Management in Distributed Systems:
A Semi-formal Approach*

Marco Aldinucci!, Marco Danelutto!, and Peter Kilpatrick?

! Department of Computer Science, University of Pisa
{aldinuc,marcod}@di.unipi.it
2 Department of Computer Science, Queen’s University Belfast
p.kilpatrick@qub.ac.uk

Abstract. The reverse engineering of a skeleton based programming
environment and redesign to distribute management activities of the
system and thereby remove a potential single point of failure is consid-
ered. The Orc notation is used to facilitate abstraction of the design
and analysis of its properties. It is argued that Orc is particularly suited
to this role as this type of management is essentially an orchestration
activity. The Orc specification of the original version of the system is
modified via a series of semi-formally justified derivation steps to obtain
a specification of the decentralized management version which is then
used as a basis for its implementation. Analysis of the two specifications
allows qualitative prediction of the expected performance of the derived
version with respect to the original, and this prediction is borne out in
practice.

Keyword: Orchestration, algorithmic skeletons, autonomic computing.

1 Introduction

The muskel system, introduced by Danelutto in [I] and further elaborated in [2],
reflects two modern trends in distributed system programming: the use of pro-
gram skeletons and the provision of means for marshalling resources in the pres-
ence of the dynamicity that typifies many current distributed computing envi-
ronments, e.g. grids. muskel allows the user to describe an application in terms of
generic skeleton compositions. The description is then translated to a macro data
flow graph [3] and the graph computed by a distributed data flow interpreter [2].
Central to the muskel system is the concept of a manager that is responsible for
recruiting the computing resources used to implement the distributed data flow
interpreter, distributing the fireable data flow instructions (tasks) and monitor-
ing the activity of the computations. The muskel manager is to a certain extent
an autonomic manager [45]: it adapts the run time behaviour of a muskel pro-
gram to tolerate faults and maintain a user defined performance contract, much
in the sense of what is advocated in [G7].

* This research is carried out under the FP6 Network of Excellence CoreGRID funded
by the European Commission (Contract IST-2002-004265).

A.-M. Kermarrec, L. Bougé, and T. Priol (Eds.): Euro-Par 2007, LNCS 4641, pp. 651661} 2007.
© Springer-Verlag Berlin Heidelberg 2007

652 M. Aldinucci, M. Danelutto, and P. Kilpatrick

While the performance results demonstrated the utility of muskel, it was noted
in [2] that the centralized data flow instruction repository (taskpool) represented
a bottleneck and the manager a potential single point of failure. The work re-
ported on here addresses the latter of these issues. The planned reengineering
of the muskel manager was seen as an opportunity to extend earlier related ex-
periments [§] with the language Ore [9] to investigate if it could usefully be
employed in the development of such management software. The intent was not
to embark upon a full-blown formal development of a modified muskel manager
(as was done earlier for the related Lithium system [I0], or as is normally done
when employing other popular formalisms, such as the 7w-calculus [I1]), with
attendant formulation and proof of its properties, but rather to discover what
return might be obtained from the use of such a formal notation for modest
effort. In this sense, the aim was in keeping with the lightweight approach to
formal methods as advocated by, inter alia, Agerholm and Larsen [12].

Orc was viewed as being apt for two reasons. First, it is an orchestration lan-
guage, and the job of the muskel manager is one of orchestrating computational
resources and tasks; and, second, while there are many process calculi which
may be used to describe and reason about distributed systems, the syntax of
Orc was felt to be more appealing to the distributed system developer whose
primary interest lies not in describing and proving formal properties of systems.

The approach taken was to reverse engineer the original muskel manager im-
plementation to obtain an Orc description; attempt to derive, in semi-formal
fashion, a specification of a modified manager based on decentralized manage-
ment; and, use this derived specification as a basis for modifying the original code
to obtain the decentralized management version of muskel. By “semi-formal” we
mean that the derivation is presented as a chain of steps in which the terms are
described in the (formal) notation of the specification and the steps are justi-
fied by rigorous argument of the mathematical textbook variety, but calling also
upon domain knowledge and experience when appropriate.

