ADVANCES INAUTONOMIC COMPONENTS & SERVICES*

Marco Aldinucci, Marco Danelutto, Giorgio Zoppi
Dept. Computer Science — Univ. Pisa

{aldinuc,marcod,zoppi }@di.unipi.it

Peter Kilpatrick
Dept. Computer Science — Queen’s Univ. Belfast

p.kilpatrick@qub.ac.uk

Abstract Hierarchical autonomic management of structured grid applications can be effi-
ciently implemented using production rule engines. Rules of the form “precondi-
tion — action” can be used to model the behaviour of autonomic managers in such
a way that the autonomic control and the application management strategy are
kept separate. This simplifies the manager design as well as user customization
of autonomic manager policies.

We briefly introduce rule-based autonomic managers. Then we discuss an
implementation of a GCM-like behavioural skeleton — a composite component
modelling a standard parallelism exploitation pattern with its own autonomic
controller — in SCA/Tuscany. The implementation uses the JBoss rules engine
to provide an autonomic behavioural skeleton component and services to expose
the component functionality to the standard service framework. Performance
results are discussed and finally similarities and differences with respect to the
ProActive-based reference GCM implementation are discussed briefly.

Keywords: Behavioural skeletons, autonomic computing, Service Component Architecture,
task farm.

*This research is carried out under the FP6 Network of Excellence CoreGRID and the FP6 GridCOMP
project funded by the European Commission (Contract IST-2002-004265 and FP6-034442).

Proc. of the CoreGRID symposium, Springer, Aug 2008. To appear.

2

1. Introduction

Autonomic management is increasingly attracting attention as a means of
handling the non-functional aspects of grid applications. Several research
groups are investigating various ways to associate adaptive behaviour with dis-
tributed/grid programs [15, 19, 10, 18, 9].

Within the CoreGRID Programming Model Institute a component based grid
programming model is being developed (the Grid Component Model, GCM)
[12] which introduces the possibility of associating autonomic managers with
grid application components. GCM allows hierarchical composition of com-
ponents. This means that composite components can be perceived by the users
as normal, primitive components. Thus GCM system designers can capitalize
on composition to provide grid application programmers with composite com-
ponents that encapsulate common Grid programming patterns such as pipes,
farms, etc. [13]. Then, application programmers can simply use appropri-
ately parameterized instances of these composite components to implement
complete, efficient grid applications that exploit these patterns or nested ar-
rangements of them.

Autonomic managers have been introduced into GCM to take care of perfor-
mance concerns of composite components without requiring explicit/significant
application programmer involvement [12]. The combination of well-known
grid/distributed programming patterns together with an autonomic manager
taking care of the pattern performance is represented by the concept of a be-
havioural skeleton [4-5].

Autonomic management of typical grid programming patterns is a complex
activity per se. It requires the ability to monitor composite pattern execution,
suitable policies capable of handling “irregular” executions as perceived via the
monitoring activity and, last but not least, suitable mechanisms to implement
the corrective actions described within the policies and triggered in response to
monitoring of irregular execution activity.

Further complexity arises when the autonomic manager activities are not
considered in isolation but as a part of more global autonomic management
activities as happens when composite patterns are nested to model increasingly
complex grid applications. In this latter case, complex autonomic management
policies and strategies have to be identified that allow combination of the actions
performed by the single autonomic managers in the application in such a way
as to implement a more general, application-wide autonomic strategy.

In this work we build on previous work concerning behavioural skeletons
and hierarchical autonomic management in grid applications [6] and we define
a general principle that allows combination of autonomic behaviour of differ-
ent, nested behavioural skeletons in a single grid application (Sec. 2). Then we
discuss a prototype implementation de facto demonstrating the feasibility of the

Advances in autonomic components & services 3

approach. The prototype implementation is built on top of the Tuscany/SCA
(Service Component Architecture) [8] infrastructure rather than on top of the
existing reference implementation of GCM under development within the Grid-
COMP STREP project (Sec. 3). Finally, we outline how the whole methodology
based on autonomic management within behavioural skeletons can be exported
to plain service users. The result is a seamless integration of GCM behavioural
skeleton concepts into the SOA/WS framework (Sec. 4).

