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Abstract

VirtuaLinux is a meta-distribution that enables a stan-
dard Linux distribution to support robust physical and vir-
tualized clusters. VirtuaLinux helps in avoiding the “single
point of failure” effect by means of a combination of ar-
chitectural strategies, including the transparent support for
disk-less and master-less cluster configuration. VirtuaLinux
supports the creation and management of Virtual Clusters
in seamless way: VirtuaLinux Virtual Cluster Manager en-
ables the system administrator to create, save, restore Xen-
based Virtual Clusters, and to map and dynamically re-map
them onto the nodes of the physical cluster. In this paper
we introduce and discuss VirtuaLinux virtualization archi-
tecture, features, and tools, and in particular, the novel disk
abstraction layer, which permits the fast and space-efficient
creation of Virtual Clusters.

1. Introduction

Physical clusters are usually deployed to improve
performance and/or availability over that provided by a
single computer. A cluster is composed of a network of
complete computers (nodes), each of them running its own
copy of an OS, which can be either a part of a distributed
OS (e.g. Single System Image OSes) or a fully standard
OS (e.g. Linux). The latter solution permits a finer control
on services deployment, and the full reuse of the expertise
of administrator, who can leverage on a range of tools for
the collective and/or centralized management of the nodes:
from simple scripts (e.g. rdist) to complete software
packages (e.g. Sun Grid Engine [25]).

Frequently, clusters are equipped with an external shared
disk (Storage Area Network or SAN), which simplifies the
administration of the storage since cables and storage de-
vices do not have to be physically moved to move storage
from one server to another. SANs tend to increase stor-
age capacity utilization, since multiple servers can share

the same growth reserve, and if compared to disks that a
high-density cluster can accommodate, exhibit better per-
formances and reliability since they are realized by arrang-
ing high-speed high-quality disks in RAID [17]. SANs also
tend to enable more effective disaster recovery processes.

Typically, the nodes of a cluster are homogeneous at the
hardware level. However, one of them acts as the master of
the cluster, whereas the other nodes depend on it for several
services, such as file sharing, user authentication, network
routing and resolution, time synchronisation. The master is
usually statically determined at the installation time. The
master node is a single point of failure for cluster availabil-
ity since it hosts services that are critical for cluster opera-
tions.

Due to their cost, clusters are typically shared resources,
and rarely a single configuration or even a single OS can be
adapted to supply all applications and users’ needs. Classic
solutions, like static cluster partitioning and multiple boots,
are not flexible enough to consolidate several user environ-
ments and require a consistent configuration effort. Since
configuration involves distinct OS copies in different nodes,
any configuration mistake may seriously impair cluster sta-
bility and is difficult to undo.

In this paper we introduce VirtuaLinux, an innovative
Linux meta-distribution able to support the installation and
the management of a disk-less, master-less cluster with a
standard Linux distribution (e.g. CentOS, Ubuntu). Virtu-
aLinux addresses the mentioned robustness and flexibility
problems of standard cluster installations via cluster-level
resource virtualization, i.e. Virtual Clusters (VCs). This
paper presents VirtuaLinux VC architecture, and in partic-
ular, the VirtuaLinux disk abstraction layer, which is a key
technique for the efficient implementation of VCs.

In the rest of the paper, we introduce VirtuaLinux and
Virtual Clusters (Sec. 2); we introduce the design and im-
plementation of VirtuaLinux disk abstraction layer (Sec. 3).
Then, we briefly describe VirtuaLinux VC facilities and
tools (Sec. 4). Finally, we discuss VirtuaLinux Virtual Clus-
ters performances (Sec. 5).
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2. VirtuaLinux

VirtuaLinux is an open-source Linux meta-distribution
aiming at the following goals:

Disk-less Cluster Support Fragility due to disk-on-
blades avoided by supporting a disk-less cluster architec-
ture. Disks are replaced with a set of storage volumes, i.e.
abstract disks implemented via an external SAN that is ac-
cessed via suitable protocols.

Master-less Cluster Support The single point of failure
effect is avoided by removing the master from the cluster.
Master node features, i.e. the set of services implemented
by the master node, are categorised and made redundant by
either active or passive replication in such a way they are,
at each moment, cooperatively implemented by the running
nodes.