The work described in this paper is the first part of a more complex activity
aimed at both removing the single point of failure represented by the muskel
manager and implementing a distributed data flow instruction repository, re-
moving the current related bottleneck. While the second step is still ongoing,
the first step provides a suitable vehicle to illustrate the proposed methodology.

Overall, this work is part of a set of articles that are currently being published
and that build on the semi-formal framework discussed here. In particular, in
[16] the semi-formal approach based on Orec is extended to encompass meta data
modeling non-functional aspects related to parallel/distributed program execu-
tion, while in [I7] the complete approach exploiting Orc to support distributed
program development is summarized.

2 muskel: An Overview

muskel is a skeleton based parallel programming environment written in
Java. The distinguishing feature of muskel with respect to other skeleton

Management in Distributed Systems: A Semi-formal Approach 653

environments [I3|[14] is the presence of an application manager. The muskel user
instantiates a manager by providing the skeleton program to be computed, the
input and the output streams containing the (independent) tasks to be computed
and the results, respectively, and a performance contract modeling user perfor-
mance expectations (currently, the only contract supported is the ParDegree
one, requesting the manager to maintain a constant parallelism degree during ap-
plication computation). The user then requests invocation of the eval () method
of the manager and the application manager takes care of all the details relating
to the parallel computation of the skeleton program.

When the user requires the computation of a skeleton program, the muskel
system behaves as follows. The skeleton program is compiled to a macro data
flow graph, i.e. a data flow graph of instructions modeled by significant por-
tions of Java code corresponding to user Sequential skeletons [3]. A number
of remote resources (sufficient to ensure the user performance contract) running
an instance of the muskel run time are recruited from the network. The muskel
run time on these remote resources provides an RMI object that can be used to
compute arbitrary macro data flow instructions, such as those derived from the
skeleton program. For each task appearing on the input stream, a copy of the
macro data flow graph is instantiated in a centralized TaskPool, with a fresh
graph id [2]. A ControlThread is started for each of the muskel remote resources
(RemoteWorkers) just discovered. The ControlThread repeatedly looks for a fire-
able instruction in the task pool (the data-flow implementation model ensures
that all fireable instructions are independent and can be computed in parallel)
and sends it to its associated RemoteWorker. That RemoteWorker computes the
instruction and returns the results. The results are either stored in the appropri-
ate data flow instruction(s) in the task pool or delivered to the output stream,
depending on whether they are intermediate results or final ones. In the event of
RemoteWorker failure, i.e. if either the remote node or the network connecting
it to the local machine fails, the ControlThread informs the manager and it, in
turn, requests the name of another machine running the muskel run time support
from a centralized discovery service and forks a new ControlThread to manage
it, while the ControlThread managing the failed remote node terminates after
reinserting in the TaskPool the macro data flow instruction whose computation
failed [I]. Note that the failures handled by the muskel manager are fail-stop fail-
ures, i.e. it is assumed that an unreachable remote worker will not simply restart
working again, or, if it restarts, it does so in its initial state. muskel has already
been demonstrated to be effective on both clusters and more widely distributed
workstation networks and grids [112].

3 The Orc Notation

The orchestration language Orc has been introduced by Misra and Cook [9].
Orc is targeted at the description of systems where the challenge lies in organ-
ising a set of computations, rather than in the computations themselves. Orc
has, as primitive, the notion of a site call, which is intended to represent basic

654 M. Aldinucci, M. Danelutto, and P. Kilpatrick

computations. A site, which represents the simplest form of Orc expression, ei-
ther returns a single value or remains silent. Three operators (plus recursion)
are provided for the orchestration of site calls:

1. operator > (sequential composition)
Ey > x > FEs(z) evaluates Eq, receives a result z, calls Fy with parameter
z. If Ey produces two results, say x and y, then F5 is evaluated twice, once
with argument x and once with argument y. The abbreviation £ > FEs is
used for E; > = > FE5 when evaluation of Fs is independent of z.