T

ABC Y

F E]N

Figure 1. Sample behavioural skeleton structure.

2. Autonomic management using rules

We introduced autonomic managers enforcing user provided performance
contracts within a single behavioural skeleton in [4-5]. The performance con-
tracts enforced by behavioural skeletons currently include only service time
(basically the inverse of throughput) and constant parallelism degree (i.e. the
ability to keep constant the number of resources used to implement the appli-
cation, in the presence of (temporary or permanent) resource faults).

In this section we discuss hierarchical management of grid applications. In
particular, we make the assumptions used in [6] to discuss autonomic manage-
ment of grid applications, that is:

= We assume that grid applications are developed using GCM components.

= We assume that behavioural skeletons modelling common parallel pat-
terns are available. A behavioural skeleton is a parametric composite
component modelling a commonly useful, efficient parallel grid pattern
under the control of an internal autonomic manager responsible for guar-
anteeing a user-provided performance contract. Figure 1 outlines the
structure of a behavioural skeleton. In the behavioural skeleton ABC is
the Autonomic Behavioural Controller, the passive component responsi-
ble for providing probes for inspecting the status of a behavioural skeleton

and mechanisms to implement autonomic actions. AM is the Autonomic
Manager, the active component responsible for behavioural skeleton au-
tonomic management (see [5] for a fuller description of both ABC and
AM in behavioural skeletons). The inner components are the ones man-
aged by the behavioural skeleton, in this case according to a functional
replication/data parallel pattern.

= We assume that behavioural skeletons may be arbitrarily nested and there-
fore that a grid application can be abstracted as a skeleton tree. Each node
in the tree is labelled with the pattern represented by the corresponding
behavioural skeleton and each node has a number of descendant nodes
representing the functional parameters of the behavioural skeleton.

PipelineAM
C1
N
o

C5.1 C5.2 C5.3 C5.4

c2

Figure 2. Sample application structure: component view (left) and skeleton view (right)

As an example, Fig. 2 depicts a grid application built as a three-stage pipeline.
The first stage pre-processes the input and the last post-processes the results.
The inner stage takes as input the output of the first stage and computes its
result in parallel as the programmer recognizes that this is a highly demanding
computation.

Autonomic managers in the behavioural skeleton components of the appli-
cation enforce a performance contract that can either be provided by the user
or agreed to by interacting AMs without any user intervention. For instance,
in the sample application of Fig. 2 the contract of C1, the top level pipeline
behavioural skeleton, is provided by the user, while the contracts of C2, C3 and
C4 are derived from the contract of C1 and sent to the corresponding managers
by the manager of C1.

We summarize the autonomic contract management activities in our nested
behavioural skeleton context by the following abstract perspective, which was
partially developed in [6].

Advances in autonomic components & services 5

User

C1:pipeline C1:pipeline C1:pipeline
(Wf/ (—Ts%‘»)m
C2:seq C3:farm C4:seq C2:seq C3:farm C4a:seq C2:seq C3:farm C4a:seq
C5.1:seq Cb.2:seq C5.1:seq Cb5.2:seq Ch5.1:seq Cb.2:seq
S.1 S.2 S.3

