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Abstract

Autonomic management can be used to improve the
QoS provided by parallel/distributed applications. We
discuss behavioural skeletons introduced in earlier work:
rather than relying on programmer ability to design “from
scratch” efficient autonomic policies, we encapsulate gen-
eral autonomic controller features into algorithmic skele-
tons. Then we leave to the programmer the duty of speci-
fying the parameters needed to specialise the skeletons to
the needs of the particular application at hand. This re-
sults in the programmer having the ability to fast prototype
and tune distributed/parallel applications with non-trivial
autonomic management capabilities. We discuss how be-
havioural skeletons have been implemented in the frame-
work of GCM (the Grid Component Model developed within
the CoreGRID NoE and currently being implemented within
the GridCOMP STREP project). We present results evalu-
ating the overhead introduced by autonomic management
activities as well as the overall behaviour of the skeletons.
We also present results achieved with a long running ap-
plication subject to autonomic management and dynami-
cally adapting to changing features of the target architec-
ture. Overall the results demonstrate both the feasibility of
implementing autonomic control via behavioural skeletons
and the effectiveness of our sample behavioural skeletons in
managing the “functional replication” pattern(s).

1. Introduction

Typical grid architectures are subject to dynamic
changes that impact their behaviour [17]. As a consequence,
grid applications need to dynamically adapt to the features
of the underlying architecture in order to be efficient and/or

high performance [3].
In recent years, several research initiatives exploiting

component technology [11] have investigated the area of
component adaptation, i.e. the process of changing the com-
ponent for use in different contexts. This process can be
either static or dynamic. The basic use of static adaptation
covers straightforward but popular methodologies, such as
copy-paste, wrapping, and OO inheritance. A more ad-
vanced usage covers the case in which adaptation happens
at run-time, but here all possible adaptation cases must have
been specified at compile time. These systems require that
all possible adaptations must be known a priori and must be
coded into the application [8, 6]. A second class of systems
enables dynamically defined adaptation by allowing adap-
tations, in the form of code, scripts or rules, to be added,
removed or modified at run-time. These systems typically
rely on a clear separation of concerns between adaptation
and application logic. This approach has recently gained
increased impetus in the grid community, especially via its
formalisation in terms of the Autonomic Computing (AC)
paradigm [20, 7, 4]. The AC term is emblematic of a vast
hierarchy of self-governing systems, many of which con-
sist of many interacting, self-governing components that in
turn comprise a number of interacting, self-governing com-
ponents at the next level down [18]. An autonomic com-
ponent will typically consist of one or more managed com-
ponents coupled with a single autonomic manager that con-
trols them. To pursue its goal, the manager may trigger an
adaptation of the managed components to react to a run-
time change of application QoS requirements or to the plat-
form status.

In this regard, an assembly of self-managed components

0This research is carried out under the FP6 Network of Excellence
CoreGRID and the FP6 GridCOMP project funded by the European Com-
mission (Contract IST-2002-004265 and FP6-034442).
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implements, via their managers, a distributed algorithm that
manages the entire application. Several existing program-
ming frameworks aim to ease this task by providing a set
of mechanisms to dynamically install reactive rules within
autonomic managers. These rules are typically specified as
a collection of when-event-if- cond-then-act clauses,
where event is raised by the monitoring of component inter-
nal or external activity (e.g. the component server interface
received a request, and the platform running a component
exceeded a threshold load, respectively); cond is an expres-
sion over component internal attributes (e.g. component
life-cycle status); act represents an adaptation action (e.g.
create, destroy a component, wire, unwire components, no-
tify events to another component’s manager) [12, 15, 19].

In this work, we briefly introduce behavioural skeletons
[2], we discuss implementation issues of behavioural skele-
tons, and finally we present some experimental results. Be-
havioural skeletons represent an innovative way to describe
autonomic components in the GCM framework. They aim
to model recurring patterns of component assemblies that
can be (either statically or dynamically) equipped with cor-
rect and effective management strategies with respect to a
given management goal. Behavioural skeletons help the ap-
plication designer to a) design component assemblies that
can be effectively reused, and b) cope with management
complexity by providing a component with an explicit con-
text with respect to top-down design (i.e. component nest-
ing).

