
Automatic mapping of ASSIST applications using process algebra

Marco Aldinucci

Dept. of Computer Science, University of Pisa
Largo B. Pontecorvo 3, Pisa I-56127, Italy

and

Anne Benoit

LIP, Ecole Normale Superieure de Lyon (ENS)

46 allée d’Italie, 69364 Lyon Cedex 07, France

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

ABSTRACT
Grid technologies aim to harness the computational capabilities of widely distributed

collections of computers. Due to the heterogeneous and dynamic nature of the set of
grid resources, the programming and optimisation burden of a low level approach to grid
computing is clearly unacceptable for large scale, complex applications. The development
of grid applications can be simplified by using high-level programming environments. In
the present work, we address the problem of the mapping of a high-level grid application
onto the computational resources. In order to optimise the mapping of the application,
we propose to automatically generate performance models from the application using the
process algebra PEPA. We target applications written with the high-level environment
ASSIST, since the use of such a structured environment allows us to automate the study
of the application more effectively.

Keywords: high-level parallel programming; ASSIST environment; Performance Eval-
uation Process Algebra (PEPA); automatic model generation.

1. Introduction

A grid system is a geographically distributed collection of possibly parallel, inter-
connected processing elements, which all run some form of common grid middleware
(e.g. Globus) [13]. The key idea behind grid-aware applications is to make use of the
aggregate power of distributed resources, thus benefiting from a computing power
that falls far beyond the current availability threshold in a single site. However,
developing programs able to exploit this potential is highly programming inten-
sive. Programmers must design concurrent programs that can execute on large-scale
platforms that cannot be assumed to be homogeneous, secure, reliable or centrally
managed. They must then implement these programs correctly and efficiently. As
a result, in order to build efficient grid-aware applications, programmers have to
address the classical problems of parallel computing as well as grid-specific ones:

Parallel Processing Letters

1. Programming: code all the program details, take care about concurrency ex-
ploitation, among the others: concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation.

2. Mapping & Deploying: deploy application processes according to a suitable
mapping onto grid platforms. These may be highly heterogeneous in archi-
tecture and performance and unevenly connected, thus exhibiting different
connectivity properties among all pairs of platforms.

3. Dynamic environment: manage resource unreliability and dynamic availabil-
ity, network topology, latency and bandwidth unsteadiness.

Hence, the number and quality of problems to be resolved in order to draw a given
QoS (in term of performance, robustness, etc.) from grid-aware applications is
quite large. The lesson learnt from parallel computing suggests that any low-level
approach to grid programming is likely to raise the programmer’s burden to an
unacceptable level for any real world application. Therefore, we envision a layered,
high-level programming model for the grid, which is currently pursued by several
research initiatives and programming environments, such as ASSIST [19], eSkel [9],
GrADS [17], ProActive [6], Ibis [18]. In such an environment, most of the grid
specific efforts are moved from programmers to grid tools and run-time systems.
Thus, the programmers have only the responsibility of organising the application
specific code, while the developing tools and their run-time systems deal with the
interaction with the grid, through collective protocols and services [12].

In such a scenario, the QoS and performance constraints of the application can
either be specified at compile time or varying at run-time. In both cases, the
run-time system should actively operate in order to fulfil QoS requirements of the
application, since any static resource assignment may violate QoS constraints due
to the very uneven performance of grid resources over time. As an example, AS-
SIST applications exploit an autonomic (self-optimisation) behaviour. They may be
equipped with a QoS contract describing the degree of performance the application
is required to provide. The ASSIST run-time environment tries to keep the QoS
contract valid for the duration of the application run despite possible variations of
platforms’ performance at the level of grid fabric [5]. The autonomic features of
an ASSIST application rely heavily on run-time application monitoring, and thus
they are not fully effective for application deployment since the application is not
yet running. In order to deploy an application onto the grid, a suitable mapping of
application processes onto grid platforms should be established, and this process is
quite critical for application performance.