Figure 3. Contract propagation

2.1 Abstract perspective

The application is represented by means of a skeleton tree, such as the one
of Fig. 2 right. The top level contract is provided by the application user,
using the appropriate non-functional interfaces/ports. Contracts of managers in
inner nodes come from parent nodes. The propagation of contracts from root to
leaves happens either at compile time or at run time, depending on when the user
provides the top level contract. In general, this is a non-trivial process. Sub-
contracts for the inner component managers can be determined from the contract
of the top level component manager only due to the fact that we are considering
behavioural skeletons, that is, we are limiting the form of parallelism exploited
within the top level component to a well known pattern. Figure 3 shows how
a pipeline manager propagates contracts to the inner stage managers (steps S.1
and S.2). In this case, the same contract of the pipeline manager is passed to
the stage managers, as pipeline service time is given by the maximum of the
stage component service times (Tspiperine = MAT{TSstage;> - - - » LS stagen })-
In the case of task farms, contract propagation is quite different. Farm service
time is given by the aggregate service time of the inner worker components. In
particular, in a farm with n,, workers, the service time can be approximated as
TS farm = (1 TSuworker;) /7w. Therefore a farm manager propagates to the
worker components a null contract, basically stating worker components should
do their best to exploit the available resources and then the farm manager will
take care of ensuring the farm contract by varying the number of inner worker
components (see Fig. 3, step S.3).

Once the application has been started, and the contracts have been propagated
to the inner managers, the autonomic managers in the nodes determine whether
the current contract is satisfied and, if it is not, they start an autonomic corrective
action aimed at enforcing once again contract satisfaction. In this abstract
perspective, verification of a contract basically requires three steps.

6

Step 1 The inner component autonomic managers are queried and the status of
their contracts is obtained. Each inner manager provides both a boolean
value (contract satisfied or not satisfied) together with a set of parameters
concerning its monitoring status (e.g. the measures used to evaluate the
contract, as provided by the component ABC). In this phase, the top level
manager behaves as a master with respect to the slave inner components
in the context of a monitor activity.

Step 2 The contract of the behavioural skeleton is evaluated making use of the
values given by the inner managers (monitor). These values are periodi-
cally used to instantiate variables in the terms of a formula that represent
the QoS contract (currently a first order logic formula). If the formula
evaluates to false the contract is considered broken; otherwise it is con-
sidered satisfied.

Step 3 If the local contract is no longer satisfied, either a local action is taken
aimed at reestablishing the existing contract or a failure is reported to
the manager of the parent behavioural skeleton in the skeleton tree. The
execution of a local action may involve distribution of new contracts to
the inner components, as well as changing the current configuration of
the behavioural skeleton component. The choice between performing
local actions and reporting failure is driven by the rules embedded in the
manager. These rules represent the AM knowledge base. Each rule is
composed of a precondition (if satisfied the rule can be used), an action
(if the rule is used the action states what steps have to be performed), a
cost (the overhead incurred if the rule is applied) and finally an expected
benefit (the benefit, in terms of the contract, that the AM can expect
following rule application) [6].

The rules considered in the Step 3 above are related to the performance
contract formulas. If the contract is violated, the formula representing the
contract itself can be analysed to derive (one or more) assignments of the
variables that may satisfy the formula and therefore the contract. Only variables
that are likely to be altered due to a reconfiguration plan are considered in this
process, and the plans suitably altering these variable values are considered for
execution. The execution of a reconfiguration plan by a manager may consist
in changing the assembly of inner components (e.g. adding a replica of a
component) and/or enforcing a new contract on some inner component (via its
manager). This corresponds to the inclusion in the AM knowledge base of a
rule that has as a precondition the formula modelling plan feasibility and as an
action the plan itself.

In the event that no plan is likely to induce the satisfaction of the formula
at some point in the future, a broken contact event has to be propagated to the
parent manager (to the user, if the top level AM is considered). This corresponds

Advances in autonomic components & services

C1:pipeline

contract violation

C1:pipeline,

;
N\ ;
monitor monitor monitol y
C2:seq C3:farm C4:seq C2:seq C3:farm C4:seq
S.1 S.2
User
» A
C1:pipeline < : C1:pipeline
" Gontract violation
(Ts<k' % Ts<k' (Ts<k')
|
C2:seq C3:farm C4:seq C2:seq C3:farm C4:seq
S.3 S.4
Figure 4. Sample inter-manager interactions: scenario 1

to the inclusion in the AM knowledge base of a (lowest priority) rule that has no
precondition and has as action the report of the contract violation to the upper
level manager.

