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Abstract We present O2J, a Java library that allows implementation of Orc programs on
distributed architectures including grids and clusters/networks of workstations.
With minimal programming effort the grid programmer may implement Orc pro-
grams, as he/she is not required to write any low level code relating to distributed
orchestration of the computation but only that required to implement Orc expres-
sions. Using the prototype O2J implementation, grid application developers can
reason about abstract grid orchestration code described in Orc. Once the required
orchestration has been determined and its properties analysed, a grid application
prototype can be simply, efficiently and quickly implemented by taking the Orc
code, rewriting it into corresponding Java/O2J syntax and finally providing the
functional code implementing the sites and processes involved. The proposed
modus operandi brings a Model Driven Engineering approach to grid application
development.
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1. Introduction
In recent years Model-Driven Engineering (MDE) [11, 6] has emerged as a

means of employing abstraction to allow exploration of properties of a system
free of implementation detail. MDE advocates building models of systems to
be implemented, reasoning informally about these models (for example, com-
paring alternative designs, identifying bottlenecks, etc.) and then developing
code from these models, ideally automatically or semi-automatically.

In many ways MDE is similar in intent, if not in style, to Formal Methods
(such as B [4], VDM [7]). A formal method requires a developer to provide
a specification of a system written in a mathematically precise (i.e. formal)
notation. The developer may then prove properties of the specification before
committing to implementation. The implementation may proceed through a
series of refinement steps, which can be proven consistent. The requirement for
such (expensive) mathematical precision may have been a contributory factor
to the limited uptake of Formal Methods.

In earlier work [1–3] we presented a semi-formal approach to the devel-
opment of grid software. The approach draws upon ideas from both Formal
Methods and MDE: we use a formal notation (Orc [8]) to describe different
designs of grid software, together with an informal style of reasoning about
the properties of the designs. Orc is suitable for the description of such soft-
ware [12] as it has been designed explicitly as an orchestration language for
distributed services. Orc has the benefit of being a formal notation in the sense
that it is a small abstract notation (like traditional process algebras) amenable
to reasoning, while at the same time (unlike traditional process algebras) it has
a syntax which is appealing to the programmer and thus allows the description
of highly readable designs and the development of informal arguments which
reference code extracts.

Here we extend our earlier work, again in the spirit of MDE, by addressing the
issue of generation of implementations from models. We describe O2J, a Java
library that supports the semi-automated development of grid implementations
from Orc models. The idea of such a system was introduced briefly in [3]
where we described a preliminary version of O2J. Here we present a detailed
description of the O2J library together with sample translations and a step-by-
step guide indicating how the developer may use O2J to support the development
of grid software.

2. Orc specification of distributed (grid) applications
In this section we present a simple example to motivate the approach and

provide an orchestration expression to illustrate the use of O2J. First we briefly
summarise the Orc notation.
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2.1 The Orc notation
Orc is a “programming language and system for orchestrating distributed

services ” [9]. Its focus is on the orchestration of what might be termed “ser-
vices” (web site calls, grid site calls, method calls, etc.) which provide core
functionality. The notion of service is captured by the site primitive and the
orchestration of site calls is described using three operators plus recursion. (See
[8] for a very readable introduction to Orc.)
Site A site call may return a single value or remain silent (not respond). A
site represents the simplest form of Orc expression.
Sequential composition In E1 > x > E2(x), expression E1 is evaluated
and may produce zero or more results. For each result generated, the result is
labelled x and a new instance of expression E2 is executed with parameter x. If
evaluation of E2 is independent of x the expression may be written E1 � E2.
Parallel Composition In E1 E2 both E1 and E2 are evaluated in parallel.
The output is the interleaved outputs of the constituent expressions.
Asymmetric Parallel Composition In E1 where x :∈ E2 both E1 and E2

are evaluated in parallel. If E1 names x in some of its site calls, its evaluation
halts at the point of dependency. Evaluation of E2 proceeds until it delivers a
value for x at which point its evaluation is terminated. E2 may now continue
its evaluation with a binding for x.
Finally, the notation (|i : 1 ≤ i ≤ 3 : Wi) is used as an abbreviation for
(W1|W2|W3).

