The cost of security in skeletal systems

M. Aldinucci
Dept. Computer Science
Univ. of Pisa — Italy
aldinuc@di.unipi.it

Abstract

Skeletal systems exploit algorithmical skeletons technol-
0gy to provide the user very high level, efficient parallel pro-
gramming environments. They have been recently demon-
strated to be suitable for highly distributed architectures,
such as workstation clusters, networks and grids. How-
ever, when using skeletal system for grid programming care
must be taken to secure data and code transfers across non-
dedicated, non-secure network links. In this work we take
into account the cost of security introduction in muskel,
a Java based skeletal system exploiting macro data flow
implementation technology. We consider the adoption of
mechanisms that allow securing all the communications
taking place between remote, unreliable nodes and we eval-
uate the cost of such mechanisms. In particular, we con-
sider the implications on the computational grains needed
to scale secure and insecure skeletal computations.

Keywords: skeletons, parallelism, security, scalability.

1. Introduction

Algorithmical skeletons represent a good tradeoff be-
tween expressive power and efficiency in the field of par-
allel/distributed programming. An algorithmical skeleton
is nothing but a known, parametric parallelism exploitation
pattern. It can be customized by programmers providing
suitable parameters in such a way as to match the needs
of the particular application at hand. Usually, skeletons can
also be nested in such a way that by nesting simple skeletons
users/programmers can exploit very complex parallelism
patterns. Typical examples of skeletons are task farms
(modeling embarrassingly parallel computations), pipelines
(modeling computations organized in stages), map, reduce
and prefixes (modeling classical apply-to-all and sum-up

OThis research work is carried out under the FP6 Network of Ex-
cellence CoreGRID funded by the European Commission (Contract IST-
2002-004265).

M. Danelutto
Dept. Computer Science
Univ. of Pisa — Italy
marcod@di.unipi.it

data parallel computations) and several flavors of iterator
skeletons (modeling different loop schemas).

After being introduced by Cole [8], algorithmical skele-
tons led to the development of several skeletal systems, that
is parallel programming environments exploiting the skele-
ton concept in different flavors: libraries, new languages,
coordination languages and patterns. Examples of such
programming frameworks implementing skeleton program-
ming languages are P3L [4] and ASSIST [20, 2]. They are
both programming languages designed and implemented by
our group in Pisa in 91 and in 2000 respectively. eSkel
[9, 6], Muesli [16], Skipper [18] and muskel [11] are ex-
amples of libraries providing parallel skeletons. The first
two are implemented in C and C++ and run on top of MPIL.
They have been recently designed by Cole and Kuchen re-
spectively. Skipper is implemented in Ocaml instead, runs
on top of plain TCP/IP workstation networks and uses the
same macro data flow implementation model of muskel.
muskel is our pure Java/RMI skeleton library derived from
Lithium [1] and it is the library we used to perform the ex-
periments discussed in this paper.

Recently, we developed two skeleton based programm-
nig environments, ASSIST and muskel, both target-
ing heterogeneous workstation networks and grids. With
these environments, several further implementation prob-
lems have to be dealt with: on the one side, firewall and
high network latencies have to be taken into account, and
on the other side security issues have to be safely handled.

In particular, security issues arise when skeleton pro-
grams are executed on distributed architectures whose re-
mote nodes and clusters are interconnected via public
and/or non-dedicated network infrastructures. In this case
both code (the one staged to remote nodes for the execu-
tion) and data (input data and computation results) are flow-
ing to and from remote nodes through potentially insecure
network links. Data and code crossing insecure links can be
easily snooped or spoofed by persons that are not those ac-
tually managing to perform the parallel computation. The
answer is then to secure the connections flowing through
non-secure network links. But this has a cost that has to be

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)

0-7695-2784-1/07 $20.00 © 2007 IEEE

IEE |-:

COMPUTER

SOCIETY

paid both on sending and receiving machines (that must ci-
pher and decipher (possibly serialized) code and data) and
in terms of network bandwidth (ciphered connections may
require more communications and/or differently sized mes-
sages to complete).