2. operator (parallel composition)
(E1 Es) evaluates E; and FEs in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams of
E1 and EQ.

3. where (asymmetric parallel composition)
Fy where © :€ FE5 begins evaluation of both F; and x :€ FE5 in parallel.
Expression F; may name x in some of its site calls. Evaluation of F; may
proceed until a dependency on x is encountered; evaluation is then delayed.
The first value delivered by F» is returned in x; evaluation of F; can proceed
and the thread FEs is halted.

Orc has a number of special sites:

— 0 never responds (0 can be used to terminate execution of threads);

— if b returns a signal if b is true and remains silent otherwise;

— RTimer(t), always responds after ¢ time units (can be used for time-outs);
— let always returns (publishes) its argument.

The notation (]i : 1 <1 < 3:w;) is used as an abbreviation for (w1 |ws|ws).

Finally, while Orc does not have an explicit concept of “process”, processes
may be represented as expressions which, typically, name channels which are
shared with other expressions. In Orc a channel is represented by a site [9].
c.put(m) adds m to the end of the (FIFO) channel and publishes a signal. If
the channel is non-empty c.get publishes the value at the head and removes it;
otherwise the caller of c¢.get suspends until a value is available.

4 Muskel Manager: An Orc Description

The Orc description presented focuses on the management component of muskel,
and in particular on the discovery and recruitment of new remote workers in the
event of remote worker failure. The compilation of the skeleton program to a
data flow graph is not considered.

The activities of the processes of the muskel system are now described, refer-
ring to the Orc specification presented in Fig. [

System. The system comprises a program, pgm, to be executed (for simplicity a
single program is considered: in reality a set of programs may be provided here); a
set of tasks which are initially placed in a taskpool; a discovery mechanism which

Management in Distributed Systems: A Semi-formal Approach 655

system(pgm, tasks, contract, G,t) £
taskpool.add(tasks) | discovery(G,pgm,t) | manager(pgm, contract,t)

discovery(G,pgm,t) £ (|gec (if remw # false > rworkerpool.add(remw)
where remuw :€
(g.can execute(pgm) | Rtimer(t) > let(false))
)

) > discovery(G,pgm,t)
manager(pgm, contract,t) =
|i: 1 <1< contract : (rworkerpool.get > remw > ctrithread;(pgm,remw,t))
| monitor

ctrithread;(pgm, remw, t) = taskpool.get > tk >
(if valid > resultpool.add(r) > ctrithread;(pgm,remuw,t)
| if —valid > (taskpool.add(tk)
| alarm.put(i) > c¢;.get > w > ctrithread;(pgm,w,t)
)
)
where (valid,r) :€
(remw(pgm,tk) > r > let(true,r) | Rtimer(t) > let(false,0))

monitor £ alarm.get > i > rworkerpool.get > remw > ¢;.put(remw)
> monitor

Fig. 1. Centralized management: Orc specification

makes available processing engines (remote workers) recruited from a grid, G;
and a manager which creates control threads and supplies them with remote
workers. t is the time interval at which potential remote worker sites are polled;
and, for simplicity, also the time allowed for a remote worker to perform its
calculation before presumption of failure.

Discovery. It is assumed that the call g.can execute(pgm) to a remote worker
site returns its name, g, if it is capable of (in terms of hardware and software
resources) and willing to execute the program pgm, and remains silent otherwise.
The call rworkerpool.add(g) adds the remote worker name g to the pool provided
it is not already there. The discovery mechanism carries on indefinitely to cater
for possible communication failure.

Manager. The manager creates a number (contract) of control threads, sup-
plies them with remote worker handles, monitors the control threads for failed
remote workers and, where necessary, supplies a control thread with a new re-
mote worker.