Virtualized Cluster Support Both management flexi-
bility and resilience to configuration errors are improved
by means of transparent node virtualization. A physical
cluster may support one or more VCs that can be indepen-
dently managed without affecting the configuration of the
underlying physical cluster. VCs can run a guest OS (either
a flavour of Linux or Microsoft Windows) that may differ
from the host OS, governing physical cluster activities.

These goals are achieved independently through solu-
tions that have been designed to be coupled, thus to be se-
lectively adopted. A suite of tools, included in VirtuaLinux,
enable the boot, the installation, the configuration and the
maintenance of a cluster exhibiting the previously described
features. VirtuaLinux is currently targeted to AMD/Intel
x86 64-based nodes, and includes one or more Linux distri-
butions, currently Ubuntu Edgy 6.10 and CentOS 4.4/5.5;
an install facility able to install and configure included dis-
tributions according to the above-mentioned goals; a recov-
ery facility able to revamp misconfigured nodes; a toolkit to
manage VCs and one or more pre-configured VC images,
currently Ubuntu Edgy 6.10 and CentOS 4.4/5.5.
This paper focuses particularly on the virtualization sup-

port; we refer back to VirtuaLinux white paper [1] for a
detailed description of other VirtuaLinux features, such as
disk-less cluster boot and master-less services configura-
tion.

2.1. Virtual Clusters

The virtualization of physical resources of a computing
system to achieve improved degrees of sharing and utilisa-
tion is a well-established concept that goes back decades
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Figure 1. A physical cluster running two VCs.

[9, 18, 23]. In contrast to a non-virtualized system, full
virtualization of all system resources (including processors,
memory and I/O devices) makes it possible to run multiple
OSes on a single physical platform. A virtualized system
includes a new layer of software, called a Virtual Machine
Monitor (VMM). The principal role of the VMM is to ar-
bitrate access to the underlying physical host platform re-
sources so that these resources can be shared among multi-
ple OSes that are guests of the VMM. The VMM presents
to each guest OS a set of virtual platform interfaces that
constitute a Virtual Machine (VM).

By extension, a Virtual Cluster (VC) is a collection of
VMs that are running onto one or more physical nodes of
a cluster, and that are wired by a virtual private network.
By uniformity with the physical layer, all VMs are homo-
geneous, i.e. each VM may access a private virtual disk and
all VMs of a VC run the same OS and may access a shared
disk space. Different VCs may coexist on the same phys-
ical cluster, but no direct relationship exists among them,
apart from their concurrent access to the same resources
(see Fig. 1). VCs bring considerable added value to the de-
ployment of a production cluster because they ease a num-
ber of management problems, such as: physical cluster in-
sulation and cluster consolidation. Physical cluster insula-
tion ensures that crashes or system instability due to admin-
istration mistakes or cursoriness at the virtual layer are not
propagated down to the physical layer and make no security
or stability impact on the physical layer. Virtualization is
used to deploy multiple VCs, each exploiting a collection
of VMs running an OS and associated services and applica-
tions. Therefore, VMs belonging to different VCs may ex-
ploit different OSes and applications to meet different user
needs. The main drawback of virtualization is overhead,
which usually grows with the extent of hardware and soft-
ware layers that should be virtualized.

Irrespectively of the particular VM technique adopted
[23], VCs pose new challenges of disk management due to
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the need to support the creation and management of VCs on
a physical cluster. In particular, their creation and installa-
tion should be supported in time/space-efficient way, since
these operations are supposed to be frequently executed.