This problem can be addressed by defining a performance model of an ASSIST
application in order to statically optimise the mapping of the application onto a
heterogeneous environment. The model is generated from the source code of the
application, before the initial mapping. It is expressed with the process algebra
PEPA [15], designed for performance evaluation. The use of a stochastic model
allows us to take into account aspects of uncertainty which are inherent to grid
computing, and to use classical techniques of resolution based on Markov chains to

Automatic mapping of ASSIST applications using process algebra

obtain performance results. This static analysis of the application is complemen-
tary with the autonomic reconfiguration of ASSIST applications, which works on a
dynamic basis. In this work we concentrate on the static part to optimise the map-
ping, while the dynamic management is done at run-time. It is thus an orthogonal
but complementary approach.

Structure of the paper. The next section introduces the ASSIST high-level pro-
gramming environment and its run-time support. Section 3 introduces the Per-
formance Evaluation Process Algebra PEPA, which can be used to model ASSIST
applications. These performance models help to optimise the mapping of the ap-
plication. We present our approach in Section 4, and give an overview of future
working directions. Finally, concluding remarks are given in Section 5.

2. The ASSIST environment and its run-time support

ASSIST (A Software System based on Integrated Skeleton Technology) is a pro-
gramming environment aimed at the development of distributed high-performance
applications [19,3]. ASSIST applications should be compiled in binary packages
that can be deployed and run on grids, including those exhibiting heterogeneous
platforms. Deployment and run is provided through standard middleware services
(e.g. Globus) enriched with the ASSIST run-time support.

2.1. The ASSIST coordination language

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of data.
Each stream realises a one-way asynchronous channel between two sets of endpoint
modules: sources and sinks. Data items injected from sources are broadcast to all
sinks. Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the parallel
execution of a number of sequential functions that are activated and run as Virtual
Processes (VPs) on items arriving from input streams. The VPs may synchronise
with the others through barriers. The sequential functions can be programmed by
using a standard sequential language (C, C++, Fortran, Java).

A parmod may behave in a data-parallel (e.g. SPMD/apply-to-all) or task-
parallel (e.g. farm) way and it may exploit a distributed shared state that survives
the VPs lifespan. A module can nondeterministically accept from one or more input
streams a number of input items, which may be decomposed in parts and used as
function parameters to instantiate VPs according to the input and distribution rules
specified in the parmod. The VPs may send items or parts of items onto the output
streams, and these are gathered according to the output rules.

An ASSIST application is sketched in Appendix A. We briefly describe here
how to code an ASSIST application and its modules; more details on the particular
application in Appendix A are given in Section 4.1. In lines 4–5 four streams
with type task t are declared. Lines 6–9 define endpoints of streams. Overall,

Parallel Processing Letters

ASSIST
compiler

seq P1

parmod

VP VP
VP

binary
les

QoS
contract

ASSIST program

resource
description

(XML)

VPVPVP
VPVPVP

VPVPVP output
section

input
section

binary code+XML
(network of processes)

ISM OSMP1 P2VP
VPVP

VP
VP

VPM
VP

seq P2

source
code

Fig. 1. An ASSIST application and a QoS contract are compiled in a set of executable codes and
its meta-data [3]. This information is used to set up a processes network at launch time.

lines 3–10 define the application graph of modules. In lines 12–16 two sequential
modules are declared: these simply provide a container for a sequential function
invocation and the binding between streams and function parameters. In lines
18–52 two parmods are declared. Each parmod is characterised by its topology,
input section, virtual processes, and output section declarations.

The topology declaration specialises the behaviour of the VPs as farm (topol-
ogy none, as in line 41), or SMPD (topology array). The input section en-
ables programmers to declare how VPs receive data items, or parts of items, from
streams. A single data item may be distributed (scattered, broadcast or unicast)
to many VPs. The input section realises a CSP repetitive command [16]. The
virtual processes declarations enable the programmer to realise a parametric VP
starting from a sequential function (proc). VPs may be identified by an index and
may synchronise and exchange data one with another through the ASSIST lan-
guage API. The output section enables programmers to declare how data should
be gathered from VPs to be sent onto output streams. More details on the ASSIST
coordination language can be found in [19,3,2].

