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Abstract Following earlier work demonstrating the utility of Orc as a means of specify-
ing and reasoning about grid applications we propose the enhancement of such
specifications with metadata that provide a means to extend an Orc specification
with implementation oriented information. We argue that such specifications
provide a useful refinement step in allowing reasoning about implementation re-
lated issues ahead of actual implementation or even prototyping. As examples,
we demonstrate how such extended specifications can be used for investigating
security related issues and for evaluating the cost of handling grid resource faults.
The approach emphasises a semi-formal style of reasoning that makes maximum
use of programmer domain knowledge and experience.
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1. Introduction
Grid computing is intended to enable the development of both industrial and

scientific applications on an unprecedented scale in terms of computing power
and ubiquity. These applications are supposed to transparently handle dynam-
icity and heterogeneity of computing platforms [11] and they often exploit some
flavour of component programming model. Component technology focuses (by
its very nature) on the decoupled development of modules implementing single
features [1, 4, 5], that should then be arranged and connected to realize the ap-
plication. While several frameworks for developing grid-oriented components
exist or are under design [7–8], the models to reason about their orchestration
are still inadequate. Although a model for orchestration should necessarily
subsume a notion of component/module behaviour, it can be specified along a
spectrum of abstraction levels: from the full implementation itself to the fully
logic/algebraic description. Currently, most of the effort is concentrated on the
ends of the spectrum, which are far from the designer’s viewpoint. For example,
BPEL [6] is a recognized standard for orchestration of Web Services, but it is
designed for machine processing and is therefore not suitable for supporting hu-
man “abstract reasoning” about orchestration. At the other extreme, π-calculus
is a well-recognized formal tool for reasoning about distributed programs [12],
but it comes with a heavyweight formal framework typically outside the interest
and experience of system designers.

In earlier work we explored the use of Orc [10] as a means of specifying
and reasoning about grid computations. Orc was developed as a notation for
describing the orchestration of distributed systems, rather than the core com-
putations themselves. Orc’s primitive is the site which may be used to abstract
basic computations. A site call returns a single value or remains silent. Site
calls may be combined using three composition operators (plus recursion):
Sequential : A > x > B(x). For each output, x, from A execute an instance
of B taking x as parameter. If x is not used in B write A � B.
Parallel : A | B. The output is the interleaved outputs from each of A and B.
Asymmetric parallel : A where x :∈ B. Execute A and B in parallel until A
needs x. Take the first x delivered by B and terminate the remaining execution
of B while A continues.

We believe that Orc lies in the middle ground of the spectrum of orchestration
description: as described in previous work [3], Orc appears to be a suitable can-
didate to reason about certain non-functional properties (e.g. fault-tolerance)
of the grid-oriented muskel system [2]. In this paper we present a further step
along the same path. We enrich Orc with metadata to describe non-functional
properties such as deployment information. This could be used, for example,
to describe the mapping of application parts (e.g. components, modules) onto
a grid platform. The approach is consistent with the current trend of keeping
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decoupled the functional and non-functional aspects of an application. We be-
lieve that the use of metadata introduces a new dimension for reasoning about
the orchestration of a distributed system by allowing a narrowing of the focus
from the very general case. We expect this approach can be gracefully extended
in order to allow reasoning – at design time – about several static invariants of
the final implementation.

2. Orc metadata
A generic Orc program, as described in [10], is a set of Orc definitions

followed by an Orc goal expression. The goal expression is the expression to
be evaluated when executing the program. Assume S = {s1, . . . , ss} is the
set of sites used in the program, i.e. the set of all the sites called during the
evaluation of the goal expression (the set does not include the pre-defined sites,
such as if and Rtimer, as they are assumed to be available at any user defined
site), and E = {e0, . . . , ee} is the set including the goal expression (e0) and all
the “head” expressions appearing in the left hand sides of Orc definitions.

The set of metadata associated with an Orc program may be defined as
the set: M = {µ1, . . . , µn} where µi = 〈tj ,mdk〉 with tj ∈ S ∪ E and
mdk = f(p1, . . . , pnk

). f is a generic “functor” (represented by an identifier)
and pi are generic “parameters” (variables, ground values, etc.). The metadata
mdk are not further defined as, in general, metadata structure depends on the
kind of metadata to be represented. In the following, examples of such metadata
are presented.

As is usual, the semantics of Orc is not affected when metadata is taken into
account. Rather, the introduction of metadata provides a means to restrict the
set of actual implementations which satisfy an Orc specification and thereby
eases the burden of reasoning about properties of the specification. For example,
restrictions can be placed on the relative physical placement of Orc sites in such
a way that conclusions can be drawn about their interaction which would not
be possible in the general case.