In the rest of the paper we briefly discuss some related
work (Section 2), we introduce GCM (Section 3) and we
briefly outline autonomic management in GCM (Section
4). Then, we discuss implementation issues of behavioural
skeletons in the framework of GCM (Section 5). Finally,
we discuss experimental results achieved in the framework
of the GridCOMP project (Section 6).

2. Related work

The idea of autonomic management of paral-
lel/distributed/grid applications is present in several
programming frameworks, although in different flavours.
ASSIST [26, 3], AutoMate [23], K-Components [14],
SAFRAN [13] and finally the forthcoming CoreGRID
Component Model (GCM) [11] all include autonomic
management features. The latter two are derived from a
common ancestor, i.e. the Fractal hierarchical component
model [21]. All the named frameworks, except SAFRAN,
are targeted to distributed applications on grids, and all
except ASSIST are component based. While the current
work extends the GCM model with the skeleton concept,
it could equally have built upon K-Components or the
AutoMate framework as all provide distributed system
based component frameworks with autonomic capability.

Though such programming frameworks considerably
ease the development of an autonomic application for the
grid (to various degrees), they fully rely on the application
programmer’s expertise for the set-up of the management
code, which can be quite difficult to write since it may in-
volve the management of black-box components, and, no-
tably, is tailored to the particular component or to a partic-
ular component assembly. As a result, the introduction of
dynamic adaptivity and self-management might enable the
management of grid heterogeneity, dynamism, and uncer-
tainty aspects but, at the same time, decreases the compo-
nent reuse potential since it further specialises components
with application specific management code.

3. GCM: the Grid Component Model

GCM is a hierarchical component model explicitly de-
signed to support component-based autonomic applications
in highly dynamic and heterogeneous distributed platforms,
such as grids. It is currently under development by the part-
ners of the EU CoreGRID Network of Excellence1. A com-
panion EU STREP project, GridCOMP 2 is currently de-
veloping an open source implementation of GCM and pre-
liminary versions are already available for download as em-
bedded modules in the ProActive middleware suite3. GCM
builds on the Fractal component model [21] and exhibits
three prominent features: hierarchical composition, collec-
tive interactions and autonomic management. The full spec-
ification of GCM can be found in [11].

Hierarchical composition A GCM component is com-
posed of two main parts: the membrane and the content.
The membrane is an abstract entity that embodies the con-
trol behaviour associated with a component, including the
mediation of incoming and outgoing invocations of content
entities. The content may include either the code directly
implementing functional component behaviour (primitive)
or other components (composite). In the latter case, we re-
fer to the included components as the inner components.
GCM components, as Fractal ones, can be hierarchically
nested to any level. Component nesting represents the im-
plemented by relationship. Composite components are first
class citizens in GCM and, once designed and implemented,
they cannot be distinguished from primitive, non-composite
ones.

Collective interactions GCM allows component inter-
actions to take place with several distinct mechanisms.
In addition to classical “RPC-like” use/provide ports (or

1http://www.coregrid.net
2http://gridcomp.ercim.org
3http://www-sop.inria.fr/oasis/ProActive
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client/server interfaces), GCM allows data, stream and
event ports to be used in component interaction. Both static
and dynamic wiring between dual interfaces is supported.
Each interface may expose several operations of different
types. Furthermore, collective interaction patterns (com-
munication mechanisms) are also supported. In particular,
composite components may benefit from customisable one-
to-many and many-to-one functional interfaces to distribute
requests arriving to one component’s port to many inner
components and gather requests from many inner compo-
nents to a single outgoing port.

Autonomic management Autonomic management aims
to attack the complexity which entangles the management
of complex systems (as Grid applications are) by equip-
ping their parts with self-management facilities [18]. GCM
is therefore assumed to provide several levels of auto-
nomic managers in components, that take care of the non-
functional features of the component programs. GCM com-
ponents thus have two kinds of interfaces: functional and
non-functional ones. The functional interfaces host all those
ports concerned with implementation of the functional fea-
tures of the component. The non-functional interfaces host
all those ports needed to support the component manage-
ment activity in the implementation of the non-functional
features, i.e. all those features contributing to the efficiency
of the component in obtaining the expected (functional) re-
sults but not directly involved in result computation. Each
GCM component therefore contains an Autonomic Manager
(AM), interacting with other managers in other components
via the component non-functional interfaces. The AM im-
plements the autonomic cycle via a simple program based
on the reactive rules described above. In this, the AM lever-
ages on component controllers for the event monitoring and
the execution of reconfiguration actions. In GCM, the lat-
ter controller is called the Autonomic Behaviour Controller
(ABC). This controller exposes server-only non-functional
interfaces, which can be accessed either from the AM or an
external component that logically surrogates the AM strat-
egy. We call passive a GCM component exhibiting just the
ABC, whereas we call active a GCM component exhibiting
both the ABC and the AM.