3. VirtuaLinux Storage Architecture

VirtuaLinux uses EVMS (Enterprise Volume Manage-
ment System) to provide a single, unified system for han-
dling storagemanagement tasks, including the dynamic cre-
ation and destruction of volumes, which are an EVMS ab-
straction that are seen from the OS as disk devices [6, 19].
VirtuaLinux natively supports disk-less clusters, thus all

the cluster permanent storage (at least OS-related files) are
supposed to be stored in a iSCSI-attached1 external SAN2,
usually composed by a fast and robust RAID3. The external
SAN should hold a distinct copy of the OS for each node.
At this end, VirtuaLinux prepares, during installation, one
volume per node and a single volume for data shared among
nodes. As we shall see later, several other volumes are used
to realise virtual cluster abstraction. Volumes are formatted
with an OS specific native file system (e.g. ext3) whereas
shared volumes are formatted with a distributed file sys-
tem that arbitrates concurrent reads and writes from cluster
nodes, such as the Oracle Concurrent File System (OCFS2)
or the Global File System (GFS).
Volumes are obtained by using the EVMS snapshot fa-

cility (see Sec. 3.1). A snapshot represents a frozen image
of a volume of an original source. When a snapshot is cre-
ated, it looks exactly like the original at that point in time.
As changes are made to the original, the snapshot remains
the same and looks exactly like the original at the time the
snapshot was created. A file on a snapshot is a reference (at
the level of disk block) to its original copy, and thus does
no consume disk space while the original and its snapshot
copy remain identical. A file is stored in the snapshot, and
thus consumes disk space only when either the original or
its snapshot copy is modified. Indeed, snapshot creation is
quite a fast operation.
The snapshot technique is usually used to build on-line

backups of a volume: the accesses to the volume are sus-
pended just for the (short) time of snapshot creation; then
the snapshot can be used as on-line backup, which can be
kept on-line either indefinitely or just for the time needed
to store it on a different storage medium (e.g. tape). Multi-
ple snapshots of the same volume can be used to keep sev-
eral versions of the volume over time. As we shall see in

1iSCSI is a network protocol standard, that allows the use of the SCSI
protocol over TCP/IP networks. It enables many initiators (e.g. nodes) to
access (read and write) a single target (e.g. SAN), but it does not ensure
any coherency/consistency control in the case that many initiators access
in read-write mode to the same partition [13].

2Storage Area Network.
3Redundant Array of Independent Disks.

Sec. 3.2, the management of a large number of snapshots
requires particular care in current Linux systems.
VirtuaLinux installs an original volume with the selected

OS distribution (called the default), and then creates n iden-
tical snapshots. Each node of the cluster uses a different
snapshot as the root file system. Once snapshots have been
made accessible (activated), the content of both original and
snapshots can evolve along different paths; as they are in-
dependent volumes. However, in the case of cluster man-
agement, snapshots have several advantages as compared to
independent volumes:

• Fast creation time. Assume an n-node cluster is to be
installed. Since each node of the cluster requires a pri-
vate disk, n independent volumes should be created
at installation time starting from the same initial sys-
tem distribution (e.g. CentOS system image). These
volumes are physically stored in the same SAN due
to the disk-less architecture. Creating these volumes
by a standard copy loop may be extremely expensive
in term of time since a complete Linux distribution
should be installed n times.4 Observe that a similar
amount of time should be spent for the creation of each
new VC. Snapshot usage drastically decreases volume
creation time since volume content is not copied but
just referenced at the disk block level. As an example,
a snapshot of 10 GBytes volume can be created in a
few seconds on a Giga-Ethernet attached SAN.

• Reduced disk space usage. In the general case, a snap-
shot requires at least the same amount of space as the
original volume. This space is used to store original
files in the case they are changed in the original vol-
ume after snapshot creation time, or new data stored
in the snapshot that did not exist in the original vol-
ume at snapshot creation time. However, VirtuaLinux
uses snapshots in an original way: the original vol-
ume holds the root file system of the Linux distribu-
tion, which does not change over time (when the orig-
inal volume changes the snapshots is reset to reflect
updates, see centralised management). Since data in
the original volume is immutable to a large degree (OS
files), a considerable amount of disk space is saved
with respect to full data copy.

• Device name independence. EVMS ensures the bind-
ing of the raw device name (e.g. /dev/sda1) and logical
volume name (e.g. /dev/evms/node1). Avoiding the
use of raw device names when using iSCSI connected
devices simplify the system configuration since they
may exhibit different names on different nodes (this

4Estimated time depends on many factors, such as number of nodes,
distribution size, DVD reader speed, SAN throughput. However, it can
easily reach several hours even for small cluster configurations due the
large number of small files that must be copied.
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typically happens when a node has an additional de-
vice, e.g. an external DVD reader).