2.2. The ASSIST run-time support

The ASSIST compiler translates a graph of modules into a network of processes.
As sketched in Fig. 1, sequential modules are translated into sequential processes,
while parallel modules are translated into a parametric (w.r.t. the parallelism de-
gree) network of processes: one Input Section Manager (ISM), one Output Section
Manager (OSM), and a set of Virtual Processes Managers (VPMs, each of them
running a set of Virtual Processes). The actual parallelism degree of a parmod
instance is given by the number of VPMs. All processes communicate via ASSIST
support channels, which can be implemented on top of a number of grid middleware
communication mechanisms (e.g. shared memory, TCP/IP, Globus, CORBA-IIOP,
SOAP-WS). The suitable communication mechanism between each pair of processes
is selected at launch time depending on the mapping of the processes [3].

Automatic mapping of ASSIST applications using process algebra

2.3. Towards fully grid-aware applications

ASSIST applications can already cope with platform heterogeneity, either in
space (various architectures) or in time (varying load) [5,2]. These are definite fea-
tures of a grid, however they are not the only ones. Grids are usually organised
in sites on which processing elements are organised in networks with private ad-
dresses allowing only outbound connections. Also, they are often fed through job
schedulers. In these cases, setting up a multi-site parallel application onto the grid
is a challenge in its own right (irrespectively of its performance). Advance reser-
vation, co-allocation, multi-site launching are currently hot topics of research for
a large part of the grid community. Nevertheless, many of these problems should
be targeted at the middleware layer level and they are largely independent of the
logical mapping of application processes on a suitable set of resources, given that
the mapping is consistent with deployment constraints.

In our work, we assume that the middleware level supplies (or will supply)
suitable services for co-allocation, staging and execution. These are actually the
minimal requirements in order to imagine the bare existence of any non-trivial,
multi-site parallel application. Thus we can analyse how to map an ASSIST ap-
plication, assuming that we can exploit middleware tools to deploy and launch
applications [11].

3. Introduction to performance evaluation and PEPA

In this section, we briefly introduce the Performance Evaluation Process Algebra
PEPA [15], with which we can model an ASSIST application. The use of a process
algebra allows us to include the aspects of uncertainty relative to both the grid
and the application, and to use standard methods to easily and quickly obtain
performance results. The PEPA language provides a small set of combinators.
These allow language terms to be constructed defining the behaviour of components,
via the activities they undertake and the interactions between them. We can for
instance define constants (def=), express the sequential behavior of a given component
(.), a choice between different behaviors (+), and the direct interaction between
components (��

L
, ||). Timing information is associated with each activity. Thus,

when enabled, an activity a = (α, r) will delay for a period sampled from the
negative exponential distribution which has parameter r. If several activities are
enabled concurrently, either in competition or independently, we assume that a
race condition exists between them. When an activity is known to be carried out in
cooperation with another component, a component may be passive with respect to
that activity. This means that the rate of the activity is left unspecified, (denoted
>), and is determined upon cooperation by the rate of the activity in the other
component. All passive actions must be synchronised in the final model.

The dynamic behaviour of a PEPA model is represented by the evolution of its
components, as governed by the operational semantics of PEPA terms [15]. Thus,
as in classical process algebra, the semantics of each term is given via a labelled

Parallel Processing Letters

multi-transition system (the multiplicity of arcs are significant). In the transition
system a state corresponds to each syntactic term of the language, or derivative, and
an arc represents the activity which causes one derivative to evolve into another.
The complete set of reachable states is termed the derivative set and these form
the nodes of the derivation graph, which is formed by applying the semantic rules
exhaustively. The derivation graph is the basis of the underlying Continuous Time
Markov Chain (CTMC) which is used to derive performance measures from a PEPA
model. The graph is systematically reduced to a form where it can be treated as the
state transition diagram of the underlying CTMC. Each derivative is then a state in
the CTMC. The transition rate between two derivatives P and Q in the derivation
graph is the rate at which the system changes from behaving as component P to
behaving as Q. Examples of derivation graphs can be found in [15].