Beside these features, that clearly differentiate GCM
from other notable component models such as CCA [9]
and CCM [22], GCM also uses an ADL to support compo-
nent deployment, supports interoperability with state of the
art environments such as Web Services, and provides a set
of compliance levels that range more or less from POJOs
(Plain Old Java Objects) to autonomic composite compo-
nents.

4. Adaptation in GCM

In GCM, autonomic behaviour of components is im-
plemented through AMs (the Autonomic Managers) and
ABCs (Autonomic Behaviour Controllers). Programmers
may write their own AM and ABC implementation us-
ing the mechanisms provided by the GCM run time. This
is similar to what programmers do when using other AC
paradigms, such as the ones mentioned in Sec. 2. This re-
quires substantial knowledge on the part of programmers,
relating to both autonomic control principles and to the
component model itself. Without such detailed knowledge
it is very difficult to develop efficient and effective auto-
nomic controllers/managers. We recognise, however, that
common patterns of autonomic management can be adopted
in grid applications, and, to this end, we have introduced be-
havioural skeletons [2].

4.1 Behavioural skeletons

Behavioural skeletons aim to abstract parametric
paradigms of GCM component assembly, each of them spe-
cialised to solve one or more management goals belonging
to the classical AC classes, i.e. configuration, optimisation,
healing and protection.

They represent a specialisation of the algorithmic skele-
ton concept for component management [10]. Algorith-
mic skeletons have been traditionally used as a vehicle
to provide efficient implementation templates of parallel
paradigms. Behavioural skeletons, as algorithmic skele-
tons, represent patterns of parallel computations (which are
expressed in GCM as graphs of components), but in ad-
dition they exploit skeletons’ inherent semantics to design
sound self-management schemes of parallel components.

As a byproduct, behavioural skeletons allow categorisa-
tion of GCM designers and programmers into three classes.
They are, in increasing degree of expertise and decreasing
cardinality:

1. GCM users: they use behavioural skeletons together
with their pre-defined AM strategy. In many cases
they should just instantiate a skeleton with inner com-
ponents, and get as result a composite component ex-
hibiting one or more self-management behaviours.

2. GCM expert users: they use behavioural skeletons
overriding the AM management strategy. However, the
specialisation does not involve the ABC and thus does
not require specific knowledge about the GCM mem-
brane implementation.

3. GCM skeleton designers: they introduce new be-
havioural skeletons or classes of them. To this end, the
design and development of a brand new ABC might be
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required. This may involve the definition of new inter-
faces for the ABC, the implementation of the ABC it-
self, together with its wiring with other controllers, and
the design and wiring of new interceptors. Obviously,
this requires quite a deep knowledge of the particular
GCM implementation.

Due to the hierarchical nature of GCM, behavioural
skeletons can be identified with a composite component
with no loss of generality (identifying skeletons as particu-
lar higher-order components [16]). Since component com-
position is defined independently from behavioural skele-
tons, they do not represent the exclusive means of express-
ing applications, but can be freely mixed with non-skeletal
components. In this setting, a behavioural skeleton is a
composite component that a) exposes a description of its
functional behaviour, b) establishes a parametric orchestra-
tion schema of inner components, c) may carry constraints
that inner components are required to comply with, and d)
may encompass a number of pre-defined plans to cope with
a given self-management goal.

Behavioural skeleton usage helps designers in two main
ways. First, the application designer benefits from a library
of skeletons, each of them carrying several pre-defined,
efficient self-management strategies. Then, the compo-
nent/application designer is provided with a framework that
helps both the design of new skeletons and their implemen-
tation.