Notice that in the general case the co-ordination of management plans is
a difficult activity for several reasons. On the one hand, the satisfaction of a
contract cannot be always guaranteed by the satisfaction of all the contracts
of the inner components (for example, the interaction among components is
usually not captured by any of the inner contracts in isolation, and the expected
effect of reconfiguration plans is a forecast and its precision may be very coarse).
On the other hand, starting from a contract it is not always easy to split it into
sub-contracts (to be propagated to the inner components) in such a way that
satisfaction of sub-contracts is likely to satisfy the contract (in this regard we are
currently investigating an alternative logic that may easily support the projection
of contract formulas into sub-contract formulas [7]). The proposed approach
aims to ameliorate both problems via the behavioural skeleton concept since in
these parametric components the general structure of contracts (formulas and
plans) is pre-defined (up to parameterization).

2.2

To illustrate how the whole process above works, consider again the appli-
cation of Fig. 2 and let us assume that the user has provided a service time
contract stating that service time should be less that k msecs (T'sqpplication =
Tspipeline < k) and that contract propagation has already been performed as
shown in Fig. 3. Figures 4 and 5 illustrate some typical contract management
scenarios within related autonomic managers.

Managers at work: sample scenarios

C1:pipeline

C2:seq C3:farm C4:seq

monitor / monitol
C5.1:seq Cb.2:seq

S.1

C1:pipeline

C2:seq Cs:farm\ C4:seq

-~

/
4
C5.1:seq C5.2:seq C5.3:seq

C1:pipeline

C2:seq C3:farm C4:seq

75/ \Fs"

C5.1:seq C5.2:seq

S.2

C1:pipeline

C2:seq C3:farm C4:seq

monitor monitor monii
C5.1:seq C5.2:seq C5.3:seq

8.3 S.4
C1:pipeline C1:pipeline
C2:seq C3:farm C4:seq C2:seq C3:farm Cé:seq
Ts' S S
C5.1:seq C5.2:seq C5.3:seq C5.1:seq Cb.2:seq C5.3:seq
S.5 S.6

Figure 5. Sample inter-manager interactions: scenario 2

In the first scenario (Fig. 4) the pipeline manager requests from the inner
components the status of their contracts (this is the Step 1 in the abstract view
above, S./ in the figure) and receives back two “contract satisfied” and one
“contract violation” responses (S.2). The contract violation (Ts = k' with
k' > k) is raised by a sequential component manager (the manager of C4)
that has no way to improve the performance (service time) of the controlled
component. The pipeline manager has no means to ensure the user supplied
contract and therefore reports a contract violation to the user console (S.3).
If some “best effort” behaviour is requested by default, the pipeline manager
may propagate a new, less strict contract (Ts < k') to the inner stages, which
possibly results in the release of resources previously required by the inner
stages running with Ts < k.

In the second scenario (Fig. 5) the farm manager has a Ts < k contract and
requests contract values (service times) from the inner worker components (S. 7).
It receives two values that together make its contract false (T's = (T4+71¢)/4 >

Advances in autonomic components & services 9

k (8.2)). A rule with precondition T's,,onitored > L Scontract @nd action “add
a fresh worker component instance” is applied (S.3). After the time needed
to implement the rule (as estimated by the farm manager), the contracts of the
inner components are monitored again (5.4, S.5) and this time the contract turns
out to be satisfied (S.6).

3. Prototype rule based autonomic management

A reference implementation of GCM is being developed on top of ProActive
middleware [17] in the framework of the GridCOMP project [16]. Here, be-
havioural skeletons and autonomic managers within behavioural skeletons are
implemented as described above. To date, however, the reference implementa-
tion of GCM does not explicitly use rules as described in Sec. 2. Rather, plain
Java code is used within the manager to implement the rule concept. This was
mainly due to implementation issues and the incremental nature of the design
and implementation of the behavioural skeleton concept.