It is important to note that in our models the rates are represented as ran-
dom variables, not constant values. These random variables are exponentially dis-
tributed. Repeated samples from the distribution will follow the distribution and
conform to the mean but individual samples may potentially take any positive
value. The use of such distribution is quite realistic and it allows us to use stan-
dard methods on CTMCs to readily obtain performance results. There are indeed
several methods and tools available for analysing PEPA models. Thus, the PEPA
Workbench [14] allows us to generate the state space of a PEPA model and the in-
finitesimal generator matrix of the underlying Markov chain. The state space of the
model is represented as a sparse matrix. The PEPA Workbench can then compute
the steady-state probability distribution of the system, and performance measures
such as throughput and utilisation can be directly computed from this.

4. Performance models of ASSIST application

PEPA can easily be used to model an ASSIST application since such applications
are based on stream communications, and the graph structure deduced from these
streams can be modelled with PEPA. Given the probabilistic information about
the performance of each of the ASSIST modules and streams, we then aim to find
information about the global behavior of the application, which is expressed by
the steady-state of the system. The model thus allows us to predict the run-time
behavior of the application in the long time run, taking into account information
obtained from a static analysis of the program. This behavior is not known in
advance, it is a result of the PEPA model.

4.1. The ASSIST application

As we have seen in Section 2, an ASSIST application consists of a series of
modules and streams connecting the modules. The structure of the application
is represented by a graph, where the modules are the nodes and the streams the
arcs. We illustrate in this paper our modeling process on an example of a graph,
but the process can be easily generalised to any ASSIST applications since the

Automatic mapping of ASSIST applications using process algebra

M3

M4M2M1 s1 s4

s3s2

Figure 2: Graph representation of our example application.

information about the graph can be extracted directly from ASSIST source code,
and the model can be generated automatically from the graph. A model of a data
mining classification algorithm has been presented in [1]. For the purpose of our
methodology and in order to generalise our approach, we concentrate here only on
the graph of an application. The graph of the application that we consider in this
paper is similar to the one of [1], consisting of four modules. Figure 2 represents
the graph of this application.

We choose this graph as an application example, since this is a very common
workflow pattern. In such a schema,

• one module (M1) is generating input, for instance reading from a file or ac-
cessing a database;

• two modules (M2, M3) are interacting in a client-server way; they can interact
one or several times for each input, in order to produce a result;

• the result is sent to a last module (M4) which is in charge of the output.

4.2. The PEPA model

Each ASSIST module is represented as a PEPA component, and the different
components are synchronised through the streams of data to model the overall
application. The PEPA components of the modules are shown in Table 1. The
modules are working in a sequential way: the module MX (X= 1..4) is initially in
the state MX1, waiting for data on its input streams. Then, in the state MX2, it
processes the piece of data and evolves to its third state MX3. Finally, the module
sends the output data on its output streams and goes back into its first state. The
system evolves from one state to another when an activity occurs. The activity sX

(X = 1..4) represents the transfer of data through the stream X, with the associated
rate λX . The rate reflects the complexity of the communication. The activity pX

(X = 1..4) represents the processing of a data by module MX, which is done at a
rate µX . These rates are related to the theoretical complexity of the modules. A
discussion on rates is done in Section 4.3.

The overall PEPA model is then obtained by a collaboration of the different
modules in their initial states: M11 ��

s1
M21 ��

s2,s3
M31 ��

s4
M41.

4.3. Automatic generation of the model

The PEPA model is automatically generated from the ASSIST source code. This
task is simplified thanks to some information provided by the user directly in the

Parallel Processing Letters

source code, and particularly the rates associated to the different activities of the
PEPA model.

The rates are directly related to the theoretical complexity of the modules and
of the communications. In particular, rates of the communications depend on: a)
the speed of the links and b) data size and communications frequencies. A module
may include a parallel computation, thus its rate depends on a) computing power of
the platforms running the module and b) parallel computation complexity, its size,
its parallel degree, and its speedup. Observe that aspect a) of both modules and
communications rates strictly depends on mapping, while aspect b) is much more
dependent on the application’s logical structure and algorithms.

