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ABSTRACT
We explore the possibilities offered by a programming modelsup-
porting components, workflows and skeletons. In particularwe
describe how STCM (Spatio-Temporal Component Model), an al-
ready existing programming model supporting components and
workflows, can be extended to also provide algorithmic skeleton
concepts. Programmers are therefore enabled to assembly applica-
tions specifying both temporal and spatial relations amongcompo-
nents and instantiating predefined skeleton composite components
to implement all those application parts that can be easily mod-
eled with the available skeletons. We discuss preliminary results as
well as the benefits deriving from STKM (Spatio-Temporal sKele-
ton Model) adoption in a couple of real applications.
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1. INTRODUCTION
Grids as well as recent large scale parallel machines propose a huge
amount of computational power and storage. Therefore, it ispossi-
ble to envision scientific code coupling applications that solve prob-
lems related to bigger or different, not yet solved physicalphenom-
ena. A major issue still to be solved is the design of a programming
model suitable to ease application development and to efficiently
exploit resources.

Let us consider some of the important properties that have tobe
provided by such a programming model. A first property is to
face the complexity of software management, and in particular to
enable code reuse. Second, it should support strong coupling al-
gorithms that are often present in high performance applications.
Third, as resources are more and more shared, the programming
model should enable an efficient usage of resources, in particu-
lar through the support of loosely coupled application elements.
Fourth, it should abstract resources to achieve two important goals:
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let the programmers to only deal with functional concerns – non
functional concerns must be hidden – and applications should be
portable to a wide range of architectures – provide abstractions that
can be adapted to resources.

There are many programming models that attempt to ease program-
ming large complex scientific applications and to hide the complex-
ity of underlying execution resources especially Grid infrastruc-
tures. This paper focuses on those based on assembly/composition
principle, as programming by assembly is gaining increasing ac-
ceptance to deal with complex scientific applications. In particular,
it deals with three well-known model families: software compo-
nent models, workflow languages and skeleton based programming
models. Each family attempts to tackle with the presented proper-
ties to deal with the complexity of applications and/or resources.
Depending on a given model, the properties are less or more han-
dled. For example, modern software engineering practices promote
the usage of software component models [29] to deal with code
reuse. In particular components enable to easily build an applica-
tion made of piece of codes written in different languages. While
component models appear adequate for strong coupling compo-
sition, workflow models seems more tailored for loosely coupled
compositions. In addition, algorithmic skeletons are considered
better suited to provide a simple abstraction that can be automat-
ically optimized to the resource of the system [17]. Hence, there
is no model that efficiently handles all these properties. Though all
these properties are relevant, they should be all and well considered
by a single programming model. As far as we know, there is not
such a model. Nonetheless, there are some previous works aimed
at bringing closer these families. For example, STCM (Spatio-
Temporal Component Model) [14] is a model combining compo-
nent models and workflows. Similar efforts have been carriedout
for skeletons and component models [3, 20].

This paper explores the feasibility of a programming model com-
bining the three families – components, workflows and skeletons.
Rather than proposing a programming model from scratch, it stud-
ies how to combine STCM– which already unifies components and
workflows – with skeletons. The outcome should be a program-
ming model supporting all the presented properties.

The remainder of this paper is organized as follows. Sections 2
and 3 recap main features and technical background of component-
and-workflow and skeleton-and-component methodologies, re-
spectively; STCM and behavioural skeletonsare presented as



paradigmatic examples of the two methodologies, which are com-
pared in Section 4. Section 5 introduces STKM (Spatio-Temporal
sKeleton Model), where the two methodologies are stacked in
a two-tier architecture aiming at raising the level of abstraction
of both component-based and workflow-based parallel/distributed
programming approaches. The benefits of the approach are shown
by reasoning about the design of two real-world applications (bio-
metric identification and climatology applications). Section 7 con-
cludes the paper and presents future works.

2. STCM: MERGING COMPONENT MOD-
ELS AND WORKFLOW LANGUAGES

In [14], we proposed a Spatio-Temporal Component Model
(STCM). This model combines two technologies: software com-
ponent models and workflow models. Its aim is to allow a designer
to express the behaviour of an application by assembly. Thisbe-
haviour considers both the temporal logic of the application ex-
ecution, based on reusing workflow concept, and the spatial de-
pendencies that may exist between components, based on reusing
component assembly concept.

Before giving an overview of STCM [14], let us introduce software
component models and workflow languages. The introduction is
done according to a generic view of existing technologies and to
the main properties that motivate the combination of the twoap-
proaches in STCM.

2.1 Software Component Models
Independently of existing technologies, like CCA [11], CCM [26],
GCM [18] or SCA [9], a software component appears as a black
box unit of a reusable, composable and deployable code. The
composition is done through the connection of well-defined ports
that allow a component to interact with other components. The
interaction between two components often follows aprovide-use
paradigm. According to existing component models, this paradigm
is mainly based on one of the following communication models:
operation/method calls, message passing, document passing (Web
Services), events or streams. Most of the existing assemblymod-
els for components exploit bindings based on spatial relationships.
That means that the bound components are concurrently active
for the entire period they are bound; the frequency of the inter-
action between components is usually not known. As result, an
application assembly corresponds to its architecture at execution.
These kind of architectures are captured by UML component dia-
grams [27].