2.2 Example

TaskPool

Worker
Worker

Worker
Worker

State
Manager

Provide input stream items Performs state updates

Compute state
contributions

Figure 1. Master/worker implementation of state
update (grey boxes represent sites, white ovals rep-
resent processes)

Consider a straightforward but
common distributed application:
data items in an input stream are
processed independently and the
results written to a shared state
(for simplicity assume that the
update function is associative and
commutative). In [3] we pre-
sented two alternative designs for
this application and it was shown
there how detailed analysis of the
Orc designs allowed comparison
of their expected performances.
Here we present the simpler de-
sign (see Fig. 1) as a vehicle to illustrate the use of O2J.

This design is based on the classical master/worker implementation where
centralized entities provide the items of the input stream and collate the resulting
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computations in a single state. The system comprises a taskpool (modelling the
input stream), TP, a state manager, SM and a set of workers, Wi. The workers
repeatedly take tasks from the taskpool, process them and send the results
to the state manager. The taskpool and state manager are represented by Orc
sites; the workers are represented by processes (expressions). This specification
corresponds to the diagram in Fig. 1 and can be formulated as follows:

system(TP, SM) , workers(TP, SM)
workers(TP, SM) , | i : 1 ≤ i ≤ N : Wi(TP, SM)
Wi(TP, SM) ,

TP.get >tk> compute(tk) >r> SM.update(r) � Wi(TP, SM)

3. Generating a distributed Java framework from Orc
orchestration code

As discussed above, Orc fully supports distributed program orchestration
design and refinement. Its conciseness and operational style allows one to
construct compact implementation-oriented models of distributed system or-
chestrations unobscured by superfluous detail. The main focus here is to bridge
the gap between the abstract (and therefore powerful) modelling and the actual
(and therefore error prone and cumbersome) distributed programming practice
by providing automatic translation from Orc code to Java implementation.

We present and discuss here a run time support (the O2J Java library, Orc
to Java) allowing Orc “programmers” to write simple and concise Java pro-
grams that can be run on a collection of processing elements implementing the
distributed orchestration modelled by a given Orc expression/program. This
is the first step in a process that will eventually be completed by a compiler
taking as input Orc programs and generating in an automatic way the Java code
implementing that particular Orc program. At the moment we concentrate on
providing a suitable Java run time library allowing programmers to write Orc
code in a “Java friendly” syntax. Table 1 presents Orc constructs and their corre-
sponding library implementations. Thus, for example, the call OrcSeqVar(f,
x, g) provides a Java implementation of the Orc sequential composition (with
parameter passing) f >x> g(x).

3.1 Library usage example
Consider again the example outlined in 2.2. Using O2J, the Orc program

can be implemented by the Java code shown in Figure 2 (IW08Sample.java
editor window) provided that suitable classes implementing the TP and SM
sites as well as the WP process are provided by the user. Any site can be
provided by subclassing OrcSite class and implementing an OrcMessage
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body(OrcMessage call)method. This method handles a single call message
(the call) to produce a single answer to the call. For example, the TP site can
be provided by programming an OrcSite subclass implementing the body
method as follows:

public OrcMessage body(OrcMessage dummy) {
// upon any request, send the next integer in the list, up to MAXTASK
System.out.println("TaskPool "+getName()+" got request "+dummy);
if(task < MAXTASK) {
System.out.println("TaskPool "+getName()+" sending task "+task);
return(new OrcMessage(new Integer(task++)));

} else {
System.out.println("TaskPool "+getName()+" returning a null");
return null; // this implies blocking the answer ...

}
}

The Manager object declared at the beginning of the main is the manager
handling all the non-functional features related to execution of the Orc program.
In particular, the Manager starts the run time processes needed to support the
execution of the Orc program and manages the processing elements available
according to the allocation strategies required by the programmer.

3.2 Deriving Java code from Orc: the formal steps
Formally, in order to implement an Orc program using O2J, the programmer

must follow a precise procedure:

1 Write one class for each of the sites used in the program. Each class
subclasses OrcSite and provides (in addition to constructors needed to
store site specific parameters) the method handling a single call, i.e. an
OrcMessage body(OrcMessage call).