We are interested in the relative computational and communication costs of the
different parts of the system, but we define numerical values to allow a numerical
resolution of the PEPA model. This information is defined directly in the ASSIST
source code of the application by calling a rate function, in the body of the main

procedure of the application (Appendix A, between lines 9 and 10). This function
takes as a parameter the name of the modules and streams, and it should be called
once for each module and each stream to fix the rates of the corresponding PEPA
activities. We can define several sets of rates in order to compare several PEPA
models. The values for each sets are defined between brackets, separated with
commas, as shown in the example below.

rate(s1)=(10,1000); rate(s2)=(10,1); rate(s3)=(10,1); rate(s4)=(10,1000);

rate(M1)=(100,100); rate(M2)=(100,100); rate(M3)=(1,1); rate(M4)=(100,100);

The PEPA model is generated during a precompilation of the source code of AS-
SIST. The parser identifies the main procedure and extracts the useful information
from it: the modules and streams, the connections between them, and the rates of
the different activities. The main difficulty consists in identifying the schemes of
input and output behaviour in the case of several streams. This information can
be found in the input and output section of the parmod code. Regarding the input
section, the parser looks at the guards. Details on the different types of guards can
be found in [19,3].

Table 1: PEPA model for the example

M11
def
= M12

M12
def
= (p1, µ1).M13

M13
def
= (s1, λ1).M11

M21
def
= (s1,>).M22 + (s2,>).M22

M22
def
= (p2, µ2).M23

M23
def
= (s3, λ3).M21 + (s4, λ4).M21

M31
def
= (s3,>).M32

M32
def
= (p3, µ3).M33

M33
def
= (s2, λ2).M31

M41
def
= (s4,>).M42

M42
def
= (p4, µ4).M43

M43
def
= M41

Automatic mapping of ASSIST applications using process algebra

As an example, a disjoint guards means that the module takes input from ei-
ther of the streams when some data arrives. This is translated by a choice in the
PEPA model, as illustrated in our example. However, some more complex behaviour
may also be expressed, for instance the parmod can be instructed to start execut-
ing only when it has data from both streams. In this case, the PEPA model is
changed with some sequential composition to express this behaviour. For example,
M21 def= (s1,>).(s2,>).M22 + (s2,>).(s1,>).M22. Currently, we are not support-
ing variables in guards, since these may change the frequency of accessing data on a
stream. Since the variables may depend on the input data, we cannot automatically
extract static information from them. We plan to address this problem by asking
the programmer to provide the relative frequency of the guard. The considerations
for the output section are similar.

The PEPA model generated by the application for a given set of rates is repre-
sented below:

mu1=100;mu2=100;mu3=1;mu4=100;

la1=10;la2=10;la3=10;la4=10;

M11=M12; M12=(p1,mu1).M13; M13=(s1,la1).M11;

M21=(s1,infty).M22 + (s2,infty).M22; M22=(p2,mu2).M23;

M23=(s3,la3).M21 + (s4,infty).M21;

M31=(s3,infty).M32; M32=(p3,mu3).M33; M33=(s2,la2).M31;

M41=(s4,la4).M42; M42=(p4,mu4).M43; M43=M41;

(M11 <s1> (M21 <s2,s3> M31)) <s4> M41

4.4. Performance results

Once the PEPA models have been generated, performance results can be ob-
tained easily with the PEPA Workbench [14]. The performance results are the
probability to be in either of the states of the system. We compute the probability
to be waiting for a processing activity pX, or to wait for a transfer activity sX. Some
additional information is generated in the PEPA source code (file example.pepa)
to specify the performance results that we are interested in. This information is the
following:

perf_M1= 100 * {M12 || ** || ** || **}; perf_M2= 100 * {** || M22 || ** || ** };

perf_M3= 100 * {** || ** || M32 || **}; perf_M4= 100 * {** || ** || ** || M42};

perf_s1= 100 * {M13 || M21|| ** || **}; perf_s2= 100 * {** || M21 || M33|| ** };

perf_s3= 100 * {** || M23|| M31 || **}; perf_s4= 100 * {** || M23 || ** || M41};