In both cases two features of behavioural skeletons are
exploited: on the one hand, the skeletons exhibit an explicit
higher-order functional semantics that delimits the skeleton
usage and definition domain. On the other hand the skele-
tons describe parametric interaction patterns and can be de-
signed in such a way that parameters affect non-functional
behaviour but are invariant for functional behaviour.

Functional
server port

Functional
client portS C

W

W

Figure 1. Functional replication behavioural
skeleton schema

In [2] we introduced a simple set of behavioural skele-
tons, mainly modelling functional replication parallel pat-
terns. We assumed our skeletons have two functional in-
terfaces: a one-to-many stream server S, and a many-to-
one client stream interface C. They accept requests on the
server interface and then dispatch the (partial) requests to a

number of instances of an inner component W which may
propagate results outside the skeleton via C interface (see
Figure 1). We assume that replicas of W can safely forget
the internal state between different calls. For example, the
component has just a transient internal state and/or stores
persistent data via an external data-base component.

A notable instantiation of behavioural skeletons exhibit-
ing functional replication is task farm. A task farm pro-
cesses a stream of tasks {x0, . . . , xm} producing a stream
of results {f(x0), . . . , f(xm)}. The computation of f(xi)
is independent of the computation of f(xj) for any i �= j
(the task farm parallel pattern is often referred to as the
“embarrassingly parallel” pattern). The items of the input
stream are available at different times, in general: item xi

is available t ≥ 0 time units after item xi−1 was available.
Also, in the general case, it is not required that the output
stream keeps the same ordering as the input stream, i.e. item
f(xi) may be placed in the output stream in position j �= i.

In this case, in our farm behavioural skeleton, a stream
of tasks is absorbed by a unicast S. Then each task is com-
puted by one instance of W and the result is sent to C, which
collects results according to a from-any policy. This skele-
ton can be equipped with a self-optimising policy as the
number of Ws can be dynamically changed in a sound way
since they are stateless. The typical QoS goal is to keep a
given limit (possibly dynamically changing) of served re-
quests in a time frame. Therefore, the AM just checks
the average time tasks need to traverse the skeleton, and
possibly reacts by creating/destroying instances of W, and
wiring/unwiring them to/from the interfaces.

Once available, the task farm behavioural skeleton can
be conveniently and easily adapted to cover other common
patterns of parallel computation. For example, data par-
allel computations can be captured by simply modifying
the behaviour associated with the S and C interfaces. In
a data parallel computation a stream of tasks is absorbed by
a scatter S. Each of the tasks appearing is split into (pos-
sibly overlapping) partitions, which are distributed to repli-
cas of W to be computed. The results computed by the W
are gathered and assembled by C in a single item, which is
eventually delivered onto the output stream. As in the pre-
vious case, the number of Ws can be dynamically changed
(between different requests) in a sound way since they are
stateless. In addition to the previous case, the skeleton can
be equipped with a self-configuration goal, e.g. resource
balancing and tuning (e.g. disk space, load, memory us-
age), that can be achieved by changing the partition-worker
mapping in S (and C, accordingly).

The task farm (and data parallel) behavioural skeletons
just outlined can be easily modified to the case in which the
S is an RPC interface. In this case, the C interface can be
either an RPC interface or missing. Also, the stateless func-
tional replication idea can be extended to the stateful case
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by requiring inner components Ws to expose suitable meth-
ods to serialise, read and write the internal state. A suitable
manipulation of the serialised state enables the reconfigura-
tion of workers (also in the data-parallel scenario [3]).

In order to achieve self-healing goals some additional re-
quirements on the GCM implementation level need to be
enforced. They are related to the implementation of GCM
mechanisms, such as component membranes and their parts
(e.g. ports) and messaging system. At the level of interest,
they are primitive mechanisms, in which correctness and
robustness should be enforced ex-ante, at least to achieve
some of the described management policies.

5. Autonomic Components: design and imple-
mentation

The two main characteristics of autonomic components
are the ability to self-manage and to cooperate with other
autonomic components to achieve a common goal, such
as guaranteeing a given behaviour of an entire component-
based application. In the light of this, viewing the manage-
ment of a single component as an atomic feature enables de-
sign of its management (to a certain extent) in isolation. The
management of a single component is therefore considered
a logically centralised activity. Components will be able to
interact with other components according to well-defined
protocols described by management interaction patterns,
which are established by the component model.