Recently, we implemented a single behavioural skeleton (one modelling the
embarrassingly parallel computation pattern) on top of the Tuscany [3] SCA
framework [1]. We wished to implement the behavioural skeleton concept as
conceived in GCM without the restrictions and constraints of the ProActive-
based reference implementation. At the same time, we wished to export GCM
concepts to the service world and investigate the feasibility of implementing
them on top of services. Tuscany looked like a viable proposition, being an open
source component platform using state of the art, service based mechanisms.

The general design of the SCA implementation of the GCM task farm be-
havioural skeleton was introduced in [20, 14]; in the current work we ad-
dress in more detail the implementation of the rule-based autonomic manager.
SCA allows programmers to make use of the component concept in the ser-
vice framework. SCA components are perceived as plain services from the
user viewpoint. We therefore developed an SCA service (the WorkPoolSer-
vice) implementing a task farm behavioural skeleton according to the GCM
specification as introduced in Sec. 2. The Workpool Service is outlined in
Fig. 8. Two basic sets of services are provided: to submit tasks to be computed
(this is the service functional interface, WorkpoolService in the figure) and
to interact with the WorkpoolService manager (this is the non-functional one,
WorkpoolManagerService in the figure).

The autonomic manager (WorkpoolManager Component) uses JBoss Rules,
a “framework that provides an open source and standards-based business rules
engine and business rules management system (BRMS) for easy business policy
access, change, and management” [2]. The JBoss engine supports dynamic
addition and removal of rules. The Drools Rule Language (DRL) implemented
in JBoss uses Java to express field constraints, functions, and consequences in

10

Identitfy rules with Identify verified rules Rules ::
verified preconditions with better benefit <precondition, action,
cost, benefit>
Analyse | || Plan X
Query ABC for F Apply chosen rule via
monitored > ABC mechanisms and/or
measure values Monitor « Execute interaction with inner AM
Knowledge
. e
ABC and ABC and
inner AM Sensor I<_—| Effector | inner AM

Qnaged resourcD

Figure 6. Autonomic cycle revisited

rules. In particular, Java beans are used to implement the getter methods needed
to access variable values and the methods implementing functions (actions) used
in the rules. A JBoss rule can be defined as a rule having a name, a condition
enabling its application and an action to be taken if that condition holds. An
example of a JBoss rule is the following:

rule "AdaptUsageFactor"
when $workerBean:WorkpoolBean(serviceTime > 0.25)
then $workerBean.addWorkerToLeastUsedNode() ;

end

The rule named “AdaptUsageFactor” can be used when the condition stating
that the managed component serviceTime is more than 0.25 holds and, in this
case, an addWorkerToLeastUsedNode is performed.

JBoss rules rely on the existence of a Java Bean (the one referenced by
$workerBean in the example) to access the required values (e.g. the service
Time instance variable of the bean) and then to implement the rule action
(e.g. to invoke the addWorkerToLeastUsedNode() method on the same
bean). To retain the possibility of using fully-fledged JBoss rules, we im-
plemented the WorkpoolManager component in such a way that it uses an
internal bean to support JBoss rules. The bean instance fields are set up period-
ically through the bean setter methods by the WorkpoolManager. In turn, the
WorkpoolManager retrieves the relevant data through the methods exposed via
the WorkpoolService interface. With respect to the GCM model (as outlined
in Fig. 1), these methods (services) correspond to the non-functional, passive
interface implemented by the ABC controller.