In this paper, we try to figure out the order of the costs in
securing communications in a skeletal system. The skele-
tal system used is muskel, which we shortly describe in
Section 2. Section 3 outlines the security related issues and
how they can be addressed in the muskel skeletal system.
Eventually, Sec. 4 will present and discuss some experi-
mental results achieved with secure muskel system.

2. muskel

muskel is a full Java, skeleton based, parallel program-
ming library [11, 12]. It can be used to run parallel skele-
ton programs on network of workstations that support Java
and RML. It provides the user with a set of fully nestable
stream parallel skeletons (pipelines and farms). Skeletons
are implemented by transforming the user supplied skele-
ton program into a data flow graph. Then, each task to be
computed is used to provide the input token to a copy of
such graph. The fireable instructions in the graph are then
scheduled for execution onto remote data flow interpreter
nodes, and the result tokens computed are either used to fire
new instructions or to be output as the results of the program
execution. All this process is completely transparent to the
user that only has to provide code such as the one in Figure
1. Here we assumed that two Java classes exist that process
medical images coming from some kind of scanner (PET,
CAT, MNR) to filter (class Filter) them and then to suit-
ably render (class Render) the filtered images. The stream
of images to be processed is taken from a file by prop-
erly exploiting the boolean hasNext () and Object
next () methods implemented in the user defined input
manager class. The result images will eventually be stored
in another file, invoking the void deliver (Object
r) method implemented by the user defined output man-
ager class. The user asks to compute the program using
10 remote data flow interpreter nodes. Furthermore, as he
knows the rendering phase takes sensibly longer than the
filtering one, he asks to execute in parallel the second stage
of this pipeline computation, by writing the second stage of
the pipeline as a farm.

muskel uses Managers to manage computations. The
manager takes a skeleton program, input and output man-
agers and a performance contract (the parallelism degree,
in this case). Then it arranges to discover and recruit a suit-
able number of remote interpreter nodes and forks a control
thread for each one of the recruited interpreters. The control
thread enters a loop. In the loop body, it fetches a fireable
instruction from the MDF (Macro Data Flow) graph repos-

itory @, delivers it to the remote interpreter @, gets the re-
sults of the remote computation ® and eventually either de-
livers the results @ as tokens in the MDF graph or, in case
they are final results, it delivers them to the output manager.
The manager also arranges to instantiate a fresh copy of the
MDF graph in the MDF graph repository for each one of
the tasks retrieved using the input manager, with the task
placed as a token in the proper MDF “initial” instruction of
the graph. In case there is a problem with one of the remote
interpreters (a remote node fault or a network problem) the
control thread informs the manager and terminates. In turn,
the manager tries to recover the situation by recruiting a new
remote interpreter and putting back the uncomputed fireable
instruction in the MDF graph repository.

The interpreters are launched on the remote nodes, possi-
bly using a shell script once and for all (remote interpreters
are plain Java remote objects running as standalone pro-
cesses or as Java Activatable objects). They are spe-
cialized to execute the code of the application at hand by
control threads forked by the manager. The control threads
deliver to the interpreters the serialized version of the rel-
evant Compute classes just before starting the delivery of
fireable MDF instructions. The process of recruiting remote
interpreters can be executed in two different ways. In one
case (version 1.0 of muskel), the addresses of the remote
machines are retrieved by the manager from a text file host-
ing a {machinename, port) pair list. In another case (current
version of muskel, 2.0), a peer-to-peer discovery protocol!
is started that eventually gathers answers from the remote
machines were an interpreter was running hosting the same
(machinename, port) info.

muskel has been tested on several configuration of
networked workstations including plain, dedicated clusters
(RLX Pentium III Blade chassis hosting 24 nodes), local
network of different, production workstations (Pentium III
to IV running Linux and Mac OS X Power PC G4 and
G5 machines interconnected via Fast Ethernet and several
Linux and Mac OS X laptops connected via wireless), geo-
graphical scale network hosting the same kind of machines
in two sites separated by firewalls?. In all the cases, almost
perfect scalability has been achieved, provided that suitably
coarse grain programs are run. We showed that local net-
work configurations (i.e. configurations hosting processing
elements in a single LAN) scale well with skeleton code in-
volving computations with a grain (ratio between the time
spent in computing a remote DF instruction and the time
spent in delivering the input tokens and retrieving the output
tokens) around 100. Geographical scale networks, instead,
required computations with a sensibly larger grain (1 to 2
orders bigger than the one scaling on the local network).