2 Write one class for each of the processes used in the program. As
for sites, each class subclasses OrcSite and provides (in addition to
constructors needed to store site specific parameters) an OrcMessage
body(OrcMessage call) method hosting the code implementing the
process body. The code may use send, receive and call methods
provided by OrcSite to implement process actions.

3 Write a Java main which involves:

(a) declaring a Manager (the Orc runtime) and possibly callingManager
methods to set up non-functional parameters for program execution;

(b) declaring the sites used by calling the constructors defined in the
classes extending OrcSite that represent the user defined sites;
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(c) implementing the program expression, using the appropriate li-
brary objects implementing the Orc parallel, asymmetric parallel
and sequential operators (OrcPar modelling the | operator, OrcSeq
modeling the > operator and OrcAsymm modeling the where x:∈
operator); and

(d) starting the execution of the program by issuing a startSite()
call on the main expression object.

It is worth pointing out that, at the moment, the Orc program modelled in
the main corresponds to the full inlining of the actual Orc program in that all
the expression calls are substituted by the corresponding expression bodies.
In particular, the code presented at the beginning of section 3.1 is actually
implemented as expressed in the Orc expression

E ,| i : 1 ≤ i ≤ N :
(TP.get >tk> compute(tk) >r> SM.update(r) � E)

Also, tail recursion is to be programmed as infinite loops, and therefore the
actual code implemented in the Java main corresponds to
| i : 1 ≤ i ≤ N :
while(true){ TP.get >tk> compute(tk) >r> SM.update(r) }

This will change in the near future, as we are currently designing a Java
based compiler accepting as input Orc expressions and producing as output the
skeleton of the Java code of the main program.

The whole process achieves a clear separation of concerns between pro-
grammers and O2J library code (that is, between programmers and system
designers): programmers must concentrate on the Orc code and they must of
course also provide the functional code – for sites, the code handling a single
call; for processes, the process body code. The O2J code then handles all
the details one usually has to take into account when running distributed code,
that is process/thread decomposition, mapping and scheduling, communication
implementation, etc.

To support our claim, let us consider the code the programmer must supply to
implement the WP process in the example discussed above. This code consists
in class subclassing OrcSite and implementing1 the method:

public OrcMessage body(OrcMessage dummy) {
while(true) { // get a task (TP.get > tk )
OrcMessage taskMessage = call(taskPoolName,OrcMessage.nullMessage());
Object tk = taskMessage.getValue();
// then process it (tk > compute(tk) > r)
Object r = compute(tk);
// eventually send new contrib. to the SM (SM.update(r) >> )

1overwriting, actually: OrcSite by default implements a site that just echoes call messages
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Figure 2. O2J at work in Eclipse

call(stateManagerName,new OrcMessage(r));
} // then recur (recursive call => loop) (>> Wi(TP,SM) )

}

where the call message received at the beginning is just a dummy call initiating
the computation and the recursive structure of the worker is implemented by an
infinite loop. This is more or less what the programmer writes in the (inlined)
Orc code. In particular, no code is needed to take care of explicit communica-
tions synchronization, handling of the mechanisms used to implement the Orc
runtime (e.g. sockets, processes), etc., that is, those things that require extensive
distributed/parallel architecture knowledge in order to be used efficiently.

3.3 Implementation
The Orc runtime implemented by O2J is completely OO and quite straight-

forward. Sites and processes are implemented by objects distributed on the
available processing nodes by using features of ProActive [10] active objects.
In turn, site and process objects communicate with other sites and processes
using plain TCP/IP sockets and OrcMessages. We could have used any other
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Orc term O2J implementation
O2J RTS start mgr=new Manager()

f � g OrcSeq(f,g)
f > x > g(x) OrcSeqVar(f,"x",g)

f | g OrcPar(f,g)
| i : 1 ≤ i ≤ k : Wi OrcParI("W",k,W)
f(x) where x :∈ g OrcAsymm(f,g,"x")

Orc mechanism O2J implementation
site call call(sitename,message)

channel send send(dest,message)
channel receive m = receive(source)

process start process.startSite()
process/site naming setName(name)
formal param access x=getParam("x")

Table 1. Orc expressions and corresponding O2J constructors (left), Orc mechanisms and
corresponding O2J implementations (right; procedure calls are calls to methods of the OrcSite
class).

mechanism suitable for instantiating and running an object on a remote process-
ing element. In fact, we are considering using plain RMI (possibly wrapped
through ssh) instead of the ProActive migrateTo mechanism that requires the
full ProActive library to be installed on the employed nodes. For the same
reason (clean OO structure of the library and plain usage of TCP/IP sockets to
implement communication and synchronization), we have not considered using
more elaborate distributed programming environments such as the ones devel-
oped in Pisa (muskel [5] and ASSIST) or even more complex grid middleware.