• Centralised management. A snapshot can be reset to
a modified version of the original. Data that has been
changed in the snapshot is lost. This facility enables
the central management of copies, as for example for
major system updates that involves all nodes. This
facility is not strictly needed for cluster management
since all snapshots can be changed, as they are differ-
ent copies by using classical cluster techniques such as
broadcast remote data distribution [25].

Since EVMS is a quite flexible and sophisticated man-
agement tool, the same goal can be achieved with different
architectural designs, for example by using real volumes in-
stead of snapshots with the EVMS cluster management fa-
cility. As discussed above, the VirtuaLinux design exhibits
superior features with respect to alternative (and more clas-
sical) design options. The full description of EVMS func-
tionality, which is outside the scope of this paper, can be
found in [6, 19].
Note that VirtuaLinux uses the snapshot technique to

provide a cluster with a number of independent volumes
that can be efficiently created from a common template vol-
ume, whereas snapshots are usually used as transient, short-
lived on-line backups. To the best of our knowledge, no
other systems exhibit a similar usage of snapshots (and the
consequent features). Indeed, in order to correctly exploit
a different usage of snapshots, VirtuaLinux slightly extends
EVMS snapshot semantics and implementation. This exten-
sion, which is described in the following sections, is correct
with respect to EVMS snapshot semantics.

3.1. Understanding the Snapshot Technique

A number of different implementation approaches are
currently adopted by vendors to create snapshots, each
with its own benefits and drawbacks. The most common
are copy-on-write, redirect-on-write, and split mirror. We
briefly describe copy-on-write, which is adopted by EVMS;
we refer back to the literature for an extensive description
[10].
A snapshot of a storage volume is created using the pre-

designated space for the snapshot. When the snapshot is
first created, only the meta-data about where the original
data is stored is copied. No physical copy of the data is
made at the time the snapshot is created. Therefore, the cre-
ation of the snapshot is quite fast. The snapshot copy then
tracks the changing blocks on the original volume as writes
to the original volume are performed. The original data that
is being written to is copied into the designated storage pool
that is set aside for the snapshot before the original data is
overwritten.

Before a write is allowed to a block, copy-on-write
moves the original data block to the snapshot storage. This
keeps the snapshot data consistent with the exact time the
snapshot was taken. Read requests to the snapshot volume
of the unchanged data blocks are redirected to the original
volume, while read requests to data blocks that have been
changed are directed to the “copied” blocks in the snapshot.
The snapshot contains the meta-data that describes the data
blocks that have changed since the snapshot was first cre-
ated. Note that the original data blocks are copied only once
into the snapshot storage when the first write request is re-
ceived.
In addition to the basic functionality, EVMS snapshots

can be managed as real volumes, i.e. data can be added
or modified on the snapshot without affecting data on the
original volume, provided that enough free space has been
pre-allocated for the snapshot. Also, they can be activated
and deactivated as standard volumes, i.e. mapped and un-
mapped onto UNIX device drivers. However, despite being
standard volumes, snapshots have a subtle semantics with
respect to activation due to copy-on-write behaviour. In
fact, the system cannot write on an inactive snapshot since
it is not mapped to any device, thus may lose the correct
alignment with its original during the deactivation period.
EVMS solves the problem by logically marking a snapshot
for reset at deactivation time, and resetting it to the current
original status at activation time.

3.2. Snapshots as Independent Volumes: an
Original Usage

VirtuaLinux uses EVMS snapshots to provide a cluster
with a number of independent volumes that can be effi-
ciently created from a common template volume (original).
Since snapshots cannot be deactivated without losing snap-
shot private data, they all should always be kept active in all
nodes, even if each node will access only one of them.
Snapshots on Linux OS (either created by means of

EVMS, LVM, or other software) are managed as UNIX de-
vices through the device mapper kernel functionality. Al-
though EVMS does not fix any limit on the number of snap-
shots that can be created or activated, current Linux kernels
establish a hardwired limit on the number of snapshots that
can be currently active on the same node. This limit comes
from the number of pre-allocated memory buffers (in kernel
space) that are required for snapshot management. Standard
Linux kernels enable no more than a dozen active snapshots
at the same time. This indirectly constrains the number of
snapshots that can be activated at the same time, and thus
the number of nodes that VirtuaLinux can support.
Raising this limit is possible, but requires a non-trivial

intervention on the standard Linux kernel code. VirtuaL-
inux overcomes the limitation with a different approach,
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which does not require modifications to the kernel code. It
leverages on the following facts:

• Since each snapshot is used as private disk, each snap-
shot is required to be accessible in the corresponding
node only. In this way, each node can map onto a de-
vice just one snapshot.