Suppose one wishes to reason about Orc program site “placement”, i.e. about
information concerning the relative positioning of Orc sites with respect to a
given set of physical resources potentially able to host one or more Orc sites.
Let R = {r1, . . . , rr} be the set of available physical resources. Then, given
a program with S = {siteA, siteB} we can consider adding to the program
metadata such asM = {〈siteA, loc(r1)〉, 〈siteB, loc(r2)〉}modelling the sit-
uation where siteA and siteB are placed on distinct processing resources.
Define also the auxiliary function location(x) : S × E → R as the function
returning the location of a site/expression and consider a metadata set ground
if it contains location tuples relative to all the sites in the program (that is, all
sites have been allocated to a processor).
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loc metadata can be used to support reasoning about the “communication
costs” of Orc programs. For example, the cost of a communication with respect
to the placement of the sites involved can be characterized by distinguishing
cases:

kComm =


knonloc if location(s1) 6= location(s2)
kloc otherwise

where s1 and s2 are the source and destination sites of the communication,
respectively and, typically, knonloc � kloc.

Consider now a second example of metadata. Suppose “secure” and “in-
secure” site locations are to be represented. Secure locations can be reached
through trusted network segments and can therefore be communicated with
while taking no particular care; insecure locations are not trusted, and can be
reached only by passing through untrusted network segments, therefore requir-
ing some kind of explicit data encryption to guarantee security. This repre-
sentation can be achieved by simply adding to the metadata tuples such as 〈si,
trusted()〉 or 〈si, untrusted()〉. Then a costing model for communications
that takes into account that transmission of encrypted data may cost significantly
more than transmission of plain data can be devised.

kSecComm =

8<:
kInSecComm if 〈s1, untrusted()〉 ∈ M

∨〈s2, untrusted()〉 ∈ M
kComm otherwise

2.1 Generating metadata
So far the metadata considered have been identified explicitly by the user. In

some cases he/she may not wish, or indeed be able, to supply all of the metadata
and so it may be appropriate to allow generation of metadata from partial meta-
data supplied by the user. For example, suppose the user provides only partial
location metadata, e.g. metadata relative to the goal expression location and/or
metadata relative to the location of the components of the topmost parallel com-
mand found in the Orc program execution. Metadata information available can
be used to infer ground location metadata (i.e. location metadata for all s ∈ S)
as follows. Consider two cases: in the first (completely distributed strategy)
it is assumed that each time a new site in the Orc program is encountered, the
site is “allocated” on a location that is distinct from the locations already used.
In the second case (conservative strategy) new sites are allocated in the same
location as their parent (w.r.t. the syntactic structure of the Orc program), unless
the user/programmer specifies something different in the provided metadata.

More formally, in the first case, we can state that when an Orc definition
such as E , f | g, E , f(x) where x :∈ g, E , f � g or E , f > x > g
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is considered, both the metadata 〈f, loc(freshLoc(M)〉 and 〈g,
loc(freshLoc(M)) are added to M. In the second case, the same Orc defini-
tions will lead to insertion in the set M of the new metadata 〈f, location(E)〉
and 〈g, location(E)〉 (provided the user did not explicitly supply site metadata
information for f and g).

Example To illustrate the use of metadata, consider the following description
of a classical task farm (embarrassingly parallel computation):

farm(pgm, nw) , tasksource | resultsink | workers(pgm, nw)
workers(pgm, nw) , | i : 1 ≤ i ≤ nw : workeri(pgm)

worker(pgm) , tasksource > t > pgm > y > resultsink(y) � worker(pgm)

A typical goal for this program will be of the form farm(myPgm, 10). Sup-
pose the user provides the metadata:

∀i ∈ [1, nw]〈workeri, loc(PEi)〉 ∈ M
〈farm(myPgm, 10), strategy(fullyDistributed)〉 ∈ M

where strategy(fullyDistributed) means the user explicitly requires that a
“completely distributed implementation” be used. An attempt to infer metadata
about the goal expression identifies location(farm(myPgm, 10)) = ⊥ but,
as the strategy requested by the user is fullyDistributed and as farm(pgm, nw)
is defined as a parallel command, the following metadata is added to M:

〈tasksource, loc(freshLoc(M))〉
〈resultsink, loc(freshLoc(M))〉
〈workers(pgm, nw), loc(freshLoc(M))〉.