Control thread. A control thread (ctrithread) repeatedly takes a task from the
taskpool and uses its remote worker to execute the program pgm on this task.
A result is added to the resultpool. A time-out indicates remote worker failure
which causes the control thread to execute a call on an alarm channel while

656 M. Aldinucci, M. Danelutto, and P. Kilpatrick

returning the unprocessed task to the taskpool. The replacement remote worker
is delivered to the control thread via a channel, ¢;.

Monitor. The monitor awaits a call on the alarm channel and, when received,
recruits and supplies the appropriate control thread, ¢, with a new remote worker
via the channel, c¢;.

5 Decentralized Management: Derivation

In the muskel system described thus far, the manager is responsible for the
recruitment and supply of (remote) workers to control threads, both initially
and in the event of worker failure. Clearly, if the manager fails, then, depending
on the time of failure, the fault recovery mechanism will cease or, at worst, the
entire system of control thread recruitment will fail to initiate properly. Thus,
the aim is to devolve this management activity to the control threads themselves,
making each responsible for its own worker recruitment.

The strategy adopted is to examine the execution of the system in terms
of traces of the site calls made by the processes and highlight management
related communications. The idea is to use these communications as a means
of identifying where/how functionality may be dispersed. In detail, the strategy
proceeds as follows:

1. Focus on communication actions concerned with management. Look for pat-
terns based on the following observation. Typically communication occurs
when a process, A, generates a value, x, and communicates it to B. Identify
occurrences of this pattern and consider if generation of the item could be
shifted to B and the communication removed, with the “receive” in B being
replaced by the actions leading to x’s generation. For example:

A:...al,a2,a3, send(x), a4, ab, ...
B:...bl1,b2,03, receive(i), b4, b5, . ..
Assume that a2, a3 (which, in general, may not be contiguous) are respon-
sible for generation of x, and it is reasonable to transfer this functonality to
B. Then the above can be replaced by:
A:...al,a4,ab, ...
B:... bl, b27 b3, a27 a3, (1)47 b5, . ~)[i/x]
2. The following trace subsequences are identified:
- In control thread: alarm.put(i) > c¢;.get > w > ctrithread;(pgm,w,t) ...
- In monitor:
alarm.get > i > rworkerpool.get > remw > ¢;.put(remw) > ...

3. The subsequence rworkerpool.get > remw > ¢;.put(remw) of monitor actions
is responsible for generation of a value (a remote worker) and its forwarding
to a ctrithread process. In the ctrithread process the corresponding “receive”
is ¢;.get. So, the two trace subsequences are modified to:

- In control thread:
alarm.put(i) > rworkerpool.get > remw > ctrithread; (pgm, remw,t) . ..
- In monitor: alarm.get > i > ...

Management in Distributed Systems: A Semi-formal Approach 657

L

systemD(pgm, tasks, contract, G, t)
taskpool.add(tasks)
[i:1 <1< contract : ctrithread;(pgm,t,G)

ctrithread;(pgm,t, G) £ discover(G,pgm) > remw > ctriprocess(pgm,remw,t, G)
discover(G, pgm) £ let(remw) where remuw :€ |4eq g.can execute(pgm)

ctriprocess(pgm,remw, t, G) £ taskpool.get > tk >
(if walid > resultpool.add(r) > ctriprocess(pgm,remuw,t,G)
| if —walid > taskpool.add(tk)
| discover(G,pgm) > w > ctriprocess(pgm,w,t,G)
)

where (valid,r) :€
(remw(pgm,tk) > r > let(true,r) | Rtimer(t) > let(false,0))

Fig. 2. Decentralized management: Orc specification

4. The derived trace subsequences now include the communication of the con-
trol thread number, ¢ from ctrithread; to the monitor, but this is no longer
required by monitor; so, this communication can be removed.

5. Thus the two trace subsequences become:

- In control thread:

...>> rworkerpool.get > remw > ctrithread; (pgm, remuw, t) ...

- In monitor: ... > ...