Ithe discovery service exploits UDP multicast
2ProActive [17] was used in this case to perform RMI call tunneling
through ssh

IEE |-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

import muskel.x;
public class SampleCode {

public static void main(String [] args)

// first of all define the program to be computed
Compute filter = new Filter();
Compute render = new Render();
Compute farm new Farm(render);
Compute main = new Pipeline(filter,

{

// first stage is filtering
// second stage is rendering

// as rendering is heavier than filtering, let’s farm it out in the pipe
farm) ;

// this is the program we eventually compute

// then arrange to provide input “task” stream and some way to manage results

InputManager inM =

// provide input image stream (implement hasNext /next abstraction to get images)

new ImageStreamInputManager ("sample_mage.dat");

OutputManager outM =

// store results (provide de 11iver method to handle each result computed)

new FileOutputManager ("sample_result.dat");

// now arrange to declare a manager: it will completely take care of the parallel computation

Manager mng =

// now ask to compute the program
mng.compute () ;

// that’s all: results are now in the sample result.dat file ...

new Manager (main, inM, outM) ;
mng.setContract (new ParDegree (Integer.parselnt (args[0])));

// declare the manager
// ask to use args[0] remote PEs

// start the computation and wait for termination

Figure 1. Sample muskel code

3. Introducing security

When exploiting parallelism using nodes that are inter-
connected by public network links there is always the risk
that communications are intercepted and relevant data is
snooped by foreign, unauthorized people. Also, data can
be snooped and substituted with other wrong or misleading
data exploiting spoofing techniques, thus leading to incor-
rect computations. An even worst case concerns code. Take
into account what happens in muskel: serialized code is
sent to the remote interpreters that is then used to compute
remotely the fireable macro data flow (MDF) instructions
relative to the user skeleton code. If such code is changed,
the remote nodes can be used to compute things they were
not supposed to compute. Therefore it is fundamental, in
order to avoid both data and code problems, that 1) the ac-
cess to the remote interpreters is authenticated in a secure
way and 2) that the code itself is ciphered before being sent
to the remote interpreters.

Authentication and code ciphering can be easily pro-
grammed using Java JSSE extensions, included in the JDK
since version 1.4. Therefore, we decided to modify the
muskel prototype to provide authentication, privacy and
integrity in the communications taking place among the

control threads running on the user machine and the remote
data flow interpreter instances running on the remote ma-
chines. In particular, we prepared a muskel version ex-
ploiting Java SSL library to perform communications in-
volving remote processing nodes. SSL provides authenti-
cation, privacy, and integrity. These features are provided
through asymmetric keys, symmetric session keys and mes-
sage digests, respectively. Overall, SSL represents a well
known and assessed tool to secure remote communications
over TCP. We then used the modified version of muskel
(we’ll refer to it as secure muskel from now on) to eval-
uate the impact of security on the raw performance of the
skeletal system. Just to avoid interferences or difficulties in
evaluating the experimental results due to any kind of ad-
ditional mechanism, we stripped down the current muskel
prototype by replacing the RMI remote interpreter access
with plain TCP/IP sockets connections. In secure muskel
we used the very same code modified just in the parts open-
ing the sockets. Those parts dealing with the opening of
plain TCP/IP sockets were modified to host the opening of
SSL connections through proper calls to the SSL socket fac-
tories provided by Java 1.5. This process resulted in the im-
plementation of two distinct versions of the base muskel
engine able to compute in a distributed/parallel way sets of

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

IEE |-:

COMPUTER

SOCIETY

pipe

seq(filter) farm

seq(render) :

=

MDF graph
repository

\D

I:Iq‘

\

manager
'~

w %

< ~
~

~
\

~

e ———

Remote
Workstations

remote
DF int.
remote
DF int.

