” never responds; “if b” returns a signal
if b is true and remains silent otherwise; “let” always publishes its argument.

Finally, while Orc does not have an explicit concept of “process”, processes
may be represented as expressions which, typically, name channels that are
shared with other expressions. In Orc a channel is represented by a site [14].
c.put(m) adds m to the end of the (FIFO) channel and publishes a signal. If
the channel is non-empty c.get publishes the value at the head and removes it;
otherwise the caller of c.get suspends until a value is available.

6.2 The Description of Skeletons in Orc
Assume that data is sent by an interface S along a number, N , of channels

ini to N workers Wi. Each worker processes its data and sends the result along
a channel outi to interface C (see Fig. 1). The distribution of data by S to the
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channels may be based on various algorithms depending on the nature of the
overall task: see below.

Assume that data is a list of items to be processed; #data is the number of
items in data; in is a list of N channels connecting the port S with the workers.
out is a list of N channels connecting the port C with the workers. For a list, l,
head(l) returns the head of (non-empty) l; tail(l) returns the tail of (non-empty)
l. Denote by li the ith element of the list l. The skeleton system depicted in
Fig. 1 may be defined in Orc as follows:

system(data, S, G, W, in, out, N) ,
S(data, in) | (|i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

Wi(ini, outi) ,
ini.get > tk > process(tk) > r > (outi.put(r) | Wi(ini, outi))

Server Interface S. The interface S distributes the data in sequence across
the channels, ch, according to a distribution policy that can be substituted by
the expression broadcast, unicast, or DP. The auxiliary expression next is used
for synchronisation.

S(data, ch) , if data = [] � 0
| if data 6= [] � distribution(head(data)) � S(tail(data), ch))

next(h1, . . . , hN ) , let 1

The broadcast sends each item of data to all of the workers.

broadcast(item) , next(h1, . . . , hN ) where h1 :∈ ch1.put(item)
. . .
hN :∈ chN .put(item)

The unicast sends each item to a single worker Wf(i) where the index i is chosen
in a list [1 . . . N ]. The function f is assumed to be stateful (e.g. successive calls
to f can scan the list).

unicast(data) , chf(i).put(x) � let 1

The DP describes the data-parallel scatter. Assume that #data is a multiple of
N (for simplicity), and the slice(data,i) returns the ith slice of data, where each
slice is of length #data/N . The actual definition of “ith slice” may vary, but is
abstracted here in the function slice. For example, if the first slice corresponds
to the first #data/N items in data, etc. then the distribution is round-robin. In
the specification given, the data is divided into N slices and each slice is sent
on one of the channels.

DP (x) , next(h1, . . . , hN ) where h1 :∈ ch1.put(slice(x, 1))
. . .
hN :∈ chN .put(slice(x, N))
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Client interface C. Here interface C receives an item from each worker
Wi along channel chi and, when it has an item from every worker, applies a
collection policy. We exemplify here reduce and select policies.

C(ch) , collection(ch) � C(ch)

The reduce function may take an average, select the median, etc. (Note; it is
assumed here that all workers supply results; otherwise timeouts could be used
to avoid starvation.)

collection(ch) , reduce(h1, . . . , hN ) where h1 :∈ ch1.get
. . .
hN :∈ chN .get

Alternatively, the port C may non-deterministically select a single data item
from one worker and discard the rest.

collection(ch) , select(r) where r :∈ (| i : 1 ≤ i ≤ N : chi.get)

In all of the presented cases it is easy to verify that the functional behaviour is
independent of N , provided W is stateless. Therefore, all management policies
that change the value of N do not alter the functional behaviour, and can thus
be considered correct.

7. Conclusion
The challenge of autonomicity in the context of component-based devel-

opment of grid software is substantial. Building into components autonomic
capability typically impairs their reusability. We have proposed behavioural
skeletons as a compromise: being skeletons they support reuse, while their
parametrisation allows the controlled adaptation needed to achieve dynamic ad-
justment of QoS while preserving functionality. We have presented a significant
set of skeletons, together with their formal Orc functional behaviour description
and self-management strategies. We have described how these concepts can be
applied and implemented within the GCM. The presented behavioural skeletons
have been implemented in GCM-ProActive [6], in the framework of the Grid-
COMP project2 and are currently under experimental evaluation. Preliminary
results, not presented in this work, confirm the feasibility of the approach.
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