
John von Neumann Institute for Computing

VirtuaLinux: Virtualized High-Density Clusters
with no Single Point of Failure

Marco Aldinucci, Marco Danelutto, Massimo Torquati,
Francesco Polzella, Gianmarco Spinatelli,
Marco Vanneschi, Alessandro Gervaso,
Manuel Cacitti, Pierfrancesco Zuccato

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 355-362, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38



VirtuaLinux: Virtualized High-Density Clusters with no
Single Point of Failure

Marco Aldinucci1, Marco Danelutto1, Massimo Torquati1, Francesco Polzella1,
Gianmarco Spinatelli1, Marco Vanneschi1, Alessandro Gervaso2, Manuel Cacitti2,

and Pierfrancesco Zuccato2

1 Computer Science Department
University of Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

E-mail: {aldinuc, marcod, torquati, polzella, spinatel, vannesch}@di.unipi.it
2 Eurotech S.p.A.

Via Fratelli Solari 3/a, I-33020 Amaro (UD), Italy
E-mail: {a.gervaso, m.cacitti, p.zuccato}@eurotech.it

VirtuaLinux is a Linux meta-distribution that allows the creation, deployment and adminis-
tration of both physical and virtualized clusters with no single point of failure. VirtuaLinux
supports the creation and management of virtual clusters in seamless way: VirtuaLinux Virtual
Cluster Manager enables the system administrator to create, save, restore Xen-based virtual
clusters, and to map and dynamically remap them onto the nodes of the physical cluster. We
introduces and discuss VirtuaLinux virtualization architecture, features, and tools. These rely
on a novel disk abstraction layer, which enables the fast, space-efficient, dynamic creation of
virtual clusters composed of fully independent complete virtual machines.

1 Introduction

Clusters are usually deployed to improve performance and/or availability over that pro-
vided by a single computer, while typically being much more cost-effective than a single
computer of comparable speed or availability. A cluster is a network of complete comput-
ers (a.k.a. nodes), each of them running its own copy of a – possibly standard – operating
system (OS). A range of solutions for the collective and/or centralised management of
nodes are available in all OSes, from very low level tools (e.g. rdist) to complete soft-
ware packages (e.g. Sun Grid Engine1).

Typically, a node of the cluster acts as the master of the cluster, while the others de-
pend on it for several services, such as file sharing, user authentication, network routing
and resolution, time synchronisation. The master is usually statically determined at the
installation time for its hardware (e.g. larger disks) or software (e.g. configuration of ser-
vices). In high-density clusters, disks mounted on nodes are statistically the main source
of failures because of the strict constraints of size, power and temperature2. This is par-
ticularly true on master disk that happens also to be a critical single point of failure for
cluster availability since it hosts services for cluster operation. A hardware or software
crash/malfunction on the master is simply a catastrophic event for cluster stability.

In addition, rarely a single configuration or even a single OS can be adapted to sup-
ply all users’ needs. Classic solutions like static cluster partitioning with multiple boots
are static and not flexible enough to consolidate several user environments and require
an additional configuration effort. Since cluster configuration involves the configuration

355



Virtual Cluster "clean"
2 VMs x 2 VCPUs 
10.0.1.0/24

Virtual Cluster "stripes"
4VMs x 4VCPUs
10.0.0.0/24

Physical Cluster + external iSCSI SAN 
InfiniBand + Ethernet
4 Nodes x 4 CPUs (disk-less)
Cluster InfiniBand 192.0.0.0/24
Cluster Ethernet 192.0.1.0/24
Internet Gateway 131.1.7.6

node_1
4 CPUs

node_2
4 CPUs

node_3
4 CPUs

node_4
4 CPUs

VM1
4 vCPUs

VM1
2 vCPUs

disk1 disk2
Eth

IB

VM4
4 vCPUs

VM2
4 vCPUs

VM3
4 vCPUs

VM2
2 vCPUs

Figure 1. A physical cluster running three Virtual Clusters.

of distinct OS copies in different nodes, any configuration mistake, which may seriously
impair cluster stability, is difficult to undo.