5.1. The management of a GCM component

The management of a single component is characterised
by its ability to make non-trivial decisions. Thus GCM
components are differentiated as being passive or active,
with the following meanings:

Passive A component exposes non-functional operations
enabling introspection (state and sensors) and dynamic
reconfiguration. These operations exhibit a paramet-
ric but deterministic behaviour. The operation seman-
tics is not underpinned by a decision making process
(i.e. does not implement any optimisation strategy),
but can only be constrained by specific pre-conditions
that, when not satisfied, may nullify an operation re-
quest. All components should implement at least a re-
flection mechanism that may be queried about the list
and the type of exposed operations.

Active A component exhibits self-managing behaviour,
that is a further set of autonomic capabilities built on
top of passive level functionality. The process incar-
nates the autonomic management process: monitor,

analyse, plan, execute. The monitoring phase is sup-
ported by introspective operations, while the execut-
ing phase is supported by re-configuring operations de-
scribed above.

In the architecture of GCM components, these two
features are implemented within the Autonomic Behaviour
Controller (ABC) and Autonomic Manager (AM), respec-
tively. Since the management is a logically centralised
activity, a single copy of each of them can appear in a
component. Notice that, this does not prevent a parallel
implementation of them for different reasons, such as
fault-tolerance or performance. A passive component
implements just the ABC, whereas an active component
implements both the ABC and the AM. The following
relationship holds

Comp <: PassiveComp <: ActiveComp

where <: is a subtyping relation. This is described in
the GCM specification by increasing values of conformance
levels [11].

GCM Passive Autonomic Components The ABC and
the AM represent two successive levels of abstraction of
component management. As mentioned above, the ABC
implements operations for component reconfiguration and
monitoring. The design of these operations is strictly re-
lated to membrane structure and implementation, and there-
fore the choice of implementing the ABC as a controller in
the membrane was the more obvious and natural. Within
the membrane, the ABC can access all the services exposed
by sub-component controllers, such as that related to life
cycle and binding, in order to implement correct reconfig-
uration protocols. In general, these protocols depend on
component structure and behaviour. However, in the case
of behavioural skeletons they depend almost solely on the
skeleton family and not on the particular skeleton. In this
regard, the ABC effectively abstracts out management op-
erations for behavioural skeletons.

For the sake of exemplification we use the functional
replication family. In this case, the reconfiguration opera-
tions require the addition/removal of workers as well as the
tuning of distribution/collection strategies used to distribute
and collect tasks and results to and from the workers. The
worker addition/removal operations can be used to change
the parallelism degree of the component as well to remap
workers on different processing elements and/or platforms.
The distribution/collection tuning operations can be used to
throttle and balance the resource usage of workers, such as
CPU, memory and IO. The introspection operations involve
querying component status with respect to one or more pre-
defined QoS metrics. The component status is generally ob-
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Functional
server port

Functional
client port

Non-Functional
server ports

membrane

S C

W

W

ABC

LCCC BC

content

Figure 2. GCM: membrane and content (CC is
the content controller, LC the lifecycle con-
troller and BC is the binding controller).

tained as a harmonised measure involving component status
and inner component status.

In the following we describe in some detail the imple-
mentation of a reconfiguration and an introspection opera-
tion.

add worker(k) Semantics: Add k workers to a skele-
ton of the functional replication family.

1. Stop. The ABC requires the Lifecycle Controller (LC)
to stop all the components. To this end, the LC re-
trieves from the Content Controller (CC) the list of in-
ner components W1 · · · Wn, and then issues a stop
on them.

2. Type Inspection. All the W1 · · · Wn have the same
type. The ABC retrieves from the CC the list of inner
components W1 · · · Wn, then retrieves TypeOf(W1).

3. New. One or more new inner components of type
TypeOf(W1) are created.

4. Bind. The component server interface S is wired to
newly created Wn+1 · · · Wn+k inner components via
the Binding Controller (BC). Wn+1 · · · Wn+k, in turn,
wire their client interfaces to the component collective
client interface C. The process requires the inspection
of the types of the interfaces of W1 that is used again
as a template for all Wi.