The expression in brackets describes the states of the PEPA model corresponding
to a particular state of the system. For each module MX (X= 1..4), the result perf MX

corresponds to the percentage of time spent waiting to process this module. The
steady-state probability is multiplied by 100 for readability and interpretation rea-
sons. A similar result is obtained for each stream. We expect the complexity of the
PEPA model to be quite simple and the resolution straightforward for most of the
ASSIST applications. In our example, the PEPA model consists in 36 states and

Parallel Processing Letters

80 transitions, and it requires less than 0.1 seconds to generate the state space of
the model and to compute the steady state solution, using the linear biconjugate
gradient method [14].

Experiment 1. For the purpose of our example, we choose the following rates,
meaning that the module M3 is computationally more intensive than the other
modules. In our case, M3 has an average duration of 1 sec. compared to 0.01 sec.
for the others (µ1 = 100; µ2 = 100; µ3 = 1; µ4 = 100). The rates for the streams
correspond to an average duration of 0.1 sec (λ1 = 10;λ2 = 10;λ3 = 10;λ4 = 10).
The results for this example are shown in Table 2 (row Case 1).

These results confirm the fact that most of the time is spent in module M3, which
is the most computationally demanding. Moreover, module M1 (respectively M4)
spends most of its time waiting to send data on s1 (respectively waiting to receive
data from s4). M2 is computing quickly, and this module is often receiving/sending
from stream s2/s3 (little time spent waiting on these streams in comparison with
streams s1/s4).

If we study the computational rate, we can thus decide to map M3 alone on a
powerful computing site because it has the highest value between the different steady
states probabilities of the modules. One should be careful to map the streams s1
and s4 onto sufficiently fast network links to increase the overall throughput of the
network. A mapping that performs well can thus be deduced from this information,
by adjusting the reasoning to the architecture of the available system.

Experiment 2. We can reproduce the same experiment but for a different ap-
plication: one in which there are a lot of data to be transfered inside the loop.
Here, for one input on s1, the module M2 makes several calls to the server M3
for computations. In this case, the rates of the streams are different, for instance
λ1 = λ4 = 1000 and λ2 = λ3 = 1.

The results for this experiment are shown in Table 2 (row Case 2). In this table,
we can see that M3 is quite idle, waiting to receive data 89.4% of the time (i.e. this
is the time it is not processing). Moreover, we can see in the stream results that s2
and s3 are busier than the other streams. In this case a good solution might be to
map M2 and M3 on to the same cluster, since M3 is no longer the computational
bottleneck. We could thus have fast communication links for s2 and s3, which are
demanding a lot of network resources.

Table 2: Performance results for the example.

Modules Streams

M1 M2 M3 M4 s1 s2 s3 s4

Case 1 4.2 5.1 67.0 4.2 47.0 6.7 6.7 47.0
Case 2 52.1 52.2 10.6 52.1 5.2 10.6 10.6 5.2

Automatic mapping of ASSIST applications using process algebra

4.5. Analysis summary

As mentioned in Section 4.3, PEPA rates model both aspects strictly related to
the mapping and to the application’s logical structure (such as algorithms imple-
mented in the modules, communication patterns and size). The predictive analysis
conducted in this work provides performance results which are related only to the
application’s logical behavior. On the PEPA model this translates on the assump-
tion that all sites includes platforms with the same computing power, and all links
have an uniform speed. In other words, we assume to deal with a homogeneous
grid to obtain the relative requirements of power among links and platforms. This
information is used as a hint for the mapping on a heterogeneous grid.

It is of value to have a general idea of a good mapping solution for the application,
and this reasoning can be easily refined with new models including the mapping
peculiarities, as demonstrated in our previous work [1]. However, the modeling
technique exposed in the present paper allows us to highlight individual resources
(links and processors) requirements, that are used to label the application graph.