• The status of an EVMS snapshot is kept on the per-
manent storage. This information is also maintained
in memory in terms of available snapshot objects.
This information is maintained in a lazy consistent
way. Status information is read at EVMS initialisation
time (evms activate), and committed out at any EVMS
command (e.g. create, destroy, activate, deactivate a
snapshot). While each snapshot can have just one sta-
tus for all nodes on the permanent storage, it may have
different status on the local memory of nodes (e.g. it
can be mapped onto a device on a node, while not ap-
pearing on another).

• Snapshot deactivation consists in unmapping a snap-
shot device from the system, then logically marking
it for reset on permanent storage. VirtuaLinux extends
EVMS features with the option to disable EVMS snap-
shot reset-on-activate feature by way of a special flag
in the standard EVMS configuration file. In the pres-
ence of this flag, the extended version of EVMS will
proceed to unmap the snapshot without marking it for
reset.

VirtuaLinux EVMS extension preserves snapshot cor-
rectness since the original volume is accessed in read-only
mode by all nodes, and thus no snapshot can lose alignment
with the original. One exception exists: major system up-
grades, which are performed directly on the original copy
of the file system, and that trigger the reset of all snapshots.
At the implementation level, the VirtuaLinux EVMS ex-

tension requires the patching of EVMS user-space source
code (actually few lines of C code). Overall, VirtuaLinux
extends EVMS semantics. The extension covers a case in
which general conditions that have triggered the reset of a
snapshot have been relaxed (avoids reset-on-activate) pro-
vided the original volume is not written. The extension en-
sures snapshot correctness. The described EVMS enables
an original usage of the general snapshot technique.

4. Features of VirtuaLinux Virtual Clusters

VirtuaLinux implementation is arranged in a two-tier ar-
chitecture: VM implementation layer and VM aggregation
layer. The first one implements the single VM, currently
the Xen VMM [2]. The second one aggregates many VMs
in a VC, and dynamically creates and manages different

VCs. This is realised via the VirtuaLinux Virtual Cluster
Manager (VVCM). Overall, the VVCM enables the system
administrator to dynamically create, destroy, suspend and
resume from disk a number of VCs. The VCs are organ-
ised in a two-tier network: each node of a VC is connected
to a private virtual network, and to the underlying physical
network. The nodes of a VC are homogeneous in terms of
virtualized resources (e.g. memory size, number of CPUs,
private disk size, etc.) and OS. Different clusters may ex-
ploit different configurations of virtual resources and dif-
ferent OSes. Running VCs share the physical resources ac-
cording to a creation time mapping onto the physical cluster.
VCs may be reallocated by means of the run-time migration
of the VM between physical nodes.

Each virtual node of a VC is implemented by a Xen VM
that is configured at the VC creation time. Each virtual node
includes: a virtual network interface with a private IP, a
private virtual disk, a private virtual swap area and a VC-
wide shared virtual storage. The virtualization of devices is
realised by way of the standard Xen virtualization mecha-
nisms.

4.1. Network Virtualization for VCs

Xen supports VM networking by way of virtualized Eth-
ernet interfaces. These interfaces can be connected to un-
derlying physical network devices either by way of bridged
(OSI model layer 2) or routed (OSI model layer 3) network-
ing. Bridging requires less setup complexity and connection
tracking overhead as compared to the routing method. On
the other hand, bridging impairs insulation among different
networks on the same bridge, and it lacks flexibility since it
can hardly be dynamically configured to reflect the dynamic
creation and destruction of virtual networks. For this, Vir-
tuaLinux currently adopts the routed networking.