We present VirtuaLinux, an innovative Linux meta-distribution able to support the in-
stallation and the management of a disk-less, master-less cluster with a standard Linux
distribution (e.g. CentOS, Ubuntu). VirtuaLinux address previously mentioned robustness
problems of standard cluster installation, and natively supports Virtual Clusters (VCs).
In particular, this paper presents VirtuaLinux VCs facility and the software architecture
supporting them. We refer back to Aldinucci et al.3 for a detailed description of other
VirtuaLinux features, such as disk-less cluster boot, storage abstraction, and master-less
services configuration.

VirtuaLinux improves the management flexibility and configuration error resilience of
a cluster by means of transparent node virtualization. A physical cluster may support one
or more virtual clusters (i.e. cluster of virtual nodes) that can be independently managed
without affecting the underlying physical cluster configuration and stability. Virtual clus-
ters run a guest OS (either a flavour of Linux or Microsoft WindowsTM) that may differ
from the host OS that handles physical cluster activities.

2 Virtual Clustering

The virtualization of the physical resources of a computing system to achieve improved
degrees of sharing and utilisation is a well-established concept that goes back decades4, 5.
In contrast to a non-virtualized system, full virtualization of all system resources (including
processors, memory and I/O devices) makes it possible to run multiple OSes on a single
physical platform. A virtualized system includes a new layer of software, called a Virtual
Machine Monitor (VMM). The principal role of the VMM is to arbitrate access to the
underlying physical host platform resources so that these resources can be shared among
multiple OSes that are guests of the VMM. The VMM presents to each guest OS a set of
virtual platform interfaces that constitute a virtual machine (VM).

By extension, a Virtual Cluster (VC) is a collection of VMs that are running onto one
or more physical nodes of a cluster, and that are wired by a virtual private network. By
uniformity with the physical layer, all VMs are homogeneous, i.e. each VM may access
a private virtual disk and all VMs of a virtual cluster run the same OS and may access a

356



shared disk space. Different virtual clusters may coexist on the same physical cluster, but
no direct relationship exists among them, apart from their concurrent access to the same
resources (see Fig. 1). Virtual clusters bring considerable added value to the deployment
of a production cluster because they ease a number of management problems, such as:
physical cluster insulation and cluster consolidation. Physical cluster insulation ensures
that crashes or system instability due to administration mistakes or cursoriness at the virtual
layer are not propagated down to the physical layer and have no security or stability impact
on the physical layer. Virtualization is used to deploy multiple VCs, each exploiting a
collection of VMs running an OS and associated services and applications. Therefore,
the VMs of different VCs may be targeted to exploit a different OS and applications to
meet different user needs. The main drawback of virtualization is overhead, which usually
grows with the extent of hardware and software layers that should be virtualized.

3 VirtuaLinux

VirtuaLinux is a Linux distribution that natively supports the dynamic creation and man-
agement of VCs on a physical cluster. VirtuaLinux implementation is arranged in a two-tier
architecture: VM implementation layer and VM aggregation layer. The first one imple-
ments the single VM (currently the Xen6 VMM). The second one aggregates many VMs
in a VC, and dynamically creates and manages different VCs. This is realised by way of
the VirtuaLinux Virtual Cluster Manager (VVCM). Overall, the VVCM enables the sys-
tem administrator to dynamically create, destroy, suspend and resume from disk a number
of VCs. The VCs are organised in a two-tier network: each node of a VC is connected
to a private virtual network, and to the underlying physical network. The nodes of a VC
are homogeneous in terms of virtualized resources (e.g. memory size, number of CPUs,
private disk size, etc.) and OS. Different clusters may exploit different configurations of
virtual resources and different OSes. Running VCs share the physical resources according
to a creation time mapping onto the physical cluster. VCs may be reallocated by means of
the run-time migration of the VM between physical nodes.