2.2 Workflow Languages
Many environments exist [33] that offer workflow based program-
ming models to develop and execute scientific applications.Ex-
amples are Askalon [22], Triana [30], Kepler [6] and BPEL [7].
In general, building an application according to a workflow means
describing the order of actions, often namedtasks, which should
be executed and their data dependencies. For that, control flow and
data flow models are proposed. A control flow model allows the de-
scription of the execution order of tasks by using control constructs
such as sequences, branches or loops. A data flow model focuses
on data dependencies between tasks. To define data dependencies,
a task specifies its inputs and outputs ports. Thus, describing con-
nections of output ports of some tasksti to input ones of a taskT
defines data dependencies betweenti andT . Therefore, workflow
models deal with temporal compositions. These kinds of composi-
tions are also captured by UML activity diagrams [27].

Figure 1: A component-task as a combination of a component
with task concepts.

2.3 STCM
Component models offer well-founded concepts for code reuse and
applications complexity management. However, while the spatial
property of component models make them more appropriate to de-
velop strong coupled applications, the temporal property of work-
flow models eases the programming of the temporal logic of an
application that can be moreover captured from the assemblyto
enable efficient resources management. In order to group thead-
vantages of the two programming approaches, STCM proposes a
combination of component models and workflow languages. For
that, it defines the concept ofcomponent-task, a spatio-temporal as-
sembly model and life cycle management. Let us give an overview
of these concepts.

Component-task.As shown in Figure 1, a component-task is
a component that supports the concept of task. Thus, in addition
to classical ports, namedspatialports in STCM, a component-task
can define input and output ports, namedtemporalports. Tempo-
ral ports and task behave like in workflow models. The difference
is that the life-cycle of a component-task may be longer thanthe
one of a task in a workflow, which usually corresponds to its ex-
ecution. In addition, a task in STCM can communicate with other
component-tasks through client spatial ports. More details about
the specification of task and temporal ports concepts can be found
in [14]. This specification is presented through an extension of a
GCM (Grid Component Model) component.

Spatio-temporal assembly model.The assembly model
proposed for STCM is inspired from theAbstract Grid Workflow
Language[22] (AGWL)1. AGWL offers a hierarchical model made
of atomic and composite tasks. A composition is done with respect
to both data flow and control flow compositions. The control flow
supports several control constructs like sequences, branches (if and
switch), loops (for andwhile) and parallel constructs (parallelFor
andparallelForEach), etc. The assembly model of STCM is mainly
based on replacing an AGWL task by a component-task, including
the addition of spatial composition.

1Other workflow languages can be chosen. The principle of modi-
fying them to define a spatio-temporal assembly model is similar.



1 component Example {
2 ...
3 parallel parCtrl {
4 dataIn Double inPar <= a.outA;
5 // declarations
6 component B { dataIn Double inB;
7 clientPort Compute pB;
8 };
9 component C { dataIn Double inC;
10 serverPort Compute pC;
11 };
12 instance B b;
13 instance C c;
14 connect b.inB to parCtrl.inPar;
15 connect c.inC to parCtrl.inPar;
16 connect b.pB to c.pC;
17
18 // instructions
19 section : exectask (b);
20 section : exectask (c);
21 } // end parallel
22 ...
23 }

Figure 2: Simplified example of an assembly recalling the prin-
ciple of STCM .

Figure 2 gives an example of a composition using a simplified
STCM assembly language (the original syntax is inXML format for
which a grammar is presented in [14]). The textual part showsthe
assembly inside theparallel control structure. The proposed
language allows to declare component-task types (B, lines6 to 8,
andC, lines9 to 11) and component-task instances (b, line12, and
c, line 13), describe a data flow (lines4, 14 and15), describe the
order of execution of tasks (b andc in parallel, lines19, 20) and
spatial dependencies (line16). Means are then offered to a designer
to build by assembly an algorithmic logic, including temporal and
spatial dependencies at the same level of a composition. That is
relevant not only to simplify the design but also to increasecode
reuse and be able to envisage solutions for efficient usage ofexecu-
tion resources.

Life cycle of a component-task.To manage the life cycle
of component-tasks during an application execution, STCM defines
a dedicated model. The management relies on the ability of cap-
turing the algorithmic logic directly from the assembly andensure
for example safe destruction of component-task instances.For that,
STCM defines a state machine diagram corresponding to the life cy-
cle of a single component-task and an assembly semantic to reflect
as much as possible a deterministic application behaviour.

Figure 3: Life cycle of a component-task.

The state machine is recalled in Figure 3. From this diagram,it
can be observed that the activation duration of a component-task
instance can be longer than a task execution duration. Also,a
component-task can be active without any running task. Thisis
required when a component-task provides functionality on which
other component-tasks depend in the assembly. For instance, in
the assembly shown in Figure 2, componentC can be activated by
the arrival of an input data oninC port or when an operation is
invoked onpC. Then, the activation duration ofC doesn’t depend
only on the execution duration ofC’s task but depends also on the
activation duration of componentB which usesC.

The semantic associated to an STCM assembly is determined with
respect to simple composition rules to be taken into accountwhen
building an application. The main rules are the following:

• If a component-taskA uses (composition in space) a func-
tionality provided by another component-taskB, thenB must
be concurrently active withA and remains active as long as
A is active.

• If a component-task instanceA or if another component-task
B that usesA is no more reachable by a control flow, thenA
becomes useless and can be destroyed.

• A component-task instance must be activated at the lat-
est when the control flow reaches the execution of its task
and input data are received or when it is used by another
component-task instance.