Our WorkpoolManager Component runs the JBoss rule engine. The rules
(such as the one given above) constitute the manager knowledge base (see Fig. 6)
and can be dynamically configured (added, deleted) through the Workpool
ManagerService non-functional interface. For example, rules in component
C3 of Fig 2 will be initially configured to include the sample rule shown above

Advances in autonomic components & services 11

if the user contract requires from C1 a service time of at most 0.25 secs. If the
C1 manager, while testing for contract integrity, discovers that the service time
provided by the task farm is higher than both 7§, and T, (the service times of
C1 and C3, respectively) it should interact with the C2 manager and send it a
new AdaptUsageFactor differing only in the when clause

when $workerBean:WorkpoolBean(serviceTime > max(TS1,TS2))
that will eventually substitute the old AdaptUsageFactor rule.

To date we have experimented only with the SCA behavioural skeleton im-
plementation alone (i.e. not in a behavioural skeleton nesting). However, the
mechanism discussed above enables manager interaction via the submission of
new contracts, in the form of rules. Submission of new rules can take place
either during Workpool startup, to implement the initial propagation of the
user-supplied top level contract, or at run time, during autonomic management
actions reconfiguring the inner components of the behavioural skeleton. The
mechanism has been proven effective by running a set of experiments that sepa-
rately measured the scalability of the Tuscany/SCA task farm behavioural skele-
ton, and the overhead introduced by a typical, single reconfiguration enacted by
its autonomic manager. We measured scalability of synthetic applications with
variable computational grain. The computational grain g = Tseq/Tcomm_in_out
is the ratio of the time spent to compute a task on the remote resource (7’s¢g), to
the time spent to deliver the input data to the remote node plus the time spent
to retrieve the results from the remote node (1eomm._inout). The definition of
scalability, S(n), is the classical one: S(n) = T'(1)/T (n), where T'(n) repre-
sents the completion time of the application run with parallelism degree equal
to n. Typical results are shown in Fig. 7 (left). Considering the high overhead
in serializing (deserializing) service parameters with SOAP XML (we used no
optimization), this represents a fairly good result.

Concerning the overhead related to reconfiguration of the behavioural skele-
ton, we measured the time spent in computing a set of 1K tasks, including a
forced reconfiguration that doubled the number of farm workers (4 — 8) when
a given number of tasks had already been computed. The results are shown in
Fig. 7 (right). The Exp1 (Exp2) line refers to an experiment where the workers
were doubled after half (quarter) of the tasks were computed. In both cases the
overhead involved is negligible, considering it includes both the time spent to
activate (upon a timer) the JBoss rule engine and the time spent to perform the
“add worker” rule four times.

4. Behavioural skeletons in SCA and interoperability

As stated at the beginning of Sec. 3, our implementation of GCM behavioural
skeletons on top of SCA was also aimed at demonstrating the suitability of SCA

12

|4PE | 8 PE |16PE|

g=10 0.96 | 0.89 0.6 Measured | Estimated | € |

g=24 098 | 097 | 0.77 Exp 1 255.07 s 252.07s | 0.99
g=40 0.99 | 097 | 0.87 Exp 2 217.33 s 209.76 s | 0.97

Figure 7. Scalability (left) and reconfiguration (right) efficiency results.

to support GCM concepts and the interoperability we were able to achieve with
the wider (i.e. beyond the GCM and grid community) service world.

SCA offers most of the mechanisms needed to implement a GCM behavioural
skeleton. One facility missing is the means to change composite component as-
semblies at run time via XML composite component descriptors. For instance,
when a new worker component has to be added to the WorkpoolService,
we cannot simply produce a new composite descriptor to tell the framework
the composite assembly has changed. Consequently, we implemented a com-
ponent to deal with this kind of assembly change. The component provides
means to instantiate a new (worker) component and to create the appropriate
connections as defined by the schema of Fig. 8. The component uses the
Tuscany API which, in turn, provides the mechanisms required to support new
component integration with (as well as old component removal from) a compo-
nent assembly. The SCA implementation of the task farm behavioural skeleton
directly mirrors the GCM/ProActive implementation. The GCM/ProActive
ABC is implemented via operations exported by the Workpool Service and the
AM is implemented by the SCA component WorkpoolManager Service. All
the components in Fig. 8 (the WorkpoolService, the WorkpoolManager, the
WorkerManagerNode and the WorkerService) are exposed as services. They
can be accessed through the automatically generated WSDL as plain services
and, more importantly, they can be re-used to implement different behavioural
skeletons in exactly the same way that the ABC and AM components may be
re-used within the GCM/ProActive framework to implement other behavioural
skeletons.