Each virtual node of a VC is implemented by a Xen VM that is configured at the VC
creation time. Each virtual node includes: a virtual network interface with a private IP, a
private virtual disk, a private virtual swap area and a VC-wide shared virtual storage. The
virtualization of devices is realised via the standard Xen virtualization mechanisms.

3.1 VirtuaLinux Storage Architecture

VirtuaLinux uses EVMS to provide a single, unified system for handling storage man-
agement tasks, including the dynamic creation and destruction of volumes, which are an
EVMS abstraction that are seen from the OS as disk devices7, 8.

The external SAN should hold a distinct copy of the OS for each node. At this end, Vir-
tuaLinux prepares, during installation, one volume per node and a single volume for data
shared among nodes. Volumes are formatted with an OS specific native file system (e.g.
ext3), whereas shared volumes are formatted with a distributed file system that arbitrates
concurrent reads and writes from cluster nodes, such as the Oracle Concurrent File System
(OCFS2) or the Global File System (GFS).

357



Volumes are obtained by using the EVMS snapshot facility. A snapshot represents a
frozen image of a volume of an original source. When a snapshot is created, it looks exactly
like the original at that point in time. As changes are made to the original, the snapshot
remains the same and looks exactly like the original at the time the snapshot was created.
A file on a snapshot is a reference, at the level of disk block, to its original copy.

3.1.1 Snapshots Usage in VirtuaLinux

EVMS snapshots can be managed as real volumes that can be activated and deactivated,
i.e. mapped and unmapped onto Unix device drivers. However, despite being standard
volumes, snapshots have a subtle semantics regarding activation due to their copy-on-write
behaviour9. In fact, the system cannot write on an inactive snapshot since it is not mapped
to any device, thus may lose the correct alignment with its original during the deactivation
period. EVMS solves the problem by logically marking a snapshot for reset at deactivation
time, and resetting it to the current original status at activation time. Since snapshots cannot
be deactivated without losing snapshot private data, they all should always be kept active in
all nodes, even if each node will access only one of them. Snapshots on Linux OS (either
created via EVMS, LVM, or other software) are managed as UNIX devices via the device
mapper kernel functionality.

Although EVMS does not fix any limit on the number of snapshots that can be created
or activated, current Linux kernels establish a hardwired limit on the number of snapshots
that can be currently active on the same node. This indirectly constrains the number of
snapshots that can be activated at the same time, and thus the number of nodes that Vir-
tuaLinux can support. Raising this limit is possible, but requires a non-trivial intervention
on the standard Linux kernel code. VirtuaLinux overcomes the limitation with a different
approach, which does not require modifications to the kernel code. Since each snapshot is
used as private disk, each snapshot is required to be accessible in the corresponding node
only. In this way, each node can map onto a device just one snapshot. The status of an
EVMS snapshot is kept on the permanent storage. This information is also maintained in a
lazy consistent way in the main memory of each node. Status information is read at EVMS
initialisation time (evms activate), and committed out at any EVMS command (e.g. create,
destroy, activate, and deactivate a snapshot). While each snapshot can have just a single
global state for all nodes (on the permanent storage), it may have different status on the
local memory of nodes (e.g. it can be mapped onto a device on a node, while not appear-
ing on another). Snapshot deactivation consists in unmapping a snapshot device from the
system, then logically marking it for reset on permanent storage.

VirtuaLinux extends EVMS features with the option to disable EVMS snapshot reset-
on-activate feature via a special flag in the standard EVMS configuration file. In the pres-
ence of this flag, the extended version of EVMS will proceed to unmap the snapshot with-
out marking it for reset. VirtuaLinux EVMS extension preserves snapshot correctness
since the original volume is accessed in read-only mode by all nodes, and thus no snapshot
can lose alignment with the original. One exception exists: major system upgrades, which
are performed directly on the original copy of the file system, and that trigger the reset of
all snapshots. At the implementation level, the VirtuaLinux EVMS extension requires the
patching of EVMS user space source code (actually just few lines of C code).