• The execution of a task is assumed to produce not more than
one output data on a same output port.

Besides the proposed assembly constructs, these rules are expected
to help a designer to easily express a suited behaviour. Theyaim
also to ease automatic management of an application structure with
efficient resources usage.

3. SKELETON BASED PROGRAMMING
Structured parallel programming models based on the algorithmic
skeleton concept are around since the ’90s since skeleton concept
introduction by Cole [16]. Later on, several research groups devel-
oped programming environments, systems and libraries based on
the skeleton concept [8, 21, 25, 10, 23, 31]. Skeleton based pro-
gramming models allow programmers to express parallelism using
a set of predefined patterns, the skeletons, that model common par-
allelism exploitation patterns. Typical skeletons are either stream



or data parallel. Classical stream parallel skeletons are pipelines
(modeling computations performed in stages) and farms (embar-
rassingly parallel computations). They exploit parallelism between
computations of different input tasks of the input stream toproduce
a stream of results. Typical data parallel skeletons are map(inde-
pendent forall), reduce (summing up of a collection of data via an
associative and commutative operator) and stencil (forallwith de-
pendencies). They all exploit parallelism in the computation of a
single input task.

The skeletons are parametric and programmers can thereforecus-
tomize them by defining the kind of primitive computation used
by the skeleton (e.g. a pipeline stage or a farm/map worker),its
parallelism degree or any other kind of skeleton specific features
(e.g. whether or not a farm should guarantee input/output order-
ing). Most likely, skeleton programming environments and systems
allow programmers to nest skeletons (e.g. a pipeline stage can be
expressed as a farm/map skeleton) and therefore skeleton based ap-
plications happen to bestructuredas a skeleton nestingplussome
sequential code used as a parameter for the leaf skeletons.

Once applications have been structured via proper skeletonnesting,
the implementation of the skeleton framework takes care of all the
aspects relative to parallelism exploitation. Parallel activities setup,
mapping and scheduling, communication and synchronization han-
dling and performance tuning are all aspects that are dealt with at
the skeleton implementation level rather that in the programmer
application code. Being the skeletons known and efficient patterns
of parallelism exploitation, this results in very efficientand scalable
application implementation, independently of the model chosen for
the implementation, that traditionally is either templatebased [28]
or macro data flow [19]. Overall the whole process results in a
complete and worthseparation of concernsbetween application
programmers and system programmers. The former are in charge
of recognizing parallelism exploitation patterns in the application
at hand and of modeling them with suitable skeletons (or skeleton
nesting). The latter are in charge of solving, once and for all, when
the skeleton framework is designed and implemented, the problems
related to the efficient implementation of the different parallelism
exploitation patterns and to their efficient composition. This sep-
aration of concerns has a notable list of positive side effects: i)
it consistently contributes in supporting rapid application devel-
opment and tuning, ii) applications programmers are not required
specific knowledge on parallelism exploitation techniques, iii) pro-
grams can be seamlessly ported to different architectures provided
that system programmers have already studied, designed andim-
plemented proper skeleton implementation for the new target, just
to mention a few.

Algorithmic skeletons can be quite easily associated to software
components. A skeleton is a building block for parallel applica-
tions exactly the same way a component is a building block fora
generic application. As a consequence, skeleton technology has
recently been used in the component based programming scenario
[2, 23]. In this case, (composite) components are provided to the
user that model common parallelism exploitation patterns and ac-
cept other components as parameters modeling the skeleton inner
computations (e.g. the pipeline stages or the farm workers).

The last step we want to mention here in the algorithmic skeleton
concept evolution has been the introduction of autonomic manage-
ment aspects in skeletons. Skeleton implementation was in charge
of handling all the non-functional aspect of parallelism exploitation

since the very beginning. However, the advent of significantly new
architectures, such as grids, with highly dynamic and unreliable
features imposed some more evolved approach to non-functional
aspect handling. Therefore, autonomic management of skeleton
features has been introduced [4, 3] that dynamically adaptsskeleton
execution to the varying features of the target architecture consid-
ered. Using this “last” version of the skeletons (namedbehavioural
skeletons, to explicitly mention they have managers taking care
of dynamic behaviour of the skeleton implementation) userscan
develop (grid) applications that seamlessly andwithout any kind
of user/application programmer interventionreact to node faults,
additional node loads, network inefficiencies and keep (in a“best
effort” way) the application running according to a user specified
QoS contract.

4. STCM VS.SKELETONS: DISCUSSION
Despite the ability of STCM to abstract the behaviour of an appli-
cation through its assembly, the level of abstraction remains low.
This is the case in particular for parallel programming. In this con-
text, two issues must be taken into account. This section introduces
and discusses these issues and motivate the work presented in this
paper.

The first issue is related to the design of parallel programming
paradigms using STCM. The relations that can be expressed be-
tween component-tasks in STCM remain simple. In the spa-
tial dimension, only relations of type1-to-1 or 1-to-N can be
expressed between assemblies of component-tasks. While in
the temporal dimension, only simple tasks and data parallelism
can be expressed through control constructs likeparallel or
parallelForEach (independent forAll). Even if a combination
of the two can reach more complex behaviour, offered constructs
are not sufficient to simply express a usage of complex parallel
paradigms. This lead the designer to construct complex applica-
tions in arbitrary way and to consider parallelism issues when pro-
gramming, thus increasing the likely of (inadvertently) introduce
bottlenecks and/or execution resources dependencies in the design.
As an attempt to overcome such a limitation, a first objectiveof
the present work is to propose means to take benefits from skele-
ton principle to construct complex parallel applications in a simple
way.