User Workstation

S~ controlthread |<—

~

Figure 2. muskel functioning

macro data flow instructions stored in the fireable instruc-
tion pool. The two versions have been used to evaluate the
costs related to the introduction of security in the skeletal
system, through the experiments described in the following
section.

4. Experiments with secure muskel

In order to figure out how the introduction of secure re-
mote communications impact on the execution of muskel
programs we performed a set of experiments. All the ex-
periments were run on Fast Ethernet networks of Pentium
IIT machines running Linux with a vendor modified 2.4.22
kernel.

4.1. Secure muskel vs. plain muskel

The first set of experiments measured the performance
achieved when running the same muske1 skeleton program
onto a workstation network first using the original muskel
prototype, with insecure communications, and then using
the secure muskel prototype. We considered programs
with different computational grain, i.e. programs whose
macro data flow instructions have a different average com-
putation to communication time ratio. In other words, we
defined computational grain G as

o=Tw

T,
where T, represents the time spent by a remote interpreter
instance to compute the macro data flow instruction on the
local data and T, represents the time spent in transferring
the input data to the remote interpreter instance plus the
time spent getting back the computed results from the re-
mote interpreter instance, and then we measured the perfor-
mance of several programs with different values of G. Fig-
ure 3 shows the results we achieved. The left plot is relative

to the original muskel runs and the right one is relative to
the runs using the secure muskel version. In the legend,
W = z/C = yK means that the average T3, of macro data
flow instructions was z and the amount of input data trans-
ferred to the remote interpreter to compute the instruction
plus the amount of output data retrieved from the remote
interpreter was y Kbytes. The workstations used were ded-
icated to muskel runs, the programs were the same, the
input data were the same also and therefore the only factor
influencing the completion times is the usage of the SSL
sockets. Both plots, the muskel and the secure muskel
ones are actual speedup plots, rather than scalability plots:
the point relative to 1 processing element is relative to the
sequential execution of the macro data flow instructions on
a single processor, rather than to the usage of just one re-
mote interpreter instance. In this case, no communication
overhead at all is counted in the execution time.

4.2. SSL vs. plain TCP/IP bandwidth

We measured the raw communication bandwidth of
muskel and secure muskel in order to be able to cor-
rectly interpret the results of our experiments. Figure 4
left shows the bandwidth achieved in the two cases. The
lower bandwidth of secure muskel is mostly due to the
overhead introduced at processor level due to the cipher-
ing/deciphering activity taking place at the sending and re-
ceiving node. It is only partially due to the initial key ex-
change handshake, which is performed once and for all, and
to the slightly longer (about 10%, actually) message encod-
ing used in SSL.From this measures we can conclude that
the introduction of SSL impacts on the computational grain
G needed to mask the longer communication times involved
in muskel computations. As a consequence, we expected
that coarser grain programs (that is programs with higher
values of GG) are needed to achieve good secure muskel

IEE I-'

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

30 T

T

T

30 T —
Ideal

W=60mS/C=2K -+
25 + W=473mS/C=2K -
W=1894ms/C=2K *
W=60mS/C=4K ---z---

20 [W=473mS/C=4K ---

= W=1894mS/C=4K ---o--
§ 15 Ay
jo R
w

10

5 ,,./

0
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
n. of Processing Elements

Figure 3. SSL vs. plain TCP/IP socket

ideal
W=60mS/C=2K -+
25 - W=473mS/C=2K -
W=1893mS/C=2K -
W=60mS/C=4K ---a---
20 [W=473mS/C=4K =
S W=1893mS/C=4K o
B o5l s
Q.
()
10 ’ . . -
5 -
0 e
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
n. of Processing Elements
3.5 . . ' ‘ ‘
SSL_RSA_WITH_RC4_128_MD5 ——
3t plain Java sockets -~ |
0
[&]
3 -
@
[0)
£ |
|_