Next, expanding the workers term, gives the term
| i : 1 ≤ i ≤ nw : workeri(pgm)

but in this case metadata relative to workeri has already been supplied by the
user. At this point

M = { 〈tasksource, loc(freshLoc(M))〉, 〈resultsink, loc(freshLoc(M))〉,
〈workers(pgm, nw), loc(freshLoc(M))〉, 〈worker1, loc(PE1〉, . . .,
〈workernw, loc(PEnw〉}

and therefore is ground w.r.t. the program.
Thus, in addition to the location metadata provided by the user it was possible

to derive the fact that the locations of tasksource and resultsink are distinct and,
in addition, are different from the locations of each workeri. Suppose now that
the user has also inserted the metadata item 〈PE2, untrusted()〉 in addition to
those already mentioned. That is, one of the placement locations is untrusted.
This raises the issue of how it can be determined whether or not a communi-
cation must be performed in a secure way. This information may be inferred
from the available metadata as follows. Let functions source(C) denote a site
“sending” data and sink(C) denote a site “receiving” data in communication
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C. Then C must be secured iff
source(C) = X ∧ sink(C) = Y ∧ 〈X, loc(LX〉 ∈ M∧ 〈Y, loc(LY 〉 ∈ M
∧ (〈LX, untrusted()〉 ∈ M∨ 〈LY , untrusted()〉 ∈ M).

Thus, for the farm example above, the metadata 〈worker2, PE2〉 and
〈PE2, untrusted()〉 and the definition

worker2(pgm) , tasksource>t>pgm>y>resultsink�worker2(pgm)

together with the metadata 〈tasksource, loc(TS)〉, 〈resultsink, loc(RS)〉,
〈TS, trusted()〉, 〈RS, trusted()〉 lead to the conclusion that the communi-
cations represented in the Orc code by tasksource > t > pgm.compute(t)
and by pgm.compute(t) > y > resultsink within worker2 must be secured.

It is worth pointing out that the metadata considered here is typical of the
information needed when running grid applications. For example, constraints
such as the loc ones can be generated to force code (that is, sites) to be executed
on processing elements having particular features, and information such as that
modelled by untrusted metadata can be used to denote those cluster nodes that
happen to be outside a given network administrative domain and may therefore
be more easily subject to “man in the middle” attacks or to some other kind of
security related leaks.

3. Metadata exploitation
In this section we consider two alternative versions of a tool and use their Orc

specifications together with metadata to analyse their performance and security
properties. muskel [9] is a skeleton-based parallel programming environment
written in Java. muskel converts a user program to a data flow graph which is
stored in a taskpool. Program input is handled as an input token to a fresh copy
of the data flow graph placed in the taskpool. Fireable instructions (tasks) in the
taskpool are computed by a set of remote worker processors that are recruited
for the job. Each remote worker is under the supervision of a control thread
that accesses the taskpool, sends a task to its worker and places the result in the
resultpool.

The first version of muskel considered here includes a manager that is re-
sponsible for recruitment of remote workers, their allocation to control threads
and the handling of remote worker failure. This represents the original (cen-
tralized) version of muskel, but the presence of such a manager was seen as a
potential single point of failure. [3] describes how the original specification was
analysed and modified to obtain a revised (decentralized) version in which this
single point of failure was removed by making each control thread responsible
for its own remote worker recruitment. Here, using metadata, we examine the
efficiency implications of such a policy change. The Orc model of the decen-
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tralized version is given in Figure 1; the Orc model of the centralized version
can be found in [3].

systemDistribManager(pgm, tasks, contract, G, t) ,
taskpool.add(tasks) | i : 1 ≤ i ≤ contract : ctrlthreadi(pgm, t, G)

ctrlthreadi(pgm, t, G) , discover(G, pgm) > rw > ctrlprocess(pgm, rw, t, G)

discover(G, pgm) , let(rw) where rw :∈ |g∈G g.can execute(pgm)

ctrlprocess(pgm, rw, t, G) , taskpool.get > tk >
( if valid � resultpool.add(r) � ctrlprocess(pgm, rw, t, G)
| if ¬valid � taskpool.add(tk)

| discover(G, pgm) > w >
ctrlprocess(pgm, w, t, G) )

where (valid, r) :∈
( remoteworker(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0) )

Figure 1. Decentralized manager muskel specification in Orc.

3.1 Comparison of communication costs
In comparing the two versions of muskel, as is typical in such studies, the

focus will be on the “steady state” performance, that is, the typical activity of
a control thread when it is processing tasks. There are two possibilities: the
task is processed normally and the result placed in the resultpool or the remote
worker fails and the control thread requires a new worker. In analysing the
specifications a conservative placement strategy will be assumed; that is, the
sub-parts of an entity are assumed to be co-located with their parent unless
otherwise stated. Given the following metadata supplied by the developer:

∀rwi ∈ G.〈rwi, loc(PEi)〉 ∈ M
〈system, loc(C)〉 ∈ M
〈system(myPgm, tasks, 10, G, 50), strategy(conservative)〉 ∈ M

the rules for propagation and the strategy adopted ensure that the following
metadata are present for both versions:

〈rwi, loc(PEi)〉, 〈ctrlthreadi, loc(C)〉, 〈taskpool, loc(C)〉, 〈resultpool, loc(C)〉,
〈rworkerpool, loc(C)〉.

In addition, for the decentralized version, 〈cntrlprocess, loc(C)〉 is present.