VirtuaLinux sets up virtual networks in a simple man-
ner: all nodes in the VC are assigned addresses from a pri-
vate network chosen at creation time, and the VC does not
share the same subnet as the physical cluster. In this way,
the communications among physical and virtual clusters are
handled by setting up appropriated routing policies on each
physical node, which acts as a router for all the VMs run-
ning on it. Routing policies are dynamically set up at the
deployment time of the VM. All VMs of all VCs can be
reached from all physical nodes of the cluster and each VC
can access to the underlying physical network without any
master gateway node. Virtual nodes of a VC are simply
VMs on the same virtual subnet. However, each virtual net-
work is insulated from the others. The routing configuration
is dynamic, and has a VC lifespan. The configuration is dy-
namically updated in the case virtual nodes are re-mapped
onto the physical cluster.
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Figure 2. VirtuaLinux virtualized storage architecture.

4.2. Storage Virtualization for VCs

VirtuaLinux implements the storage abstraction layer de-
scribed in Sec. 3, and exploits it for the storage of both the
physical and the virtual nodes. The architectural view of
VirtuaLinux is sketched in Fig. 2. In particular, the creation
of a new VC proceeds in five stages; let us assume the new
VC, called “stripes”, has 4 nodes:

• A standard EVMS volume default stripes is cre-
ated and installed with the chosen guest OS.

• 4 snapshots of default stripes are created.

• 4 standard volumes are created and formatted as swap
volumes.

• A configuration script is added to each snapshot, it will
be called at the first boot of the VC to configure net-
work addresses and other similar node-specific infor-
mation.

• A configuration file holding “stripes” static informa-
tion is created.

The process is repeated for the creation of each new VC. As
shown in Fig. 2, the storage of each VC is derived from a
common parametric template (that is also used for the phys-
ical storage). Once the VC is created, it can be started and
managed via the VVCM, which completes the configura-
tion file with dynamic information such as the virtual-to-
physical mapping policy, and provides all the tools needed
to deploy and run the VC. Observe that the virtual-to-
physical mapping can be dynamically changed since all the
created volumes are not bound to any particular physical
node, but externally stored in a SAN.

As for the physical cluster, each VC comes with its own
shared storage, which relies on OCFS2 [7] distributed file
system to arbitrate concurrent read and write accesses from
VC nodes. However, since Xen does not currently en-
able the sharing of many disks between VMs on the same
physical node, the VC shared disk cannot be directly ac-
cessed from within virtual nodes. VirtuaLinux currently
overcomes the problem by wrapping the shared storage with
a NFS file system. At VC deployment time, each physi-
cal node involved in the deployment mounts the VC shared
storage, which is in turn virtualized and make available to
virtual nodes.

4.3. Management of the VCs

VirtuaLinux provides two strategies for virtual-to-
physical mapping of VMs: Block and Cyclic. The first
one aims to minimise the spread of VMs on the physical
nodes. This is achieved by allocating on the physical node
the maximum allowed number of VMs. The second one
tries to spread the cluster’s VM across all the cluster’s phys-
ical nodes. The two strategies discussed can be coupled
with two modifiers: Strict and Lazy. With the first modi-
fier the deployment can be done only if there are enough
free cores, with the second the constraint between the num-
ber of VM processors and physical cores is not taken into
account at all. Notice that the mapping strategy of a VC
can be changed after the first deployment provided it is the
suspended state.
The VVCM (VirtuaLinux Virtual Cluster Manager) con-

sist of a collection of Python scripts to create and manage
the VCs. All the information about the virtual nodes such
as the mapping between physical and virtual nodes and the
state of each virtual machine are stored in a database. The
information is maintained consistent between the launch of
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different clusters. A simple command-line library for the
creation (VC Create command), the activation (VC Control
command) and the destruction of the VCs (VC Destroy
command) is provided to the administrator. All the commu-
nications used for the staging and the execution of the VMs
is implemented on top of the Secure Shell support (ssh).
The VC Control command relies on a simple Virtual Clus-
ter start-time support to dynamically configure the network
topology and the routing policies on the physical nodes for
each VC.