0 100 200 300 400 500
Messages size (KBytes)

30 — —
Ideal
Plain: W=947mS/C=4K G=300 -
25 | SSL: W=8200mS/C=4K G=300 - _
Plain: W=222mS/C=2K G=70 - 5G=300
20 SSL: W=947mS/C=2K G=70 -~ "
o 7
2
§ 15
& |
10 G=70
& =i
%
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
n. of Processing Elements

Figure 4. muskel vs secure muskel bandwidth (left, times include serialization time) and effect of

grain (right)

performance figures.
4.3. Iso-grain speedup

In order to evaluate the effect of computational grain on
speedup, we run another experiment. We choose different
values of G and run programs with that G value on both
muskel and secure muskel prototype. As the T, values
depend on the communication library, we had to use larger
data flow instructions in the secure muskel runs to get the
same G with the same amount of data transferred to and
from the remote interpreter instances. Figure 4 right shows
the results achieved in this experiment. When the grain is
high G = 300, both muskel and secure muskel scale
pretty well (also in this case, the plot is relative to speedup,

not to scalability). However, the secure muskel run re-
quired computations significantly longer than the standard
muskel run in order to achieve comparable speedups.
Actually, secure muskel required computations 8 times
longer than those required by standard muske1 to reach the
G = 300 value that led to quasi linear speedup. This is due
to the overhead involved to the usage of SSL sockets. When
computational grain is smaller, however, both muskel and
secure muskel stop scaling pretty early as shown by the
G = 70 plots in the same Figure.

4.4. Skeleton related optimizations

The experimental results clearly show that the costs in-
volved in secure coding are definitely not negligible. Al-

IEE I-'

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

30 —
Ideal
0% of SSL links ——+—
25 32% (+/-3%) of SSL links -
65% (+/-3%) of SSL links -~ i
100% of SSL links --—="- A
20 Lt
o
=) %
g 15 ot
o A
n e
10 b
5 T :
%
O i

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
n. of Processing Elements

task distributions (plain vs SSL)

100%

[TTTTTTT]
n. of SSL tasks
C =128 Bytes

[TTTTTTT]
n. of SSL tasks
C = 8K Bytes

80%

60%

40%

n. of plain tasks n. of plain tasks
C = 128 Bytes C = 8K Bytes

20%

0%

2 6101418222630 2 6 10 14 18 22 26 30
n. of Processing Elements

Figure 5. Mixed local nodes/non SSL and remote nodes/SSL muskel execution

though this is not a “brand new” nor an unexpected result,
the numbers in the plots give a precise dimension to the cost
of introducing security. Being related to skeleton based par-
allel programming, they also show how the impact is rele-
vant despite the relative simplicity of the run time support
used. The clear and simple structure of the muskel run
time, in fact, makes evident that the overhead measured is
only coming from the (correct) usage of the SSL support.

It is clear, then, that we must figure out how such costs
can be optimized. In particular, we must be able to exploit
the knowledge available at compile and run time, derived
from the analysis of the structure of both the skeleton pro-
gram and of the process network used to implement it, to
improve the efficiency of the secure version of muskel.
One kind of knowledge we can exploit in this process is the
knowledge relative to the location of the remote processing
elements recruited to act as remote MDF interpreter nodes.
The muskel manager arranges to recruit remote MDF in-
terpreter nodes either using a peer2peer discovery service or
consulting some kind of machine list configuration file. At
the end of the recruit process, the IP addressese of these ma-
chines are known. By comparing these addresses with the
address of the workstation the user is currently using to run
the program, the manager can figure out, immediately be-
fore starting the control threads managing the remote MDF
interpreter nodes, which ones are local (that is belong to
the same LAN of the user machine running the muskel
main) and which ones are not. Presumably, the local nodes
happen to operate in controlled environment, and therefore
they can be reached with plain TCP/IP instead than using
more costly secure communication mechanism. Non-local
nodes, on the other hand must be reached exploiting secure
mechanism if the network path to the nodes flows through
public networks or generically insecure links. With this in-

formation available, the muskel Manager can thus decide
whether to fork a plain control thread (the one using plain
TCP/IP RMI) or a secure control thread (the one using SSL
RMI) for each one of the remote processing elements re-
cruited with a very small amount of additional code.