6. Now the specifications of the processes ctrithread; and monitor are examined
to see how their definition can be changed to achieve the above trace mod-
ification, and consideration is given as to whether such modification makes
sense and achieves the overall goal.

(a) In monitor the entire body apart from the recursive call is eliminated
thus prompting the removal of the monitor process entirely. This is as
would be expected: if management is successfuly distributed then there
is no need for centralized monitoring of control threads with respect to
remote worker failure.

(b) In control thread the clause:

| alarm.put(i) > c;.get > w > ctrithread; (pgm, w, t)
becomes

| rworkerpool.get > remw > ctrithread; (pgm,remw,t)
This now suggests that ctrithread; requires access to the rworkerpool. But
the rworkerpool is an artefact of the (centralized) manager and the over-
all intent is to eliminate this manager. Thus, the action rworkerpool.get
must be replaced by some action(s), local to ctrithread;, which has the
effect of supplying a new remote worker. Since there is no longer a remote
worker pool, on-the-fly recruitment of an remote worker is required. This
can be achieved by using a discovery mechanism similar to that of the
centralized manager and replacing rworkerpool.get by discover(G, pgm):

discover(G, pgm) £ let(rw) where rw :€ |4ec g.can execute(pgm)

658 M. Aldinucci, M. Danelutto, and P. Kilpatrick

(¢) Finally, as there is no longer centralized recruitment of remote workers,
the control thread processes are no longer instantiated with their initial
remote worker but must recruit it themselves. This requires that

i. the control thread process be further amended to allow initial re-
cruitment of a remote worker, with the (formerly) recursive body of
the process now defined within a subsidiary process, ctriprocess, as
shown below.

ii. the parameter remw in ctrithread be replaced by G as the control
thread is no longer supplied with an (initial) remote worker, but must
handle its own remote worker recruitment by reference to the grid, G.

The result of these modifications is shown in the decentralized manager spec-
ification in Fig. 2l Here each control thread is responsible for recruiting its own
remote worker (using a discovery mechanism similar to that of the centralized
manager specification) and replacing it in the event of failure.

5.1 Analysis

Having derived a decentralized manager specification, the “equivalence” of the
two versions must be established. In this context, equivalent means that the
same input/output relationship holds, as clearly the two systems are designed
to exhibit different non-functional behaviour.

The input/output relationship (i.e. functional semantics) is driven almost en-
tirely by the taskpool, whose contents change dynamically to represent the data-
flow execution. This execution primarily consists in establishing an on-line par-
tial order among the execution of fireable tasks. All execution traces compliant
to this partial order exhibit the same functional semantics by definition of the
underlying data-flow execution model. This can be formally proved by showing
that all possible execution traces respecting data-dependencies among tasks are
functionally confluent (see [10] for the full proof), even if they do not exhibit the
same performance.

Informally, one can observe that a global order among the execution of tasks
can not be established ex ante, since it depends on the program and the execution
environment (e.g. task duration, remote workers’ availability and their relative
speed, network connection speed, etc.). So, different runs of the centralized ver-
sion will typically generate different orders of task execution. The separation
of management issues from core functionality, which is a central plank of the
muskel philosophy, allows the functional semantics of the centralized system to
carry over intact to the decentralized version as this semantics is clearly inde-
pendent of the means of recruiting remote workers.

One can also make an observation on how the overall performance of the sys-
tem might be affected by these changes. In the centralized management system,
the discovery activity is composed with the “real work” of the remote workers
by the parallel composition operator: discovery can unfold in parallel with com-
putation. In the revised system, the discovery process is composed with core
computation using the sequence operator, >>. This suggests a possible price to
pay for fault recovery.