Normal processing For the centralized version, examination of the definition
of cntrlthread shows that in the case of a normal calculation the following
sequence of actions will occur:

taskpool.get > tk > remw(pgm, tk) > r > let(true, r) � resultpool.add(r).
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Using the metadata, and reasoning in the same way as in the farm example,
it can be seen that the communication of the task tk to the remote worker and
the subsequent return of the result r to the control thread represent non-local
communications; all other communications in this sequence are local.

Similar analysis of the decentralized version reveals an identical series of
actions for normal processing and an identical pattern of communications. Nat-
urally then, similar results from the two versions for normal processing would
be expected, and indeed this is borne out by experiment - see section 4.

Fault processing Now consider the situation where a remote worker fails dur-
ing the processing of a task. In both versions the Rtimer timeout occurs, the
task being processed is returned to the taskpool and a new worker is recruited.
In the centralized version the following sequence of events occurs:

taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rworkerpool.get(remw)

while in the decentralized version the events are effectively:
taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rw.can execute(pgm) > rw > let(g)

where rw is the first site in G to respond.
Analysis of these sequences together with the metadata reveals that the com-

parison reduces to the local communication to the rworkerpool in the centralized
version versus the non-local call to the remote site rw in the decentralized ver-
sion. This comparison would suggest that, in the case of fault handling, the
centralized version would be faster than the decentralized version and, again,
this is borne out by experiment.

3.2 Comparison of security costs
Consider now the issue of security. Suppose that one of the remote workers,

say rw2, is in a non-trusted location (that is 〈PE2, untrusted()〉 ∈ M ). The
implications of this can be determined by analysing the specification together
with the metadata. In this case, as 〈rw2, loc(PE2)〉 ∈ Mwe can conclude that
cntrlthread2 will be affected (while it is operating with its initially allocated
remote worker) to the extent that the communications to and from its remote
worker must be secured. This prompts reworking of the specification to split the
control threads into two parallel sets: those requiring secure communications
and those operating exclusively in trusted environments. In this way the effect,
and hence cost, of securing communications can be minimised. Experimental
results in section 4 illustrate the cost of securing the communications with
differing numbers of control threads.
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4. Experimental results
We ran several experiments, on a distributed configuration of Linux ma-

chines, aimed at verifying that the results obtained from analysis of the Orc
specifications of muskel together with metadata are consistent with practice.

We first verified that centralized and decentralized manager versions of
muskel perform the same (up to a reasonable percentage difference) when
no faults occur in the resources used for remote program execution. We ran the
same muskel program with both the centralized and the decentralized muskel
implementation, using up to 4 processing elements for the remote macro data
flow interpreter instances: we obtained differences in completion time not ex-
ceeding 1.6% (1.05% average).
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Figure 2. Comparison of runs involving different
percentages of untrusted locations

Then we considered remote re-
source failure. We measured the
time spent in handling a single fault
in several runs on both centralized
and decentralized muskel versions.
The distributed version takes longer
to handle a single fault, as expected
looking at the Orc models of the two
implementations: 128.4 vs. 114.4
msecs, average. Finally, we at-
tempted to verify the effectiveness
of limiting secure mechanism usage
to communications involving untrusted nodes, which may be identified by ex-
amination of the Orc specifications with associated metadata. Figure 2 shows
the completion time of a muskel program whose remote worker sites are run-
ning on a variable mix of trusted and untrusted locations. The greater the
number of remote interpreters exploited using secure mechanisms, the lower
the performance values that are achieved. Therefore, restricting the classifica-
tion of insecure nodes by analysis of metadata results in better efficiency on the
target architecture.

5. Conclusions
We have shown how, by associating metadata with an Orc specification, we

can reason about the specification and that this reasoning carries through to the
actual grid code which implements the specification. In particular, we consid-
ered how user provided metadata can be associated with the Orc model of a real
structured grid programming environment (muskel) and showed how this could
be used to perform qualitative performance comparison between two different
versions of the programming environment, as well as to determine how the
overhead introduced by security techniques can be minimized. We compared
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these theoretical results with actual experimental results and verified that they
qualitatively match. Thus, the availability of an Orc model on which to “hang”
the metadata allows metadata to be exploited before the actual implementation
is available. We are currently working to formalize and automate the techniques
discussed here. In particular, we are aiming to implement tools to support the
metadata propagation and reasoning procedures adopted. It should be noted,
however, that the whole approach, based on Orc, as described here and in [3]
encourages the use of semi-formal reasoning to support program development
(both program design and refinement). (Thus, for example, the equivalence of
Orc specifications and the muskel implementations is not formally proven.)
We believe this approach has the potential to reduce substantially experimenta-
tion by allowing the exploration of alternatives prior to costly implementation
and without recourse to full-blown formal treatment.
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