A centralized name server, started by the Manager constructor, takes care
of all the port numbers and IP addresses needed to communicate with sites and
processes. When a site/process object is created, it publishes a ServerSocket
to accept calls/messages and communicates the IP address, port number and
site/process name to the centralized name server. The first time a call or a
send is performed at a given site/process, the runtime communicates with the
centralized name server to get the IP address and port number of the destination
site/process. These values are stored in a local cache and all future communi-
cations involving that site/process are handled by looking up the addresses in
the local cache.

When a new site or a new process is declared in the user defined main
it is allocated on one of the available machines according to an allocation
strategy established with the manager. To this end, users can call a Manager
setAllocationStrategy(OrcRTSAllocStrategy s) method to establish
an OrcManager.SPECULATIVE or an OrcManager.CONSERVATIVE allocation
strategy such as the ones discussed in [2]. In the former case, sites and processes
are always placed on new processing elements, if available. In the latter, sites
and processes are preferably placed on the processing element where the parent
site or process expression has already been placed. The list of available process-
ing elements is provided by an external XML file which is consulted when the
Manager is started. We are considering also the possibility of having a distinct
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and autonomous “discovery thread” in the Manager that constantly keeps the
list up to date by querying the networked processing elements and discovering
their capabilities to run O2J processes2. In both cases (in the conservative and
in the speculative strategy) the OrcSite invokes Manager methods (services)
to determine which processing element is to be used to run the site (process).

O2J also provides a very basic logging facility. Every site or process can
issue a log(String eventName) call to register an event in a trace that can be
consulted offline after (or during) program execution. The trace is maintained
by a centralized process and each event is registered in the trace with its name,
the local timestamp (i.e. the time value obtained on the machine where the event
was generated) and a global timestamp (i.e. the time value taken at the central-
ized server when the logging message was received). Despite the fact that local
timestamps may be generated on processing elements with non-synchronized
timers and the global timestamp counts also the communication overhead in-
curred in the logging process, the logging mechanism has proven effective at
measuring coarse grain computations. With such computations the overhead
involved in logging message transmission to the centralized log manager is
negligible w.r.t. the times we wish to measure and therefore global timestamps
may be used to determine the actual behaviour of distributed computations.

4. Experiments
The feasibility of the O2J approach was first tested with O2J 1.0, an imple-

mentation realized by Antonio Palladino, for his graduation thesis at the Dept.
of Computer Science in Pisa, under the supervision of the authors. Once the
feasibility was demonstrated we carried out a complete re-engineering of the
library to obtain O2J 2.0. This required substantially new code, although the
structure of sites, processes and manager did not change significantly. Here we
present results achieved with O2J 2.0.

With O2J 2.0, the programmer may directly translate to O2J objects any part
of a given Orc program. Table 1 summarizes the main correspondences between
Orc constructs and O2J code. A Manager object is used to handle those aspects
concerned with distributed implementation of the Orc code. After establishing
the Manager object and the sites of the Orc program, the programmer must set
up the O2J objects modelling the Orc expression to be evaluated in the program
(as depicted in Figure 2). Then the program computation is started by issuing
a startSite() method call on the main object representing the Orc program.

Using O2J 2.0, we implemented several Orc programs and successfully ran
these programs with the expected modest programming effort: the program-
mer was required to write only the functional code (the routines to represent

2A similar mechanism is successfully used in muskel [5].
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Figure 3. Sample experimental results: scalability (left) and load balancing (right)

site calls and the bodies of the processes in the program) and all the rest was
handled by the library. The messages output by running the sample code dis-
cussed in Section 3 are shown in the lower window in Figure 2 (the Console
window here shows only an initial portion of the messages printed by the sam-
ple code). It is worth pointing out that, in this case, both worker WP0 and
WP1 were placed on the same machine. As a result, the first time a worker
tried to call site SM, a lookup call was issued to the centralized manager
which replied with the IP/port of site SM (this is the Lookup request: SM
-> g4marcod.local/192.168.1.100:54882 line in the dump). After some
time, process WP1 attempted to send an update to SM but this time the address
was resolved using the local cache (line Process WP1 LOOKUP site SM).