The second issue is related to efficient execution of an assembly.
This issue relies essentially on scheduling policies adopted by an
execution framework. A simple policy can consider the execution
of an application step-by-step mainly directed by the temporal de-
pendences between component-tasks. However, a more efficient
scheduling should consider a global behaviour of part or whole ap-
plication assembly, in particular to exploit maximum parallelism.
For that, means are required to recognize parallelism formsfrom
an assembly. Therefore, the second contribution of this paper aims
to consider the extension of STCM with respect to resolving the
first issue and analyze the possibility of exploiting parallelism be-
haviour from a component-task assembly. In this context, wepro-
pose to study the projection of an abstract assembly to skeleton
based forms. We can then take benefits from already existing skele-
ton management mechanisms to efficiently execute an application.

5. TOWARDS STKM: A COMBINATION
OF STCM WITH SKELETON BASED
PROGRAMMING



In this paper we propose a combination of STCM and skeleton prin-
ciples in the STKM model. The objective is twofold. The first goal
is to increase the abstraction level of STCM regarding the program-
ming of parallel applications. In particular, we aim to offer to a de-
signer a programming approach based on skeleton constructs. That
is to promote simplicity of programming, the construction of cor-
rect programs and code reuse. The second goal is to offer means for
efficient execution of an application. For that, we propose to ana-
lyze the possibility to exploit parallelism behaviour froman assem-
bly and follow a management approach based on a projection ofthe
assembly to a composition of nested skeleton constructs. Thus, the
management of parallelism can be turned to skeleton management
for which a lot of efforts are already done to deal with low-level
parallelism concerns and efficient execution.

This section presents our proposal in three parts. The first part
presents the proposed extension of STCM regarding the support
of skeleton constructs (Section 5.1). The second part outlines the
consequence of defining STKM on top of STCM on STCM itself
(Section 5.2). The last part presents the principle of managing the
execution of an STKM application (Section 5.3).

5.1 Skeleton Constructs on top of STCM
Our approach to enable a designer to express the usage of skeleton-
based parallel paradigms is to extend STCM with dedicated con-
structs. These constructs are particular composite components
(templates) for which the internal structure is well definedaccord-
ing to a parametric schema. They can define ports and be composed
with other skeleton constructs and/or components. The elements of
a skeleton (stages for the pipeline and workers for the functional
replication) can be skeletons or components (primitive or compos-
ite). These elements can also be composed with other components
(internal or external to the skeleton construct). The objective is
to promote composition at different levels, which should improve
composability and code reuse, while preserving the pragmatics of
skeletons. The extension of STCM consists in extending its assem-
bly language [14]. An overview of this extension for the pipeline
and functional replication skeletons is shown in Figure 4.

A skeleton in STKM defines at least its inputs/outputs
(inputSkel and outputSkel in the grammar) and their
functional elements. The input and output ports are not a newkind
of ports. They are of stream type (as in classical skeleton usage)
and are used to identify which component ports have the role of
receiving and producing data proper to the skeleton computations.
Therefore, a component can be reused by a simple wrapping
mechanism (Figure 5). It is relevant to note that the wrapped
component behaves like in a classical skeleton: a computation is
started on the reception of an input data; the computation produces
an output data on the output port. Otherwise, the behaviour of
the skeleton is not preserved. In this regard, skeleton inputs and
outputs can be bound to classical stream ports or temporal ports,
in which case the computed function is a task. The latter caseis
a good example because it responds to suited behaviour. Thatis
true thanks to the last STCM semantic rule defined in Section 2.3.
For simplicity, in this paper, we assume that component-tasks
define only one input and/or output port (if the task has data
dependencies).

Figure 6 sketches an example of anSTKM assembly. It illustrates
the possibility of composing components with a skeleton construct
and skeleton nesting. Compared with a classical usage of skele-
tons, it is easy inSTKM to assemble sequential with parallel codes,

component ::= stcmComp | skeleton
...
skeleton ::= <skeleton name=string>

inputSkel? outputSkel? port*
attribute* skelConst?

</skeleton>

inputSkel ::= <inputSkel name=string type=string
(set=string)?/>

outputSkel ::= <outputSkel name=string type=string/>

skelConst ::= pipe | funcRepl | sequential ...

pipe ::= <pipe name=string>
inPipe

</pipe>
inPipe ::= component* instance* stage+

configport *
stage ::= <stage name=string>

skeleton
</stage>

// Functional replication behavioural skeleton
funcRepl ::= <funcRepl name=string>

inFuncRepl
</funcRepl>

inFuncRepl ::= component* instance* worker
configport* emitCollect? sharedComp?

// emitcollect specifies the policy of
// handling skeleton inputs and outputs
// example (broadcast, reduce)
// sharedComp specifies a component
// encapsulating a shared state between workers

worker ::= <worker name=string (cadinality=int)?>
skeleton

</worker>

emitCollect::= <emitCollect emit=string
collect=string/>

sharedComp ::= <sharedCompInstance ref=string/>

sequential ::= stcmcomponent
...
configport ::= clientserv | inout
clientserv ::= <setPort client=string server=string/>
inout ::= <setPort in=string out=string/>

Figure 4: Overview of the STKM grammar related to the skele-
ton composition part. Only pipe and farm constructs are con-
sidered. In bold, the grammar keywords. In italic, the STKM

language keywords.

when only part of an application is parallel. Moreover, a skeleton
and its included components can define classicalSTCM ports and
be composed with other components. This promotes expressing
code dependencies by assembly rather than implementing them in
the skeleton computation codes; that ease programming and im-
prove code reuse. In addition, more complex behaviour can beex-
pressed by a skeleton, like the possibility of accessing a shared state
between computation codes in a functional replication skeleton (S
component in Figure 6).