5 Experimental Evaluation

Experimental data have been collected on a 4U-case Eu-
rotech cluster hosting 4 high-density blades, each of them
equippedwith a two dual-coreAMDOpteron@2.2GHz and
8 GBytes of memory. Each blade has 2 Giga-Ethernets and
one 10 Gbits/s Infiniband NIC (Mellanox InfiniBand HCA).
The blades are connected with an Infiniband switch. The
external SAN is composed of a RAID0 (2 x 250GBytes
SATA-REWestern-Digital WD2500YS) that is accessed via
iSCSI (iscsitarget-0.4.14 [11]) on top of a Giga-Ethernet.
The physical cluster has been installed two OSes that have
been obtained by instantiating VirtuaLinuxwith Ubuntu and
CentOS standard Linux distributions: i) a testbed installa-
tion Ubuntu Edgy 6.10 with Xen 3.0.1 VMM, Linux ker-
nel 2.6.16 Dom0 (Ub-Dom0) and DomU (Ub-DomU); ii) a
reference installation CentOS 4.4, no VMM, Linux kernel
2.6.9 (CentOS).
Three sets of micro-benchmarks have been used: the

LMbench benchmark suite [14], which has been used to
evaluate the OS performance; the Intel MBI Benchmarks
[12] with MVAPICH MPI toolkit (mvapich2-0.9.8) [15],
which has been used to evaluate networking performance;
the Bonnie File System benchmark (bonnie1.03), which has
been used to evaluate iSCSI and EVMS overhead.
According to LMbench, as expected, the virtualization of

system calls has a non negligible cost: within both the priv-
ileged domain (Ub-Dom0) and user domain (Ub-DomU) a
simple syscall pays a consistent overhead (∼ +700%) with
respect to the non-virtualized OS (CentOS) on the same
hardware (while the difference between the privileged and
the user domain is negligible). Other typical OS operations,
such as fork+execve, exhibit a limited slowdown due to vir-
tualization (∼ +120%). However, as expected in a para-
virtualized system, processor instructions exhibit almost no
slowdown Overall, the OS virtualization overhead is likely
to be amortised to a large extent in real business code.
The second class of experiments is related to network-

ing. Figures 4 and 3 report an evaluation of the network
latency and bandwidth, respectively. Experiments highlight
that the only configuration able to exploit Infiniband poten-
tiality is the one using user-space Infiniband verbs (that are

native drivers). In this case, experiment figures are compli-
ant with state-of-the-art performances reported in literature
(and with CentOS installation, not reported here). Since na-
tive drivers bypass the VMM, virtualization introduces no
overheads. As mentioned in Sec. 4.1, these drivers cannot
be currently used within the VM (DomU), as they cannot
be used to deploy standard Linux services, which are based
on the TCP/IP protocol. At this aim, VirtuaLinux provides
the TCP/IP stack on top of the Infiniband network (via the
IPoverIB, or IPoIB kernel module). Experiments show that
this additional layer is a major source of overhead (irrespec-
tively of the virtualization layer): the TCP/IP stack on top
of the 10 Gigabit Infiniband (Dom0 IPoIB) behaves as a 2
Gigabit network. The performance of a standard Gigabit
network is given as reference testbed (Dom0 GEth). Net-
work performance is further slowed down by user domain
driver decoupling that require data copy between front-
end and back-end network drivers. As result, as shown
by DomU IPoIB figures, VC virtual networks on top of a
10 Gigabit network, exhibits a Giga-Ethernet-like perfor-
mances.
The third class of experiments is related to storage. Ac-

cording to Bonnie, the SAN sustains a raw 77 MBytes/s
for block write and 77 MBytes/s for block read, respec-
tively. The same SAN accessed via iSCSI+EVMS sustains
57 MBytes/s for block write and 87 MBytes/s for block
read, respectively. The slowdown (−35% for write and
−4% for read) is almost fully due to the remote access via
iSCSI, since EVMS introduces no overhead for data read
and fresh data write. On the contrary, due to the copy-on-
write behaviour, a significant performance penalty is payed
the first time that a file, existing in the original, should be
overwritten (∼7 MBytes/s). In this case, the linking be-
tween snapshot and original blocks on the disks should be
broken, then the data can be written on the snapshot. No-
tice, however, that this penalty should be payed just the first
time, as the rewrite operation exhibits the same performance
in the two cases: after the first write the file on the snapshot
became “fresh”, i.e. fully independent from the original.
Observe also, that in VC usage, snapshots differentiates at
the first boot, thus the performance penalty is payed just
once, and has no impact after the first boot.
Eventually, the proposed solution does not change the

EVMS snapshot creation speed, that is easily more than two
orders of magnitude faster than full data cloning (only meta-
data is copied).