These labels represent the expected relative requirements of each module (stream)
with respect to other modules (streams) during the application run. In the case of a
module the described requirement can be interpreted as the aggregate power of the
site on which it will be mapped. On the other hand, a stream requirement can be
interpreted as the bandwidth of the network link on which it will be mapped. The
relative requirements of parmods and streams may be used to implement mapping
heuristics which assign more demanding parmods to more powerful sites, and more
demanding streams to links exhibiting higher bandwidths. When a fully automatic
application mapping is not required, modules and streams requirements can be used
to drive a user-assisted mapping process.

Moreover, each parmod exhibits a structured parallelism pattern (a.k.a. skele-
ton). In many cases, it is thus possible to draw a reliable relationship between the
site fabric level information (number and kind of processors, processors and network
benchmarks) and the expected aggregate power of the site running a given parmod
exhibiting a parallelism pattern [5,4,8]. This may enable the development of a map-
ping heuristic, which needs only information about sites fabric level information,
and can automatically derive the performance of a given parmod on a given site.

The use of models taking into account both of the system architecture charac-
teristics can then eventually validate this heuristic, and give expected results about
the performance of the application for a specified mapping.

4.6. Future work

The approach described here considers the ASSIST modules as blocks and does
not model the internal behavior of each module. A more sophisticated approach
might be to consider using known models of individual modules and to integrate
these with the global ASSIST model, thus providing a more accurate indication
of the performance of the application. At this level of detail, distributed shared

Parallel Processing Letters

memory and external services (e.g. DB, storage services, etc) interactions can be
taken into account and integrated to enrich the network of processes with dummy
nodes representing external services. PEPA models have already been developed
for pipeline or deal skeletons [7,8], and we could integrate such models when the
parmod module has been adapted to follow such a pattern.

Analysis precision can be improved by taking into account historical (past runs)
or synthetic (benchmark) performance data of individual modules and their com-
munications. This kind of information should be scaled with respect to the expected
performances of fabric resources (platform and network performances), which can
be retrieved via the middleware information system (e.g. Globus GIS).

We believe that this approach is particularly suitable for modeling applications
that can be described by a graph, not just ASSIST applications (such as applications
described in the forthcoming CoreGrid Grid Component Model [10]). In particular
the technique described here helps to derive some information about the pressure (on
modules and links) within a loop of the graph. Loops are quite common patterns;
they can be used to describe simple interactions between modules (e.g. client-server
RPC behavior) or mutual recursive dependency between modules. These two cases
lead to very different behaviors in term of pressure or resources within the loop; in
the former case this pressure is variable over time.

The mapping decision is inherently a static process, and especially for loops in
the graph, it is important to make decisions on the expected common case. This
is modeled by the PEPA steady state probabilities, that indeed try to give some
static information on dynamic processes.

5. Conclusions

In this paper we have presented a method to automatically generate PEPA
models from an ASSIST application with the aim of improving the mapping of the
application. This is is an important problem in grid application optimisation. It is
our belief that having an automated procedure to generate PEPA models and ob-
tain performance information may significantly assist in taking mapping decisions.
However, the impact of this mapping on the performance of the application with
real code requires further experimental verification. This work is ongoing, and is
coupled with further studies on more complex applications.

Acknowledgements. The authors are supported by the Enhance project of the
university of Edinburgh, funded by the EPSRC (grant GR/S21717/01); the Italian
MIUR FIRB Grid.it project (RBNE01KNFP); the FP6 Network of Excellence
CoreGRID, funded by the European Commission (contract IST-2002-004265).

References

[1] M. Aldinucci and A. Benoit. Automatic mapping of ASSIST applications using process
algebra. Technical Report TR-0016, Institute on Programming Model, CoreGRID -

Automatic mapping of ASSIST applications using process algebra

Network of Excellence, Oct. 2005.
[2] M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and C. Zoccolo.