5.2 STCM modification requirements
STKM aims also to enable exploiting parallelism in several situa-
tions, in particular, in both spatial and temporal dimensions of an
assembly. Even if the parallelism built by a skeleton construct in-
fers a spatial assembly, which can be of course implicated ina tem-
poral dimension (like shown in Figure 6), that may be not sufficient
to ease expressing some behaviours. A typical situation is to ex-
press through an assembly that ordered tasks in part of a workflow



Figure 5: Wrapping a component to be a skeleton element. On
the left, skeleton inputs and outputs are bound to stream ports.
On the right, they are bound to temporal ports. The type of
ports are data types which must be compatible.

Figure 6: Example of a composition using STKM .

should be executed in a pipeline way. The left part of Figure 7illus-
trates such a situation for a sequence. Syntactically, the proposed
extension allows such a composition. However, the possibility of
a pipelined execution depends on the ability of receiving multiple
input data on the input stream of the pipe construct. As we assumed
in STCM that not more than one output data on a temporal port may
be produced for a single item and as the model preserves the se-
mantic of control constructs, a mechanism is needed to be able to
support such a situation. A mechanism is also needed to enable the
collection of the results on a stream after a pipelined execution.

A solution is to relax the assumption specified inSTCM to allow
a task to produce multiple output data for a single input dataand
symmetrically, allow a task to collect multiple input data to produce
one output data. For that, two issues are to be resolved.

First, it is necessary to enable a component-task to expressthe re-
lated task’s behaviour when it is defined or composed. Otherwise,
it may be difficult to determine the behaviour of an assembly.We
propose to resolve this issue with a simple cardinality principle to
be associated to temporal ports. The right part of Figure 7 shows
the principle of the solution. An input port with cardinality 1 (re-
spectivelyn) needs one data (multiple data) to execute a task. In
the case of multiple data, the number of received data is determined
by the end of the execution of the task that produces the data.An
output port with cardinality1 (respectivelyn) indicates that one
data (multiple data) will be produced by one execution of a task.

The second issue is related to the need of a mechanism that allows
a task implementation to be able to send (respectively receive) mul-
tiple data on output (resp. input) temporal ports. To produce mul-
tiple data, our solution consists in offering a callback operation to
component-task implementation allowing a task to signal the avail-
ability of output data to be sent. This operation can be called mul-
tiple times. The end of the execution of the task correspondsto the
end of producing output data for a single input data. The principle
of this solution is already proposed in preliminary spatio-temporal
composition model that we presented in [13]. Because a cardinal-

Figure 7: STCM modification to support skeleton constructs in
temporal dimension: temporal ports cardinality principle .

ity n for an output port affects the implementation of a component-
task, the cardinality has to be specified in the definition of the port.
On the input side, we assume that it is at the responsibility of the
framework implementation to wait all incoming data before execut-
ing a task. In this case, the task behaves like in the case of having a
single data received on the port. Therefore, it is sufficientto specify
a cardinalityn for an input port at the assembly level to obtain the
suited behaviour. This, a component-task with an input portof car-
dinality n appears in an assembly as a reduction or synchronization
point within an assembly.

The outlined changes in STCM raise the issue about their conse-
quence on the life cycle of component-tasks and so on the semantic
of an STKM assembly. The principle of a task is still dependent
on the availability of one data. Even if it can produces multiple
data, the end of its execution is still well determined. In addi-
tion, in STKM , the life cycle management is still directed by spatial
and temporal dependencies between components, including skele-
ton constructs, for which the principle is the same as in STCM.
The only modification affects the last semantic rule defined in Sec-
tion 2.3 and which becomes:"The execution of a task can produce
multiple output data on a same output port. The end of the execu-
tion determines the end of producing all the output data.". Finally,
STKM preserves the global principle of STCM.

5.3 A suited approach for efficient execution
management

Until now, we dealt with the abstract viewpoint ofSTKM offered to
a designer. The goal of proposing such an abstraction is not limited
to simplifying programming and improving the expressiveness of
an assembly or improve code reuse, but also aims to make it pos-
sible to adapt an application to a given dynamic execution context
while ensuring a given user-defined Quality of Service (QoS)con-
tract. We showed in previous work that skeletons [3, 31, 4, 17]
have the ability to cope with the autonomic steering of application
execution to ensure dynamically defined levels QoS, and thatit can
be done while preserving their high-level nature ensuring good pro-
prieties such as: the separation of concern between functional and
management code (thus code reuse), the automatic generation of
binary code (thus rapid prototyping and code portability),etc. In
this regard, the approach has proved to be effective with respect to
a number of domains, such as performance [4], security [5], and



fault tolerance [12]2.