358



3.2 VC Networking

Xen supports VM networking through virtualized Ethernet interfaces. These interfaces
can be connected to underlying physical network devices either via bridged (OSI model
layer 2) or routed (OSI model layer 3) networking. Bridging requires less setup complexity
and connection tracking overhead as compared to the routing method. On the other hand,
bridging impairs insulation among different networks on the same bridge, and it lacks
flexibility since it can hardly be dynamically configured to reflect the dynamic creation
and destruction of VC-private networks. For this, VirtuaLinux currently adopts the routed
networking.

VirtuaLinux sets up VC-private networks in a simple manner: all nodes in the VC
are assigned addresses from a private network chosen at creation time, and the VC does
not share the same subnet as the physical cluster. In this way, the communications among
physical and virtual clusters are handled by setting up appropriated routing policies on each
physical node, which acts as a router for all the VMs running on it. Routing policies are
dynamically set up at the deployment time of the VM. All VMs of all VCs can be reached
from all physical nodes of the cluster and each VC can access to the underlying physical
network without any master gateway node. Virtual nodes of a VC are simply VMs on
the same virtual subnet. However, each virtual network is insulated from the others. The
routing configuration is dynamic, and has a VC lifespan. The configuration is dynamically
updated in the case virtual nodes are remapped onto the physical cluster.

3.3 VC Disk Virtualization

Typically, VM-private disks are provided through either disk partitions or disk image files.
The former method usually provides a speed edge while the latter guarantees a greater
flexibility for dynamic creation of VMs. Actually, both methods require the whole root file
system of the host OS as many times as the number of nodes in the VC. This leads to a very
high data replication on the physical disk, a very long VC creation time. VirtuaLinux copes
with these issues by means of the EVMS snapshotting technique described in Section 3.1.
All private disks of a VC are obtained as snapshots of a single image including the VC guest
OS. As discussed in Section 3.1.1, this leads to a VC creation time that is independent
of the number of nodes in the VC (in the range of seconds) and all benefit discussed in
Section 3.1. Once created, EVMS volumes are dynamically mounted on physical nodes
according to the virtual-to-physical mapping policy chosen for the given VC.

As for the physical cluster, each VC comes with its own VC-private shared storage,
which relies on OCFS2 distributed file system to arbitrate concurrent read and write ac-
cesses from virtual cluster nodes. However, since Xen does not currently enable the shar-
ing of disks between VMs on the same physical nodes, the VC shared disk cannot be
directly accessed from within virtual nodes. VirtuaLinux currently overcomes the problem
by wrapping the shared storage with a NFS file system. At VC deployment time, each
physical node involved in the deployment mounts the VC shared storage, which is in turn
virtualized and make available to virtual nodes.

3.4 VC Management

VirtuaLinux provides two strategies for virtual-to-physical mapping of VMs: Block and
Cyclic. The first one aims to minimise the spread of VMs on the physical nodes. This is

359



0

100

200

300

400

500

600

700

800

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M 4M

Sendrecv size (Bytes) - 4 nodes

Ba
nd

wi
dt

h 
(M

By
te

s/
s)

Dom0_IB
Dom0_IPoIB
Dom0_GEth
DomU_IPoIB

0

0.05

0.1

0.15

0.2

0.25

Allre
du

ce

Red
uc

e

Red
uc

e_
sca

tte
r

Allga
the

r

Allto
all

Bca
st

Benchmark Name (4 nodes)

Av
er

ag
e 

Ti
m

e 
(s

ec
) Dom0_IB

Dom0_IPoIB
Dom0_Geth
DomU_IPoIB

Figure 2. VirtuaLinux: evaluation of network bandwidth (left) and collective communication performance (right)
with the Intel MBI Benchmarks10. Legend: Dom0 IB: Ubuntu Dom0, Infiniband user-space verbs (MPI-gen2);
Dom0 IPoIB: Ubuntu Dom0, Infiniband IPoverIB (MPI-TCP); Dom0 Geth: Ubuntu Dom0, Giga-Ethernet (MPI-
TCP); DomU IPoIB: Ubuntu DomU, virtual net on top of Infiniband IPoverIB (MPI-TCP).

achieved by allocating on the physical node the maximum allowed number of VMs. The
second one tries to spread the cluster’s VM across all the cluster’s physical nodes. The
two strategies discussed can be coupled with two modifiers: Strict and Free. With the first
modifier the deployment can be done only if there are enough free cores, with the second
the constraint between the number of VM processors and physical cores is not taken into
account at all. Notice that the mapping strategy of a VC can be changed after the first
deployment provided it is the suspended state.