The overall design of the Workpool service (and of the associated support
mechanisms) has been judged interesting by the Tuscany developers and our
code has been included in the SCA svn as a Tuscany sample application.

Concerning interoperability, we verified that accessing a behavioural skele-
ton is as easy as accessing any other type of service on the network, as expected.
Fig. 9 sketches the code needed to submit tasks to the WorkpoolService be-
havioural skeleton. The first part of the code (on the left) is that needed to set up
a reference to the service (args [0] is the url of the service WSDL file). Here a

Advances in autonomic components & services 13

=
g I o) =)
2 [i
o= B = :
» 9 I ! I
D = | |
2z N i
is B |
i i
i Manager i
' Componeni i
: 1
3
i) i
i ! i
i ! i
i f\ ‘:
WorkPool o i i
Service o o ;
! WorkPool | ! !
i Service P i
! Lo WorkerService !
1 . i
i Componen _ ! Component '
i Lo i
s . s
e ; {PEn____[_omponem J .‘

Figure 8. Workpool Service structure

service that will be invoked to post-process the results produced is passed to the
WorkpoolService. The second part of the code (on the right) is that needed
to submit the single task (in a Job) to the WorkpoolService. This code is of
the same form as that required to access any other type of service from a Java
program. Normal service application programmers require no additional effort
to benefit from the advanced management supported in the WorkpoolService.
Thus our implementation satisfies the requirement to propagate the concept with
minimal disruption as stated by Murray Cole in his skeleton “manifesto” [11].
Service users may have the benefit of a fully-fledged autonomic implementation
of embarrassingly parallel computations within a single service incorporating
the best of the relevant GCM methodology and concepts.

5. Conclusions

We introduced rule-based autonomic management techniques for structured
grid applications implemented using GCM Behavioural Skeletons. The general
mechanism of rule exploitation for performance contract monitoring together
with a significant sample case have been discussed. We then described a proto-
type implementation in SCA/Tuscany. We presented preliminary experimental
results demonstrating the feasibility of the approach as well as the portability
of GCM autonomic management aspects into the Service framework. The pro-
totype implementation makes available a GCM task farm behavioural skeleton
to service application programmers and thus helps broaden the applicability of

14

// creates the workpool service stub
WorkpoolServiceStub wstub =
new WorkpoolServiceStub(workpoolServiceWSDLuri);

1/ sets up services processing the results computed

WorkpoolServiceStub.AddTrigger sink = new
WorkpoolServiceStub.AddTrigger();

WorkpoolServiceStub.CallableReferencelmpl callableReference =
new WorkpoolServiceStub.CallableReferencelmpl();

WorkpoolServiceStub.EndpointReference endpoint =

new WorkpoolServiceStub.EndpointReference();

endpoint.setURI(resultPostProcessServiceURI);

callableReference.setEndpointReference(endpoint);

sink.setParamO(callableReference);

wstub.addTrigger(sink);

// create a Job

Mydob j = new MyJob();

// set up serialization stuff

Serializer s = new Serializer();

OMElement element = s.serialize(j);

// create a submit request

WorkpoolServiceStub.Submit submit= new
WorkpoolServiceStub.Submit();

// create the task

WorkpoolServiceStub.Job task= new
WorkpoolServiceStub.Job();

// set up task and submit

task.setData(element);

submit.setParamO(task);

wstub.submit(submit)

Figure 9. Sample client code for the WorkpoolService

CoreGRID results. As the intended target audience of the prototype is the ser-
vice community, this also makes a bridge between the component and service
worlds. The design of the prototype, fully exploiting component technology,
allows reuse of its different parts to implement different behavioural skele-
tons. We are currently integrating the rule based implementation of behavioural
skeletons into the GCM reference implementation being developed on top of
ProActive in the GridCOMP project.