5. Restart. The ABC requires the LC to re-start all the
components.

6. Return. Return a failure code if some of the previous
operations failed (e.g. inner components do not imple-
ment stop/start operations); return success otherwise.

get measure(m) Semantics: Query the component
about the current status of the measure m, which may de-
pend on the status of the inner components (possibly involv-
ing other measures) and the membrane status.
Examples: Transactions per unit time, load balancing, num-
ber of up-and-running workers, etc.

1. Collect Workers’ Measures. The ABC retrieves from
the CC the list of inner components W1 · · · Wn, then
issues a get measure(m) on each.

2. Collect Membrane Measures. The ABC queries mem-
brane sensors relating to the particular metric m.

3. Harmonise Measures. Measures acquired from work-
ers and from the membrane are harmonised by using a
m-dependent function (e.g. average, maximum, etc.).

4. Return. Return a failure code if some of the previous
operations failed (e.g. sensor not implemented in inner
components); return monitor information otherwise.

GCM Active Autonomic components The operations
implemented in the ABC can be arbitrarily complex; how-
ever, they do not involve any decision making process. In
general, each of them implements a protocol that is a sim-
ple list of actions. On the contrary, the AM is expected
to enforce a contractually specified QoS. To this end the
AM should decide if a reconfiguration is needed, and if so,
which reconfiguration plan can re-establish contract validity
[1]. Furthermore, as we shall see in Sec. 5.2, the AM should
also determine if the contract violation is due to the man-
aged component or is the byproduct of other components’
malfunction. The architecture of an active GCM component
is shown in Fig. 3.

The AM accepts a QoS contract4, which is currently de-
fined as pair 〈V, E〉, where V is a set of variables represent-
ing the measures the AM can evaluate (via the ABC), and E
is a mathematical expression over these variables that might
include the min and max operator over a finite domain. The
set of V determines the minimum set of measures the AM
should be able to monitor to accept the contract. The E en-
codes the constraints and goal the AM is required to pursue.
This encoding can be realised in many different ways pro-
vided E can be evaluated in finite time and possibly quite
efficiently. As an example, we are currently using a simple
functional notation with no recursion.

Having accepted a QoS contract, the AM iteratively
checks its validity, and in the case that it appears broken,
evaluates a number of pre-defined reconfiguration plans.
Each reconfiguration plan consists of a sequence of actions

4the notion of QoS contract is still the subject of further investigations
and possible refinements. The one discussed here is the bare minimum
necessary to discuss AM behaviour and implementation.
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Figure 3. Left) GCM active component architecture. Right) ABC and AM interaction.

(to be executed via the ABC), and a QoS forecast formula.
This formula allows the value of a subset of V after the re-
configuration to be forecast. The AM instantiates in turn all
reconfiguration plans obtaining, for each plan, a set of fore-
cast values. A plan is marked as valid if the set of V updated
with forecast values satisfies the QoS contract. Among the
valid plans the AM heuristically chooses the reconfigura-
tion plan to be executed. If no reconfiguration plan is valid,
an exception is raised.

As is clear, the main difficulty in the AM definition is
the specification of a reconfiguration plan. In the general
case, the reconfiguration plans, and especially their forecast
formulae, are strictly related to the behaviour of a particular
component. As discussed in Sec. 4, behavioural skeletons
enable the definition of reusable reconfiguration plans by
categorising and restricting component behaviour in fami-
lies and skeletons.

5.2. Cooperative management

The ultimate goal of QoS management is to guarantee
user intentions despite software and environmental instabil-
ities and malfunctions. To this end the management of a
whole system should be coordinated to achieve a common
goal. In general, we envisage a component-based system as
a graph, whose nodes are components, and edges are rela-
tions among them, such as data dependency, management,
geographic locality, etc. Different relations can be kept dis-
tinct by a proper labelling of edges. In this work we restrict
the focus to two relations which are of particular interest for
GCM: used by and the implemented by (see Sec. 4). Since
the GCM is a hierarchical model, the nesting relation natu-
rally defines the implemented by relationship. In particular,
the application structure along the nesting relation describes
a tree whose nodes represent components (leaves are prim-
itive components) and edges represent their nesting. In this
case, the management of a composite component C is co-

operatively performed by the AMC of the component itself
and the AMCi of the child components Ci, i = 1..n. In the
case where inner components are passive, the cooperation
is really one of control by the outer component: services
exposed by the ABCCi are called by the ABCC .