We therefore run another experiment: we modified se-
cure muskel to use SSL only with non-local nodes and to
use plain TCP/IP sockets with the local nodes. Then, we
run the same program on two clusters, with the same kind
of machines, that is Linux machines with the same proces-
sors and the same amount of central memory. One cluster
was in the same network of the user machine running the
main muskel program. The other cluster was remote and
therefore was managed by SSL muskel control threads.
Actually, to remove the problem in the result analysis de-
riving from the different latencies in reaching local and re-
mote nodes, we configured part of the local nodes as if they
were non-local. Therefore, again, the only difference was
in the usage of SSL muskel control threads rather than
plain, non-SSL control threads. The results are shown in
Figure 5. Figure 5 left shows the speedups achieved in runs
of the same program performed using a variable mix of the
distributed data flow interpreter instances placed on local
machines and on remote machines. The speedups achieved
in the mix runs are clearly smaller than the one reached
in the local/insecure nodes only runs. However, muskel
manager and control thread implement a self-adapting load
balancing strategy. Each control thread only dispatches a
new fireable MDF instruction when the results of the exe-
cution of the previous one have been received. Therefore
“slow” remote interpreters get fewer tasks to be computed
with respect to “fast” ones. Figure 5 right shows the mea-
sured percentage of fireable instructions (tasks) computed
by each one of the remote interpreters. In case the amount

IEE l-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

of data transferred to the remote interpreter instance is small
(left part of the Figure), and therefore the weight of ci-
pher/decipher is small, local and remote instances get more
or less the same amount of tasks to be computed. How-
ever, when the amount of data transferred becomes signif-
icant (right part of the Figure), the remote interpreter in-
stances get fewer tasks to be computed, due to the load bal-
ancing mechanism. Actually, this control mechanism was
thought to solve load balancing in case of usage of hetero-
geneous workstations (different CPUs, different amounts
of central store or even different operating systems) but it
demonstrated very effective also in this case.

Although we have no experimental results on the this
topic yet, we just outline another source of optimizations
related to security. When writing structured parallel pro-
grams according to the skeleton model, the structure of the
parallel program is clearly exposed by the programmer him-
self. It is quite to introduce suitable annotations that can
be used by the programmer to denote which parameters
are “sensible”, that is which are the communications that
must be eventually secured. As an example, we may sup-
pose to provide two marker annotations @secureData
and @secureCode to denote those compute methods
that do use sensible parameters or, respectively, sensible
code, and therefore should exploit the secure communica-
tion framework ther in the transmission of fireable data flow
instructions to the remote interpreters or in the transmission
of the code to the remote interpreters during the initializa-
tion phase of the distributed macro data flow interpreter. By
properly exploiting these annotations, we could combine
the analysis on secure and insecure nodes outlined above
with the knowledge supplied by the programmer. Eventu-
ally, we’ll be able to secure just those communications that
involve sensible data and/or code and use non secure com-
munication links. Again, this shows how the knowledge
typically available in a skeleton system can be usefully ex-
ploited to reduce the impact of security to the minimum ac-
tually necessary.

4.5. Network impact

The results discussed in the previous sections must be
considered taking into account that the network used for the
experiments was Fast Ethernet. The NIC (network interface
cards) used do not support any kind of on board data pro-
cessing. In particular, the cards used just provide hardware
support to access via DMA the packets to and from the main
store from and to the internal buffer. Therefore, the whole
cost of securing messages, that means the whole cost of ci-
phering data packets, is paid by the central CPU serially
to the time spent by the NIC to actually send the message.
In other words, the classical cost model for communication

that assumes a cost of
Tcomm(#bytes) = tinit + #bytes X tbyte

where ¢;,;; represents the cost of preparing the message
and initializing the NIC and ;. is basically the inverse of
the network bandwidth has to be read considering that ¢;,,¢
comprehends not only data encapsulation in proper packets
of the protocol stack but also the cyphering of the payload
using the symmetric key negotiated in the SSL set up phase.