Hence, an issue is to propose an approach to manage the execu-
tion of anSTKM application. In general, the effectiveness of an
execution depends on the expressiveness power of an assembly and
the ability of an execution framework torecognizethe behaviour
of an application, to take into account execution resources(num-
ber of processors, size of memories, network architecture,avail-
ability and dynamicity of resources, etc.) and to make adequate
decisions to adapt the application to the resources. Specifically, be-
havioural skeletons attack this problem (a.k.a. idiom recognition
problem) by providing pre-defined parametric patterns exhibiting a
well-defined behaviour, and thus, supporting pre-defined manage-
ment strategies [3]. Thus, behavioural skeletons abstractcompo-
nent self-management in component-based design as design pat-
terns abstract class design in classic OO development.

attack idiom recognition problem

In the context of STKM , such decisions are expected to consider in
addition to temporal and spatial dependencies, made by an STCM

engine, the skeleton constructs. With respect to skeleton constructs,
the main role of an STKM framework is expected to project or trans-
form an STKM assembly to a concrete one (the assembly at execu-
tion). The projection consists in replacing a skeleton description in
the abstract assembly by an adequate implementation. For that, our
aim is to reuse already proposed component based implementations
(such as behavioural skeletons in the GCM [3, 24]) and take bene-
fits from their self adaptive management of computational elements
and their ability to deal with optimization issues, like collapsing
stages of pipes or introducing farms for efficiency. Following such
an approach, an assembly after a skeleton construct replacement is
expected to be an STCM assembly.

Since STKM skeleton deployment and activation is driven by tem-
poral dependencies, they are dynamically deployed, and since they
are parametric patterns, they can be dynamically configuredat de-
ployment time (e.g. according to available platforms). This kind
of flexibility covers an additional case with respect to autonomic
management (that is fully dynamic), compile-time configuration
(static) and application launch-time malleability (launch-time) be-
cause each specific skeleton can be configured at the time it isreally
needed. This time may happen to be in a point of time well after
the application launch, especially in very long running applications.
This, in turn, may reflect in very different execution environments
in the two points in time. We envision, as immediate result, the it-
erative mapping of the same skeleton (within a temporal loop) onto
different reservations of grid sites along time. Observe that, for
some kind of applications, flexibility may be as effective asfully
dynamic adaptivity but, in general, it incurs quite lower adaptation
overheads [4, 3].

In addition to the management of skeleton constructs, we areinves-
tigating the possibility of managing some parallelism forms that
are not explicitly expressed by the usage of skeleton constructs but
which can be mapped to a skeleton composition without modify-
ing the expected behaviour. An example is to deal with the inde-
pendentforAll control constructs (parallelForEach). The
parallelism expressed by this construct can be mapped to a func-
tional replication skeleton in which the workers are the body of the
loop. Other parallelism forms can be also built in STKM purely

2those domains are all considered “in insulation” in these works,
the multi-domain management is currently under investigation.

M G R WW CE
Figure 8: Functional replication behavioural skeleton compo-
nent.

based on the usage of temporal port cardinality principle. For ex-
ample, if we assume that the pipeline construct shown in Figure 7
is not used and the cardinality on the ports are kept, an implicit
pipeline behaviour is built. The ability of a framework to capture
such a behaviour, which can be directly done thanks to the car-
dinality information, offers the possibility to envisage apipelined
execution managed by a dedicated skeleton construct. This repre-
sents a possible mean to exploit parallelism with existing efficient
mechanisms. Such a mean is still in a study status. Solutionsto
recognize parallelism forms from an assembly and the possibility
to map them on a skeleton constructs are required.

6. STKM EXPLOITED
In the Sections above, we have introduced STKM . In this Section
we outline the key points and advantages of STKM by showing
how two typical and significant use case applications can be im-
plemented exploiting STKM methodology.

6.1 Fingerprint recognition in STKM
The first application we consider here is a refined version of ause
case application considered in the framework of the GridCOMP
EU STREP project [24]. In that context a fingerprint recognition
application was considered that has to be able to match a fingerprint
against a database possibly hosting a large number of fingerprints.
The goal is to be able to get a real time answer telling whetheror
not the fingerprint is in the DB and, in positive case, the fingerprint
owner identity [32]. In our extended version, we also consider the
part of the application that collects fingerprints from realpersons
(e.g. at the airport arrival gates) and submits them to the fingerprint
recognition software for processing.

Fingerprint matching against a DB can be nicely modeled using
skeletons. This is a plain data parallel skeleton where parallel work-
ers have been given a portion of the database and any single finger-
print is broadcast to all the workers. Referring to thefunctional
replicationbehavioural skeleton as defined in [3], whose structure
is drawn in Fig. 8, this corresponds to have identical workercom-
ponentsW specialized by submitting them different portions of
the DB, a broadcastE port and a or-reduceC port (C gathers an-
swers from all the workers and basically ORs the boolean values
received).

Functional replication behavioural skeleton is one of the skeletons
considered in STKM , and therefore this application can be easily
expressed using STKM (Figure 9). Figure 10 illustrates thespa-
tial aspects of the application. The left part handles gates, deliver-
ing requests to theCheck component. This component transforms
requests issued on its provide port into items on the input stream
for skeleton processing requests (the composite componentin right
part of the Figure) and conveniently returns the values received on



// port types are assumed to be defined
component FPApplication {

component GateAdmin{
uses CheckRequest uGA;
...Gate and MGR components...