The VVCM (VirtuaLinux Virtual Cluster Manager) consists of a collection of Python
scripts to create and manage the VCs. All the information about the virtual nodes such
as the mapping between physical and virtual nodes and the state of each virtual machine
are stored in a database. The information is maintained consistent between the launch of
different clusters. A simple command-line library for the creation (VC Create command),
the activation (VC Control command) and the destruction of the VCs (VC Destroy com-
mand) is provided to the administrator. All the communications used for the staging and
the execution of the VMs are implemented on top of the Secure Shell support (ssh). The
VC Control command relies on a simple virtual cluster start-time support to dynamically
configure the network topology and the routing policies on the physical nodes for each
virtual cluster.

4 Experiments

Experimental data presented have been collected on a 4U-case Eurotech cluster hosting 4
high-density blades, each of them equipped with a two dual-core AMD Opteron@2.2 GHz
and 8 GBytes of memory. Each blade has two Giga-Ethernets and one 10 Gbits/s Infini-
band NIC (Mellanox InfiniBand HCA). The blades are connected with a Infiniband switch.
Experimental data has been collected on two installations of VirtuaLinux: i) a testbed in-
stallation Ubuntu Edgy 6.10 with Xen 3.0.1 VMM, Linux kernel 2.6.16 Dom0 (Ub-Dom0)
and DomU (Ub-DomU); ii) a reference installation CentOS 4.4, no VMM, Linux kernel
2.6.9 (CentOS).

360



Two sets of microbenchmarks have been used: the LMbench benchmark suite11, which
has been used to evaluate the OS performance, and the Intel MBI Benchmarks10 with
MVAPICH MPI toolkit (mvapich2-0.9.8)12, which has been used to evaluate network-
ing performance. According to LMbench, as expected, the virtualization of system calls
has a non negligible cost: within both the privileged domain (Ub-Dom0) and user do-
main (Ub-DomU) a simple syscall pays a consistent overhead (∼ +700%) with respect
to the non-virtualized OS (CentOS) on the same hardware (while the difference between
the privileged and the user domain is negligible). Other typical OS operations, such as
fork+execve, exhibit a limited slowdown due to virtualization (∼ +120%). However, as
expected in a para-virtualized system, processor instructions exhibit almost no slowdown.
Overall, the OS virtualization overhead is likely to be largely amortised in a real business
code.

The second class of experiments is related to networking. Figure 2 left and right re-
port an evaluation of the network bandwidth and collective communications, respectively.
Experiments highlight that the only configuration able to exploit Infiniband potentiality is
the one using user space Infiniband verbs (that are native drivers). In this case, experi-
ment figures are compliant with state-of-the-art performances reported in literature (and
with CentOS installation, not reported here). Since native drivers bypass the VMM, vir-
tualization introduces no overheads. As mentioned in Section 3.2, these drivers cannot be
currently used within the VM (DomU), as they cannot be used to deploy standard Linux
services, which are based on the TCP/IP protocol. At this aim, VirtuaLinux provides the
TCP/IP stack on top of the Infiniband network (through the IPoverIB, or IPoIB kernel
module). Experiments show that this additional layer is a major source of overhead (irre-
spectively of the virtualization layer): the TCP/IP stack on top of the 10 Gigabit Infiniband
(Dom0 IPoIB) behaves as a 2 Gigabit network. The performance of a standard Gigabit net-
work is given as reference testbed (Dom0 GEth). Network performance is further slowed
down by user domain driver decoupling that require data copy between front-end and back-
end network drivers. As result, as shown by DomU IPoIB figures, VC virtual networks on
top of a 10 Gigabit network, exhibits a Giga-Ethernet-like performances. Results of exten-
sive testing of VirtuaLinux can be found in Aldinucci et al.3