Conceptually, non-functional properties modelling run-
time behaviour of the whole hierarchy can be synthesised
in a bottom-up fashion: the behaviour of a composite com-
ponent depends on the behaviour of its nested components.
Management actions and QoS contracts should be projected
along the tree in a top-down fashion: the users usually
would like to declare a global goal they expect from an ap-
plication. This matches the idea of submitting a contract at
the root of tree. A fully autonomic system should automati-
cally split the global goal into sub-goals that should then be
forced on inner components.

On the whole, each GCM component enforces local de-
cisions. When a contract violation is detected, its AM tries
autonomously to re-establish the contract to a valid status
by re-configuring its membrane or inner components. In the
event that it cannot (no valid plan), it raises an event to its fa-
ther component, thus increasing the extent of the reconfigu-
ration. The overall behaviour enforces the maximum local-
ity of reconfigurations, which is a highly desirable property
in a distributed system, since it eases the mapping of com-
ponents onto the network of platforms, that usually exhibit
a hierarchical nature in terms of uniformity of resources and
latency/bandwidth of networks (cluster of clusters).

Observe that cooperation between components is un-
avoidable even in very simplistic applications. Let us con-
sider an example:

Producer-filter-consumer Let us assume the application
sketched in Fig. 4 has the final goal to generate, render,
and display a video with a given minimum number of
frames/sec (FPS > k). The contract is split into three
identical contracts since the property should be enforced on
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Figure 4. Producer-filter-consumer with par-
allel filter (farm skeleton).

all stages in order to hold globally. The rendering (filter) has
been parallelised since it is the most CPU-demanding stage.
Two common problems of such applications are a transient
overload of platform where W1 · · · Wn are running, or an
increased complexity of scene to be rendered. These events
may lead to a violation of QoS contract at the AMF . In
this case it may increase the number of workers (mapped
on fresh machines) to deal with the insufficient aggregate
power of already running resources. In many cases this will
locally solve the problem. However, a slightly more sophis-
ticated contract should consider also the input and output
channels. In particular the filter stage might be not ren-
dering enough frames because it does not receive enough
scenes to render. In this case the AMF can detect the local
violation, but cannot locally solve the problem. As a mat-
ter of fact, no plan involving a change of parallelism degree
can solve this problem. AMF can just signal the problem to
a higher level AMA, which can try to remap the input chan-
nel to a faster link, or simply signal to the end user that the
contract is not satisfied.

6. Experiments

Experiments have been conducted on the current proto-
type of the GCM that is under development in the Grid-
COMP STREP project [24]. The prototype, which is being
developed on top of ProActive middleware [25], includes
almost all of the features described in this paper. Experi-
mental data is measured on the application shown in Fig. 4.
The experiments mainly aim to assess the overhead due to
management and reconfiguration. For the sake of repro-
ducibility, the experiments have been run on a cluster in-
stead of a more heterogeneous grid. The cluster includes
31 nodes (1 Intel P3@800MHz core per node) wired with a
fast Ethernet. Workers are allocated in the cluster in a round
robin fashion with up to 3 workers per node (for a total of 93
workers). Note however, the experimental code can run on
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any distributed platform supported by the ProActive mid-
dleware.

Figures 5, 6, and 7 respectively show the time spent on
the farm behavioural skeleton (filter) for the stop, new and
restart ABC services described in Sec. 5.1. This time is
application overhead, since none of the workers can accept
new tasks during the process. In the figures, a point k in
the X-axis describes the overhead due to stop/new/restart
in the adaptation of the running program from a k to k + 1
worker configuration. As highlighted by the curves in Fig. 5
and 7 the overhead of stop and restart is linear with respect
to the number of workers involved in the operations. This
is mainly due to a linear time barrier within the Life cycle
Controller (LC), which is an inherent part of the underlying
ProActive middleware. Note that adaptation process does
not strictly require such a barrier. Both stopping all the
workers and linear time synchronisation are peculiarities
of the current GCM implementation on top of the ProAc-
tive middleware, and not of the farm behavioural skeleton,
which can be implemented avoiding both problems. In ad-
dition, the creation of a new worker can be executed outside
the critical path by using a speculative creation. These tech-
niques have been used in the ASSIST implementation of the
farm skeleton, which exhibits a constant overhead [5].