};

funcRepl FPMatcher{
inputSkel FPrint sInFPM;
outputSkel string sOutFP;
attribute boolean batch;

component Split {
provides GetDB pDB;
provides SetNbrW pW;

};

worker sequential cmpSkel {
inputSkel FPrint sInCMP;
outputSkel boolean sOutCMP;
component cmp {
provides SetDB pDB;
streamIn FPrint sInCMP;
streamOut boolean sOutCMP;

};
};

instance Split sp;
connect strmInCMPSkel to cmp.strmInCMP;
connect cmp.strmOutCMP to strmOutCMPSkel;
connect cmp.pDB to sp.pDB;
emit-collec :: (broadcast, Or-reduce);
sharedStateComp sp;

};

component Check {
provides CheckRequest pC;
streamOut FPrint sOutC;
streamIn boolean sInC;

}
instance GateAdmin gateAd;
intsance FPMatcher fpm;
instance Check chk;

connect chk.sOutC to fpm.sInFP;
connect fpm.sOutFP to chk.sInC;
connect gateAdmin.uGA to chk.pC;

sequence ApplMain{
exectask(fpm);
exectask(chk);
exectask(gateAd);

};
}

Figure 9: Simplified STKM assembly for the Fingerprint recog-
nition application example.

its input stream port connected to the output of the recognition com-
ponent as results of the provide port invocation. The upper part of
the Figure outlines the internal structure of the workers ofthe func-
tional replication skeleton instance and of the Gate components.
The former is a wrapping of the single fingerprint matcher (i.e. of
the pre-existing componentcmp that provides a port used to sup-
ply it the fingerprint DB, and two stream ports for accepting fin-
gerprints to match and for delivering the corresponding answers)
that eventually implements a provide port accepting “DB re-read”
requests from the manager and a use port to access the DB portions
in theSplit component. The latter is a standard loop initializing the
gate, scanning a fingerprint, submitting it to the matching system
and publishing the result of the match.

From the temporal viewpoint, the application components hap-
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Figure 10: Spatial composition of the Fingerprint recognition
application. The gray part is hidden to the designer.

pen to be hosted in a sequence that first launches the Finger-
Print matcher component, then the Check one and eventually the
GateAdmin manager. The STKM description of the sequence is
shown in the last part of Figure 9. It is worth pointing out that ex-
ploiting skeletons, we can easily modify the FingerprintMatcher to
process a huge amount of fingerprints inbatch mode. In this case
we can simply instantiate the functional replication skeleton in such
a way theE port sends each input item to a different, “free” worker,
C just gathers answers and delivers them to output and workersall
receive (or access) a copy of the whole fingerprint database.Then,
exploiting STCM derived workflow management, we can write an
STKM program that depending on some input parameter from the
system user activates either the “batch” or the “real time” matching
composite component.

6.2 Climatology application in STKM
The second application we consider in this Section is a climatology
application. It is basically a parameter sweeping application. For
each parameter set, a number of iterations modeling climateevo-
lution in the next 200 years is computed. Its structure is outlined
in Figure 11 (a). The first componentS0 is basically a component
implementing aforAll construct. It iterates on the input parame-
ter set sequence delivering a new parameter set to componentS1.
This, in turn, iterates computation performed byS1 to S5 for a
number of times, in a sequential loop. Each iteration buildsthe
approximate climate state at the next time quantum. Eventually,
componentS5 delivers the final result to componentS6 for post-
processing. ComponentS4 has a sensibly higher (10 times higher)
execution time than the other components used in the application.
This is a high level schema of a real application considered within
the French ANRLEGOproject [15].

Climatology experts having available all the components relative
to the building blocks of the climatology application will probably
come out with an application structure such as the one of Figure
11 (a). A component will provide the subsequent (in the temporal
dimension) components with as much input items as the number
of the parameter item in the input parameter set. By simply rec-
ognizing that the loop around componentsS1 to S5 is executed
on a stream of input items, produced by componentS0, and prop-
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Figure 11: Example of a composition from which it is possible
to recognize a pipeline.

erly exploiting STKM , the application can be more or less “auto-
matically” transformed into the one represented in Fig.11 (b). In
this case, temporal composition of componentsS1 to S5 has been
transformed into a spatial composition corresponding to a “loop
of pipeline” skeleton composition, possibly exploiting wrappings
such as those shown in Fig. 5. In turn, the new spatial composite
deriving from the compilation of a loop of pipeline skeletoncan be
optimized much more than the original “temporal only” schema of
Fig. 11. For instance, exploiting the estimated completiontimes of
pipeline stages, stagesS1 to S3 can be deployed within the same
computational resource, preserving the service time of theloop of
pipeline computation and, in the meanwhile, increasing theeffi-
ciency of the overall application. The net effect of using fewer
resources can be estimated in passing from an efficiency around
20% to one above 80% (this looks huge, but actually, using one
separate resource for each component in the application is quite
an inefficient initial implementation). Alternatively, the application
can be restructured as in Fig. 11 (c). In this case, the stageS4 has
been parallelized by transforming the loop of pipeline in a loop of
pipeline of farm, decreasing the service time of the overallpipeline
and therefore increasing again the efficiency of the whole applica-
tion. In this case efficiency can be obtained which is very close
to 100%, due to the fact we can easily add 10 workers to the farm
and therefore keep the service time of the “huge”S4 stage close
to the service time of the other pipeline stages, and thus optimally
balancing the whole pipeline (application).

It is worth pointing out two things here. First, the results above
have been derived simply using well known performance models
of pipeline and farm skeletons in conjunction with rough estimates
of the time needed to compute component services and to commu-
nicate parameters among components. Previous experiencesand
experimental results achieved in the algorithmic skeletonframe-
works completely validate this kind of reasoning. Second, none of
the transformations/optimizations discussed above couldhave been
implemented in the temporal only application specification(the one
of Fig. 11 (a)).