Figure 3 shows examples of results achieved with O2J 2.0. All the experi-
ments have been run on a set of Linux workstations running kernel 2.4, Java 1.5
and interconnected via a Fast Ethernet network. The left half of the figure plots
completion time for a run of the O2J implementation of the code described
in Section 2 and whose process structure is shown in Figure 1. Using the pro-
gram, we computed 256 tasks using a number of worker processes ranging from
1 to 16. The figure shows that good scalability is achieved up to 16 workers,
despite the bottlenecks represented by the taskpool and by the state manager
sites. The right part of the figure, plots average load (taken with the Linux
command uptime) and number of tasks executed relative to a single process-
ing element hosting a worker process. As the code shown in Section 2 clearly
implements a self-scheduling policy (worker i calls the taskpool site to have a
new task to compute as soon it completes the previous one), we expect that a
sound implementation will achieve load balancing for either variable size tasks
or heterogeneous processing elements. The right half of Figure 3 corresponds
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to a single run of the farm program of Section 2 with 8 workers. Nodes with a
higher average load executed fewer tasks, as expected. It is worth noting that
the variance in load (due to the concurrent run of a full compilation of mpich) is
very small, but the auto scheduling reacted appropriately by running more tasks
on the machines without the additional load (PEs 2, 5, 6 and 7, in this case).
We ran the program several times, using different loads to make the processing
elements heterogeneous and each time we obtained results comparable to the
ones in Figure 3.

The completion times used to compile Figure 3 (left) have been taken without
considering the deployment time, i.e. from the moment the objects representing
Orc sites and processes have been deployed onto their “home” remote nodes
and initialized. As the code eventually run uses plain TCP/IP socket wrapped
into Object streams, we did not measure any significant overhead with respect
to hand written code modelling the same Orc program. In particular, the grain
needed to achieve good scalability on the 16 nodes in the experiment of Figure
3 is of the same order of magnitude as that needed to make a muskel task farm
scale (muskel uses only RMI and ssh to run applications).

Finally, we compared the amount of code needed to implement a simple
site with O2J, with the amount of code needed to implement it in the library,
representing a rough measure of the code needed to implement the same site
from scratch. The Worker process of the program of Section 2 represents about
65 lines of Java code. The library classes used to implement the Site (of which
Process is a sub-class) account for 10 times as many lines of code, without
taking into account the Manager and deployment code.

Overall, the experimental data obtained has demonstrated reasonable effi-
ciency in the O2J implementation of Orc programs, and the small amount
of code needed to implement sites, processes and the Orc expressions to be
evaluated illustrates the expressive power of using O2J.

5. Conclusions
We have discussed O2J, a Java library supporting distributed application

development based on the Orc formal orchestration language. O2J allows
Orc programmers to write Java code implementing Orc programs and to run
these programs on distributed architectures hosting Java and ProActive enabled
processing elements. Grid targeting comes as a consequence of the usage of
ProActive as the “distributed/grid middleware”. We presented a simple ex-
ample that notably requires considerable programming effort if implemented
directly using standard middleware mechanisms and we showed that the amount
of Java/O2J code needed is small and mostly a direct translation from the high
level specification of the problem in Orc. We also discussed some preliminary
experimental results demonstrating the feasibility of the approach. Currently,
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to the best of our knowledge, there are no other “distributed” implementations
of Orc (the Orc system available at [9] is not a distributed implementation).
Our approach allows application programmers to reason about their distributed
application structure in terms of an abstract Orc model and then obtain support
from the O2J tools to produce the actual distributed implementation. Thus it
brings grid application development under the umbrella of Model Driven En-
gineering techniques, and, as such, represents a significant step toward freeing
the developer from the burden of detailed middleware knowledge.
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