Management in Distributed Systems: A Semi-formal Approach 659

160

>
I=)

Centralized manager, no faults ——
Centralized manager, 1 fault - |
Decentralized manager, no faults -
Decentralized manager, 1 fault =
Id

140

n
o

120 |

o
S

100
80
80

60 60

Completion time (secs)

40 | 40 |

Single fault handling time (msecs)

20 - 20 -

RemoteWorker No. Centralized manager runs - Decentralized manager runs

Fig. 3. Scalability (left) and fault handling cost (right) of modified vs. original muskel

6 Decentralized Management: Implementation

Following the derivation of the decentralized manager version outlined above, the
existing muskel prototype was modified to introduce distributed fault manage-
ment and to evaluate the cost, if any, in terms of performance. As shown above,
in the decentralized manager, the discovery(G, pgm, t) parallel component of
the system(...) expression become part (the discover(G, pgm) expression) of
the ctriprocess(...) expression. The discovery and discover definitions are not
exactly the same, but discover is easily derived from discovery. Thus, the code
implementing discovery(G, pgm, t) was moved and transformed appropriately
to give an implementation of discover(G, pgm). This required the modification
of just one of the files in the muskel package (194 lines of code out of a total of
2575, less than 8%), the one implementing the control thread.

Experiments were run using the original and the modified versions to test the
functionality and cost of the new implementation. The experiments were run
on a Fast Ethernet network of Pentium III machines running Linux and Java
1.5. First the scalability of the decentralized manager version was verified: the
scalabilities of the original muskel and of the one with the decentralized version
of the manager were measured, with the same skeleton program and input data,
to check that no overhead was introduced by the decentralized management, at
least in the case where no faults were detected. Figure Blleft shows almost perfect
scalability of the decentralized manager version up to 8 nodes, comparable to
that achieved when using the original muskel, both in the case of no faults and
in the case of a single fault per computation. Then the times spent in managing
a node fault in the centralized and decentralized versions were compared. The
same skeleton program with the same input data was run using the centralized
and decentralized versions of muskel and a number of faults were artificially
introduced into the system while the computations were running. In particu-
lar, up to 4 faults were introduced per run and the average time taken to handle a

660 M. Aldinucci, M. Danelutto, and P. Kilpatrick

fault was measured for each of the two versions. Figure B right plots the average
time spent in handling a single fault in each run. The centralized version performs
slightly better than the decentralized one, as expected: in the centralized version
the discovery of the name of the remote machines hosting the muskel RTS is
performed concurrently with the computation, whereas it is performed serially
to the main computation in the decentralized version. The rest of the activities
performed to handle the fault (lookup of the remote worker RMI object and
delivery of the macro data flow) is the same in the two cases.

7 Conclusion

The manager component of the muskel system has been re-engineered to provide
distributed remote worker discovery and fault recovery. A formal specification
of the component, described in Orc, was developed. The specification provided
the developer with a representation of the manager that allowed exploration of
its properties and the development of what-if scenarios while hiding the inessen-
tial detail. By studying the communication patterns present within the process
traces, the developers were able to derive a system exhibiting equivalent core
functionality, while having the desired decentralized management properties.
The derivation proceeded in a series of semi-formally justified steps, with in-
corporation of insight and experience as exemplified by the use of expressions
such as “reasonable to transfer this functionality” and “such modification makes
sense”.

The claim is that the creation of such a derivation facilitates exploration
(and documentation) of ideas and delivers much return for small investment.
Lightweight reasoning about the derived specification gave the developers some
insight into the expected performance of the derived implementation relative to
its parent. In addition, the authors suggest that Orc is an appropriate vehicle
for the description of management systems of the sort described here. Its syntax
is small and readable; its constructs allow for easy description of the sorts of
activities that typify these systems (in particular the asymmetric parallel com-
position operator facilitates easy expression of concepts such as time-out and
parallel searching); and the site abstraction allows clear separation of manage-
ment activity from core functionality.

The approach has been applied in the context of skeletal systems where the
complexity of the orchestration is constrained by the use of skeletons. However,
efficient, large distributed systems often have regular structures that can be
described using concise parametric definitions. Thus, one may be optimistic that
the approach will be feasible for systems of significant size, although, of course,
further experimentation is required to confirm this.