5 Conclusions

VirtuaLinux is a novel Linux meta-distribution aiming at installation and the management
of robust disk-less high density clusters. Among all features of VirtuaLinux, this paper has
introduced virtual clustering architecture, features, and tools. These enable the dynamic
and seamless creation and management of ready-to-use VCs on top of Xen VMM. Both
the physical cluster and the VCs can be installed with a number of predefined OSes (e.g.
Ubuntu Edgy 6.10 and CentOS 4.4) or easily extended to other Linux distributions. VCs
managing tools can be easily extended to manage almost any guest Linux distribution by
providing VC tools with a tarball of the OS and a simple configuration file.

VirtuaLinux introduces a novel disk abstraction layer, which is the cornerstone of sev-
eral VirtuaLinux features, such as the time and space efficient implementation of virtual
clustering. Preliminary experiments show that VirtuaLinux exhibits a reasonable effi-
ciency, which will naturally improve with virtualization technology evolution. VirtuaLinux
is currently distributed with Eurotech HPC platforms. In this regard, Eurotech laboratory

361



experienced a tenfold drop of clusters installation and configuration time. To the best of our
knowledge, few existing OS distributions achieve the described goals, and none achieve all
of them.

Acknowledgements and Credits

VirtuaLinux has been developed at the Computer Science Department of the University
of Pisa and Eurotech S.p.A. with the partial support of the initiatives of the LITBIO Con-
sortium, founded within FIRB 2003 grant by MIUR, Italy. VirtuaLinux is an open source
software under GPL available at http://virtualinux.sourceforge.net/. We
are grateful to Peter Kilpatrick for his help in improving the presentation.

References

1. Sun Microsystems, Sun Grid Engine, (2007).
http://gridengine.sunsource.net

2. E. Pinheiro, W.-D. Weber and L. A. Barroso, Failure trends in a large disk drive
population, in: Proc. 5th USENIX Conference on File and Storage Technologies
(FAST’07), pp. 17–28, San Jose, CA, (2007).

3. M. Aldinucci, M. Torquati, M. Vanneschi, M. Cacitti, A. Gervaso and P. Zuccato, Vir-
tuaLinux Design Principles, Tech. Rep. TR-07-13, Università di Pisa, Dipartimento
di Informatica, Italy, (2007).

4. R. P. Goldberg, Survey of Virtual Machine Research, Computer, pp. 34–45, June,
(1974).

5. M. Rosenblum, The Reincarnation of Virtual Machines, Queue, 2, 34–40, (2005).
6. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt and A. Warfield, Xen and the art of virtualization, in: Proc. of the 9th ACM
Symposium on Operating Systems Principles (SOSP’03), pp. 164–177, (ACM Press,
2003).

7. EVMS website, Enterprise Volume Management System, (2007).
http://evms.sourceforge.net

8. S. Pratt, EVMS: A common framework for volume management, in: Ottawa Linux
Symposium, (2002). http://evms.sourceforge.net
/presentations/evms-ols-2002.pdf

9. IBM, Understanding and exploiting snapshot technology for data protection, (2007).
http://www-128.ibm.com/developerworks/tivoli/library
/t-snaptsm1/index.html

10. Intel Corporation, Intel MPI Benchmarks: Users Guide and Methodology Descrip-
tion, ver. 3.0 edition, (2007). http://www.intel.com/cd/software
/products/asmo-na/eng/cluster/clustertoolkit/219848.htm.

11. L. McVoy and C. Staelin, LMbench: Tools for Performance Analysis, ver. 3.0 edition,
(2007). http://sourceforge.net/projects/lmbench/

12. The Ohio State University, MVAPICH: MPI over InfiniBand and iWARP, (2007)
http://mvapich.cse.ohio-state.edu/overview/mvapich2/

362