Figure 6 shows the time spent for the new ABC operation
(see Sec. 5.1). Again, in this case, the time is overhead.
The experiment measures the creation of a single worker,
and thus the times measured are almost independent of the
number of workers pre-existing the new one.

As highlighted by the Fig. 6 and 7 the overhead of the
new and restart operations is much higher in the case where
a fresh platform is involved (number of workers less than
32). The difference is mainly due to the additional time for
Java remote class loading.

The results of the last experiment are presented in Fig. 8.
It describes the behaviour of the application over quite a
long run that includes several self-triggered reconfigura-
tions. The application is provided with a QoS contract that
enforces the production of a minimum of 1.5 results per sec-
ond (tasks/s). During the run, an increasing number of plat-
forms are externally overloaded with an artificial load (C++
compilation). The top half of the figure reports the mea-
sured average throughput of the filter stage, and the QoS
contract. The bottom half of the figure reports the number of
overloaded machines along the run, and the corresponding
increase of workers of the filter stage. Initially the through-
put of the filter stage is abundantly higher than requested
(∼ 3.5 tasks/s); but it decreases when more machines are
overloaded. As soon as the contract is violated, the AM
reacts by adding more workers.
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7. Conclusions

We discussed how behavioural skeletons, already intro-
duced in a previous work, can be implemented in the frame-
work of the GCM component model. Behavioural skeletons
provide the programmer with the ability to implement auto-
nomic managers completely taking care of the parallelism
exploitation details by simply instantiating existing skele-
tons and by providing suitable, functional parameters.

In particular, in this work we analysed several issues re-
lated to the implementation of a functional replication be-
havioural skeleton. We presented experimental results that
demonstrate both the typical overheads involved in auto-
nomic management operations and also dynamic adaptation
occurring during execution of a long-running application.
Finally, we discussed the results achieved when running an
application exploiting instances of our behavioural skele-
tons and we showed how the skeletons used may take deci-
sions at the appropriate time to maintain the application be-
haviour within the limits stated by the user with a specific
performance contract. The whole experiments have been
performed using GCM components and behavioural skele-
tons, as being designed and implemented in the framework
of the CoreGRID and GridCOMP projects.

To our knowledge, no other similar results available yet.
As the behavioural skeleton approach has been proven fea-
sible and effective, we are currently working to provide fur-
ther skeletons, to refine the implementation and to perform
more experiments involving the use case applications iden-
tified in the framework of the GridCOMP project, that in-
clude data intensive as well as transaction processing appli-
cations.
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declarative approach for designing and developing adaptive
components. In Proc. of the 15th Intl. Conference on Auto-
mated Software Engineering, pages 111–119. IEEE, 2000.

[9] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko, and M. Yechuri. A component based
services architecture for building distributed applications. In
HPDC, pages 51–, 2000.

[10] M. Cole. Bringing skeletons out of the closet: A pragmatic
manifesto for skeletal parallel programming. Parallel Com-
puting, 30(3):389–406, 2004.

[11] CoreGRID NoE deliverable series, Institute on Program-
ming Model. Deliverable D.PM.04 – Basic Features of the
Grid Component Model (assessed), Feb. 2007.

[12] P.-C. David and T. Ledoux. Towards a framework for self-
adaptive component-based applications. In J.-B. Stefani,
I. Demeure, and D. Hagimont, editors, Proc. of the Intl.
Conf. on Distributed Applications and Interoperable Sys-
tems, number 2893 in LNCS, pages 1–14, Paris, France,
2003. Springer.

[13] P.-C. David and T. Ledoux. An aspect-oriented approach for
developing self-adaptive fractal components. In W. Löwe
and M. Südholt, editors, Proc. of the 5th Intl Symposium
Software on Composition (SC 2006), volume 4089 of LNCS,
pages 82–97, Vienna, Austria, Mar. 2006. Springer.

[14] J. Dowling. The Decentralised Systems Coordination of
Self-Adaptive Components for Autonomic Computing Sys-
tems. PhD thesis, University of Dublin, Trinity College,
2004.

[15] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. A
platform supporting coordinated adaptation in mobile sys-
tems. In Proc. of the 4th IEEE Workshop on Mobile Comput-
ing Systems and Applications (WMCSA’02), pages 128–137,
Callicoon, New York, U.S., June 2002. IEEE.
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