The additional messages exchanged in the initial phase
of the establishment of a SSL connection to negotiate the
symmetric session key, on the other hand, are paid just
once and for all, as the connections between remote MDF
interpreters and the management control threads are es-
tablished once and for all when the manager is asked
to start the muskel parallel code exceution with the
manager.compute () method call. Therefore these ad-
ditional messages (with respect to plain TCP/IP connection
set up) add a negligible overhead in case non trivial (long)
input streams are processed.

In case different network hardware was used, things may
change a lot. In particular, if modern, high performance net-
work hardware was used, such as QsNet// [5], then NIC on
board processors can be exploited to implement payload ci-
phering. In this case, the overhead on the CPU falls back to
the same class of the overhead paid in case of plain TCP/IP
usage. Still, we expect the optimization introduced by ex-
ploiting the information derived from the skeleton structure
of the program improves the overall efficiency of muskel
programs, as avoiding unnecessary ciphering of message
payload frees NIC coprocessor resources that can be con-
sequently exploited for different purposes.

5. Related work

Currently available skeletal systems do not support any
kind of security feature. The MPI libraries by Cole and
Kuchen are thought to be run on MPI clusters, that are usu-
ally exploiting private, secure networks. Therefore the at-
tention has been concentrated on other features related to ef-
ficiency and expressive power. ASSIST was designed to run
on grids, either exploiting the Globus toolkit [15] or exploit-
ing plain TCP/IP POSIX workstation mechanisms. In this
latter case, it actually uses ssh and scp to perform remote
commanding and data and code staging to and from remote
machines. However, we never measured the impact of the
usage of the ssh/scp tools. Recently, the Muenster uni-
versity group leaded by Gorlatch introduced HOC [3, 13].
HOC (High Order Components) is a grid-programming en-
vironment jointly exploiting the skeleton technology and
component technology. HOC provides predefined compo-
nents providing the programmers with pipeline and task

IEE |-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

farm parallelism exploitation patterns. The implementation
uses Web Services to manage grid related issues, such as
data and code staging. At the moment, however, security
issues are not yet taken into account in HOC although there
are specifications to put security over standard XML/SOAP
protocols used in web services [7].

More attention is paid to security issues in non-skeleton
based grid programming system. The globus grid middle-
ware [15] provides a full range of tools to handle security
issues [21], for instance. And security is one of the key
points to be addressed accordingly to the NGG reports [19].
Recently, in the framework of the CoreGRID European Net-
work of Excellence [10], security has been considered an
“horizontal issue” that is an issue to be considered in all the
Institutes of the network, and a nice survey of security grid
related issues has been produced [14]. We considered the
results of all this experiences before investigating the im-
pact of security in skeletal systems.

6. Conclusions

We discussed the cost of introducing security features
into a skeletal system. The skeletal system taken into ac-
count is muskel, our all Java skeleton based parallel pro-
gramming library. We modified the implementation in such
a way as to ensure the communications taking place be-
tween the remote machines with authentication, privacy and
integrity, by exploiting SSL. We evaluated the cost of such
operation. Then we showed how the exploitation of the in-
formation available at run time can mitigate its high cost.
The experiments discussed are not claimed to be defini-
tive nor complete. We are currently planning and perform-
ing further experiments aimed at demonstrating that secure
skeletal programming environments can be designed that
also achieve decent performance results, exploiting these
first results we achieved with the secure muske 1 prototype.
As security is a fundamental issue in highly distributed sys-
tems, such as multi cluster and grid architectures, we think
this could be considered an interesting contribution to the
skeletal system implementation technology.