References

[1] Service component architecture, 2007. http://www.ibm.com/developerworks/
library/specification/ws-sca/.

[2] Jboss rules home page, 2008. http://www. jboss.com/products/rules.

[3] Tuscany home page, 2008. http://incubator.apache.org/tuscany/.

[4] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonel-
lotto. Behavioural skeletons for component autonomic management on grids. In Core-

GRID Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid
Systems, Tools and Environments, Heraklion, Crete, Greece, June 2007.

Advances in autonomic components & services 15

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-
lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid
components. In Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-
based Processing, Toulouse, France, pages 54-63, Feb. 2008. IEEE.

M. Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hierarchical management of au-
tonomic components: a case study. Technical Report TR-0127, CoreGRID, 2008. Avail-
able athttp://www.coregrid.net/mambo/images/stories/TechnicalReports/
tr-0127.pdf.

S. Bistarelli, U. Montanari, F. Rossi, Semiring-Based Constraint Logic Programming:
Syntax and Semantics, ACM TOPLAS, Vol. 23, 2001

M. Beisiegel, H. Blohm, D. Booz et al. Service Component Architecture Building Sys-
tems using a Service Oriented Architecture, A Joint Whitepaper by BEA, IBM, Inter-
face21, IONA, Oracle, SAP, Siebel, Sybase. 2000, available at http://www.iona.com/
devcenter/sca/SCA_White Paper1_09.pdf

P. Boinot, R. Marlet, J. Noyé, G. Muller, and C. Cosell. A declarative approach for
designing and developing adaptive components. In Proc. of the 15th Intl. Conference on
Automated Software Engineering, pages 111-119. IEEE, 2000.

J. Buisson, F. André, and J.-L. Pazat. Afpac: Enforcing consistency during the adaptation
of a parallel component. Scalable Computing: Practice and Experience, 7(3):83-95, 2006
M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 30(3):389-406, 2004.

CoreGRID NoE deliverable series, Prog. Model Institute. D.PM.04 — Basic Features
of the Grid Component Model (assessed), Feb. 2007. http://www.coregrid.net/
mambo/images/stories/Deliverables/d.pm.04.pdf.

CoreGRID NoE deliverable series, Prog. Model Institute. D.PM. 11— GCM experience: in-
side the single component and beyond components, Feb. 2008. http://www.coregrid.
net/mambo/content/view/428/292/.

M. Danelutto and G. Zoppi. Behavioural skeletons meeting Services. In Proceedings of
PAPP’08. Springer Verlag, LNCS No. 5101, pages 146—153, June 2008. Krakow, Poland.

H. Gonzélez-Vélez. Self-adaptive skeletal task farm for computational grids. Parallel
Comput., 32(7):479-490, 2006.

GridCOMP. GridCOMP web page, 2007. http://gridcomp.ercim.org.

ProActive home page, 2006. http://www-sop.inria.fr/oasis/proactive/.

S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing: Research articles.
Concurr. Comput. : Pract. Exper., 17(2-4):235-257, 2005.

G. Wrzesinska, J. Maassen, and H. E. Bal. Self-adaptive applications on the grid. In PPoPP
'07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 121-129, New York, NY, USA, 2007. ACM.

G. Zoppi. Componenti Avanzati GCM/SCA, 2008. Dept. Computer Science, Univ. of
Pisa. 2nd level graduation thesis, in Italian. http://etd.adm.unipi.it/theses/
available/etd-01302008-103715/