6 Related Works

Cluster Virtualization idea appears in several contexts as
evolution of the single machine virtualization. In the clus-
ter computing context, the bulk of the works focus either
on the low-level recipe to build a platform-specific VC [4],
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Figure 3. VirtuaLinux: evaluation of network bandwidth with the Intel MBI Benchmarks [12].
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Figure 4. VirtuaLinux: evaluation of network latency with the Intel MBI Benchmarks [12].

or on the mechanisms needed to specify virtual nodes con-
figurations, e.g. as XML files [3]. Many existing commer-
cial and open solutions supports disk-less clusters [16, 5].
Many of them, use NFS to mount root directory while some
of them natively supports disk-less clusters on top of iSCSI
[24]. Almost all of them use explicit copies of node pri-
vate data (either the full root directory or parts of it). These
solutions greatly increase the complexity and the fragility
of the installation since some of the standard OS packages
should be reconfigured to write/read configuration and log
files in different paths. VirtuaLinux differentiates from all
of them since enables the transparent and efficient usage of
standard Linux distributions, and natively includes the full
support for Xen-based VCs. In the grid context, the idea
evolved from the virtualization of the grid node aiming at
addressing several issues, such as the support for legacy ap-
plications, the security against not trusted code and users,
and the computation deployment independently of site ad-

ministration. The support for VCs and their management
tend to be integrated in the grid middleware, as an example
in the Globus Toolkit 4 [8]. The Xenoserver project [22]
is building a geographically distributed infrastructure as an
extension of the Xen VMM.

VMware Lab Manager [26] appears affine to a VC man-
ager. It enables to create a centralized pool of virtualized
servers, storage and networking equipment shared across
software development teams. Automatically and rapidly set
up and tear down complex, multi-machine software config-
urations for use in development and test activities.

The possibility to use snapshots as virtual disks is men-
tioned in the LVM user guide [21], but only for a single
platform. As discussed along the paper, even on a shared
SAN, native LVM/EVMS snapshots can be hardly used “as
is” due to scalability and security limitations. These limita-
tions originate from the need to activate all snapshots on all
physical nodes, independently on virtual-to-physical map-
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ping and the status of the VC.

7 Conclusions

VirtuaLinux is a novel Linux meta-distribution aiming
at installation and the management of robust disk-less high-
density clusters. Among all features of VirtuaLinux, this pa-
per has introduced virtual clustering architecture, features,
and tools. These enable the dynamic and seamless creation
and management of ready-to-use VCs on top of Xen VMM.
Both the physical cluster and the VCs can be installed with
a number of pre-defined OSes (e.g. Ubuntu Edgy 6.10 and
CentOS 4.4) or easily extended to other Linux distributions.
VCs managing tools can be easily extended to manage al-
most any guest Linux distribution by providing VC tools
with a tarball of the OS and a simple configuration file.
VirtuaLinux introduces a novel disk abstraction layer,

which is the cornerstone of several VirtuaLinux features,
such as the time/space-efficient implementation of VCs.
Experiments with VirtuaLinux has demonstrated the effi-
ciency of the storage abstraction layer, and in general, the
feasibility of the VC approach. Since VirtuaLinux design is
largely independent from a particular VMM, its efficiency
will naturally improve with virtualization technology evo-
lution. In this regard, a test version of VirtuaLinux has been
straightforwardly extended to support VCs by way of Linux
kernel-based virtualization (KVM [20]), while the support
of VCs based on proprietary guest OSes is currently ongo-
ing (by way of WMware [26]).
VirtuaLinux is an open source software under GPL avail-

able at http://virtualinux.sourceforge.net/.
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