References

[1] M. Aldinucci, M. Danelutto, and P. Teti. An advanced
environment supporting structured parallel programming in
Java. Future Generation Computer Systems, 19(5):611-626,
2003. Elsevier Science.

[2] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,
M. Vanneschi, L. Veraldi, and C. Zoccolo. Dynamic recon-
figuration of grid-aware applications in ASSIST. In 1ith
Intl Euro-Par: Parallel and Distributed Computing, volume
3648 of LNCS, pages 771-781, Lisboa, Portugal, August
2005. Springer Verlag.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
(11]

[12]

[13]

[14]
[15]
[16]

(17]
(18]

(19]

[20]

[21]

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

M. Alt, J. Diinnweber, J. Miiller, and S. Gorlatch. HOCs:
Higher-order components for grids. In V. Getov and T. Kiel-
mann, editors, Component Models and Systems for Grid
Applications, CoreGRID, pages 157-166. Springer Verlag,

June 2004.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and
M. Vanneschi. P3L: A Structured High level programming
language and its structured support. Conc. Practice and Ex-
perience, 7(3):225-255, 1995.

J. Beecroft, D. Addison, D. Hewson, M. McLaren,
D. Roweth, F. Petrini, and J. Nieplocha. QsNet!’: Defining
High-Performance Network Design. IEEE Micro, 25(4):34—

47, January-February 2005.
A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible

Skeletal Programming with eSkel. In /1th Intl Euro-Par:
Parallel and Distributed Computing, volume 3648 of LNCS,

Lisboa, Portugal, Aug. 2005. Springer Verlag.
G.-P. C. and C. J. Web Services and Web Service Se-

curity Standards. Information Security Technical Report,
10(1):15-24, 2005. Elsevier.

M. Cole. Algorithmic Skeletons: Structured Management
of Parallel Computations. Research Monographs in Parallel
and Distributed Computing. Pitman, 1989.

M. Cole. Bringing Skeletons out of the Closet: A Pragmatic
Manifesto for Skeletal Parallel Programming. Parallel Com-
puting, 30(3):389-406, 2004.

Coregrid home page, 2006. http://www.coregrid.net.

M. Danelutto. QoS in parallel programming through ap-

plication managers. In Proceedings of the 13th Euromicro
Conference on Parallel, Distributed and Network-based pro-

cessing. IEEE, 2005. Lugano.
M. Danelutto and M. Dazzi. Joint Structured/Unstructured

Parallelism Exploitation in Muskel. In Proceedings of ICCS
2006 / PAPP 2006, LNCS. Springer Verlag, May 2006. to
appear.

J. Diinnweber and S. Gorlatch. HOC-SA: A grid service
architecture for higher-order components. In /EEE Interna-
tional Conference on Services Computing, Shanghai, China,
pages 288-294. IEEE Computer Society Press, September
2004.

A. A. et al. Survey Material on Trust and Security, 2005.
Deliverable D.IA.03, CoreGRID, www.coregrid.org.
Globus web site. http://www.globus.org.

H. Kuchen. A Skeleton Library. In Euro-Par 2002, Par-
allel Processing, number 2400 in LNCS, pages 620-629.
Springer Verlag, August 2002.

ProActive home, 2006. www-sop.inria.fr/oasis/ProActive/.
J. Sérot and D. Ginhac. Skeletons for parallel image process-
ing : an overview of the SKiPPER project. Parallel Comput-
ing, 28(12):1785-1808, Dec 2002.

D. Snelling and K.-J. et al. Next Generation Grids 2 — Re-
quirements and Options for European Grids Research 2005-
2010 and Beyond, 2004.

M. Vanneschi. The Programming Model of ASSIST, an
Environment for Parallel and Distributed Portable Applica-
tions. Parallel Computing, 12, December 2002.

V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, and K. C.
et al. Security for Grid Services. In Proceedings of 12th
IEEE International Symposium on High Performace Dis-
tributed Computing. IEEE Computer Society Press, 2003.

IEE l-:

COMPUTER
SOCIETY