6.3 STKM vs. standard approaches
We want to analyze in more detail the advantages of STKM against
plain components, workflows and the original STCM; then, we
qualitatively discussed the use case applications above. In par-

ticular, we consider the following properties of the programming
model:

Expressiveness of an assemblythe expressive power provided to
the programmer to assembly applications out of their build-
ing blocks

Required designer expertiseto implement efficient applications

Efficiency of the resulting assembly/application.

Tables 1 and 2 outline our judgment about the properties juststated
in case of the fingerprint recognition applications (Table 1) and of
the climatology application (Table 2). Just to understand how we
compiled the Tables, let us detail how the “values” in column“de-
signer expertise” of Table 1 has been determined. In case thefin-
gerprint recognition application was to be implemented with a tra-
ditional component model, high programmer expertise is required
if dynamic management of component composites are to be imple-
mented such as those implemented by behavioural skeletons ap-
plication managers. Even if workflows were used, programmer
expertise required is high, as workflows do not support natively
complex parallelism exploitation patterns such as the one present
in the fingerprint application. Using STCM or skeleton systems, the
programmer can use limited forms of parallelism (forAll in STCM,
as an example) or limited (or null) temporal composition (work-
flow) support in skeletons, and therefore an average expertise is
required to handle aspects not primitively supported by theenvi-
ronment (parallelism exploitation patterns in STCM and temporal
composition in skeletons). STKM provides suitable mechanisms to
handle all the modeling aspects of the fingerprint recognition appli-
cation: temporal composition to handle skeleton and non skeleton
component setup and skeletons to handle complex parallel pattern,
possibly in autonomic way via the behavioural skeleton internal
manager.

Both Tables evidence how STKM presents several advantages over
the component, workflow and skeletons programming models.

7. CONCLUSIONS AND FUTURE WORKS
We outlined STKM , a programming model combining the advan-
tages of components, workflows and algorithmic skeletons. Pro-
grammers can exploit workflow features of STKM to model appli-
cations in such a way the temporal relations between their different
parts are precisely exposed, and they can also use skeletonsto im-
plement those parts of the applications that exploit parallelism ac-
cording to well-known parallelism exploitation patterns.The envi-
ronment exploits component technology, to allow programmers to
implement applications by component assembly. In case of work-
flows, components are interconnected using new “temporal” ports,
whereas skeletons are plain composite components whose inner
components are interconnected by way of “stream” ports and their
external interfaces also are based on stream ports.

We illustrated the feasibility of the STKM approach providing an
extension of STCM (a model already supporting components and
workflows) that includes common algorithmic skeleton. Using
STKM , we modeled a couple of significant applications that happen
to be use cases in distinct European projects. The STKM (abstract)
version of the two applications allowed to outline the benefits of the
approach as well as the added value with respect to STCM and the



Expressiveness Level of designer Efficiency
of an assembly expertise

Component average: moderate high (static)
models synchronisation and dynamic (high for dynamic expert level (dynamic)

management hidden in implementation management)
Workflows average: average:

not captured construct high stateless
(data transfer/reload)

STCM average: moderate proportional
enable to recognize (high for dynamic to expertize

some constructs management) level
Skeletons average: moderate

skeletons cooperation (high when using high
not natural non existing skeletons)

STKM good low high

Table 1: Analysis of a the properties offered by different programming models to design the application represented in Figure 10.

Expressiveness Level of designer Efficiency
of an assembly expertise

Component proportional to
models hidden high expertize level

Workflows average: high:
adequate for temporal dependencies low relies on global scheduler

but often appears as a sequence
STCM average: low

adequate for temporal dependencies but designer has high
but appears as a sequence to use right ports

Skeletons high:
good low requires meta-data

(execution durations)

STKM good low high:
(for smart designer) requires meta-data

(execution durations)

Table 2: Designing a pipeline construct using different programming models. The analyzed example is shown in Figure 11 (part (a)).

other component only, workflow only and skeleton only program-
ming environments. In particular, we’ve shown how complex appli-
cations, can have parts that can be simply implemented exploiting
skeletons (that is, instantiating one of the skeleton composite com-
ponents provided by STKM) and inserted seamlessly in complex
workflows, and how, by exploiting skeletons in workflows, appli-
cation implementation can be optimized.

While this paper focuses on theoretical background of STKM , fu-
ture work considers its implementation and evaluation. To imple-
ment a component model such as STKM , several approaches can be
followed. We are currently investigating an implementation on top
of SCA (Service Component Architecture). The objective is to take
benefit from the possibility to reuse an already existing model and,
for the particular case of SCA, from the advantages of the underly-
ing Service Oriented Architecture. The principle is to map an ab-
stract representation of an application to an SCA architecture man-
aged by an STKM engine. We also plan to have experiments vali-
dating the whole STKM approach even before the whole program-
ming environment is implemented. In particular, we alreadyimple-
mented parts of the prototype applications considered in STCM and
manually implementing skeleton composite components in such a
way the combined usage of workflows and skeleton (in a compo-
nent framework) can be evaluated and efficiency can be assessed as
well. Preliminary experimental results achieved with these “hand
programmed” experiments run on top of the SCA/Tuscany open
source component/service programming environment demonstrate
that the expected benefits related to the introduction of skeletons in

STCM are actually there [1].
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