Future work will involve tackling the more difficult task of removing the cen-
tralized task pool bottleneck, which should provide a stiffer test of the proposed
approach. And, the availability of an Orc description makes possible the analysis
of system variants with respect to cost and reliability using techniques described

in [15].

Management in Distributed Systems: A Semi-formal Approach 661

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Danelutto, M.: QoS in parallel programming through application managers. In:
Proc. of Intl. Euromicro PDP: Parallel Distributed and network-based Processing,
Lugano, Switzerland, pp. 282-289. IEEE, Los Alamitos (2005)

. Danelutto, M., Dazzi, P.: Joint structured/non structured parallelism exploitation

through data flow. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J.J. (eds.) ICCS 2006. LNCS, vol. 3994, Springer, Heidelberg (2006)

. Danelutto, M.: Dynamic run time support for skeletons. In: Proc. of Intl. PARCO

99: Parallel Computing. Parallel Computing Fundamentals & Applications, pp.
460-467. Imperial College Press, London, UK (EU) (1999)

. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36, 41-50 (2003)

. White, S., Hanson, J., Whalley, 1., Chess, D., Kephart, J.: An architectural ap-

proach to autonomic computing. In: Proc. of the Intl. Conference on Autonomic
Computing, pp. 2-9 (2004)

. Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.:

AutoMate: Enabling autonomic applications on the Grid. Cluster Computing 9,
161-174 (2006)

. Kennedy, K., et al.: Toward a framework for preparing and executing adaptive Grid

programs. In: Proc. of NSF Next Generation Systems Program Workshop (IPDPS
2002) (2002)

. Stewart, A., Gabarrd, J., Clint, M., Harmer, T.J., Kilpatrick, P., Perrott, R.: Man-

aging grid computations: An orc-based approach. In: Guo, M., Yang, L.T., Di Mar-
tino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330,
pp. 278-291. Springer, Heidelberg (2006)

. Misra, J., Cook, W.R.: Computation orchestration: A basis for a wide-area com-

puting. Software and Systems Modeling (2006), doi: 10.1007/s10270-006-0012-1
Aldinucci, M., Danelutto, M.: Skeleton based parallel programming: functional and
parallel semantic in a single shot. Computer Languages, Systems and Structures 33,
179-192 (2007)

Milner, R.: Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

Agerholm, S., Larsen, P.G.: A lightweight approach to formal methods. In: Hutter,
D., Traverso, P. (eds.) Applied Formal Methods - FM-Trends 98. LNCS, vol. 1641,
pp. 168-183. Springer, Heidelberg (1999)

Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30, 389-406 (2004)

Kuchen, H.: The Muesli home page (2006), http://www.wi.uni-muenster.
de/PI/forschung/Skeletons/

Stewart, A., Gabarrd, J., Clint, M., Harmer, T.J., Kilpatrick, P., Perrott, R.:
Estimating the reliability of web and grid orchestrations. In: Integrated Reser-
ach in Grid Computing, Krakéw, Poland, CoreGRID, Academic Computer Centre
CYFRONET AGH, pp. 141-152 (2006)

Aldinucci, M., Danelutto, M., Kilpatrick, P.: Adding metadata to Orc to sup-
port reasoning about grid programs. In: Priol, T., Vanneschi, M. (eds.) Grid and
Peer-To-Peer Technologies (Proc. of the CoreGRID Symposium 2007), Springer,
Heidelberg (2007)

Kilpatrick, P., Danelutto, M., Aldinucci, M.: Deriving Grid Applications from
Abstract Models. Technical Report TR-85, CoreGRID (2007), available at
http://www.coregrid.net

http://www.wi.uni-muenster.de/PI/forschung/Skeletons/
http://www.wi.uni-muenster.de/PI/forschung/Skeletons/
http://www.coregrid.net

	Management in Distributed Systems: A Semi-formal Approach
	Introduction
	muskel: An Overview
	The Orc Notation
	Muskel Manager: An Orc Description
	Decentralized Management: Derivation
	Analysis

	Decentralized Management: Implementation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