Structured implementation of component based grid programming environments. In
Future Generation Grids, CoreGRID series, pp. 217–239. Springer Verlag, Nov. 2005.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as
a research framework for high-performance grid programming environments. In J. C.
Cunha and O. F. Rana, editors, Grid Computing: Software environments and Tools,
chapter 10, pp. 230–256. Springer Verlag, Jan. 2006.

[4] M. Aldinucci, M. Danelutto, J. Dünnweber, and S. Gorlatch. Optimization techniques
for skeletons on grid. In L. Grandinetti, editor, Grid Computing and New Frontiers of
High Performance Processing, vol. 14 of Advances in Parallel Computing, chapter 2,
pp. 255–273. Elsevier, Oct. 2005.

[5] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST grid-aware
components. In Proc. of Intl. Euromicro PDP 2006: Parallel Distributed and network-
based Processing, pp. 221–230, Montbéliard, France, Feb. 2006. IEEE.

[6] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed com-
ponents for Grid programming. In Proc. of the Workshop on component Models and
Systems for Grid Applications, ICS ’04, Saint-Malo, France, June 2005.

[7] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of skeleton-
based high level parallel programs. In Proc of the Intl. Conference on Computational
Science (ICCS 2004), Part III, LNCS, pp. 299–306. Springer Verlag, 2004.

[8] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Scheduling skeleton-based grid appli-
cations using PEPA and NWS. The Computer Journal, 48(3):369–378, 2005.

[9] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, 30(3):389–406, 2004.

[10] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable
D.PM.02 – Proposals for a Grid Component Model, Nov. 2005.

[11] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, S. Orlando, R. Baraglia,
T. Fagni, D. Laforenza, and A. Paccosi. HPC application execution on grids. Fu-
ture Generation Grids, CoreGRID series, pp. 263–282. Springer Verlag, Nov. 2005.

[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organization. The Intl. Journal of High Performance Computing Applications,
15(3):200–222, Fall 2001.

[13] I. Foster and C. Kesselmann, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, Dec. 2003.

[14] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proc. of the 7th Int. Conf.
on Modelling Techniques and Tools for Computer Performance Evaluation, vol. 794 of
LNCS, pp. 353–368, Vienna, May 1994. Springer Verlag.

[15] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Univer-
sity Press, 1996.

[16] C. A. R. Hoare. Communicating Sequential Processes. Communications of ACM,
21(8):666–677, Aug. 1978.

[17] S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. Concurrency &
Computation: Practice & Experience, 17(2–4):235–257, 2005.

[18] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,
and H. E. Bal. Ibis: a flexible and efficient Java-based grid programming environment.
Concurrency & Computation: Practice & Experience, 17(7-8):1079–1107, 2005.

[19] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

Parallel Processing Letters

Appendix A: ASSIST code schema example

1 typedef struct { ... } task_t;

2 /* ------------------------------------ graph of modules definition -- */

3 generic main() {

4 stream task_t s1; stream task_t s2;

5 stream task_t s3; stream task_t s4;

6 M1 (output_stream s1);

7 M2 (input_stream s1, s2 output_stream s3, s4);

8 M3 (input_stream s3 output_stream s2);

9 M4 (input_stream s4);

10 }

11 /* ------------------------------------ sequential modules ----------- */

12 M1(output_stream task_t start_out)

13 { proc_M1 (out start_out);}

14

15 M4(input_stream task_t end_in)

16 { proc_M4 (in end_in);}

17 /* ------------------------------------ parallel modules ------------- */

18 parmod M2(input_stream task_t stream_start,task_t stream_rec

19 output_stream task_t stream_task, task_t stream_result){

20 topology one vp; /* behave as sequential process */

21 input_section {

22 guard_start: on ,,stream_start {

23 distribution stream_start broadcast to vp;}

24 guard_recursion: on ,,stream_rec {

25 distribution stream_rec broadcast to vp;}

26 }

27 virtual_processes {

28 guard_start_elab(in guard_start out stream_task) {

29 VP {proc_M2(in stream_start out stream_task);}

30 }

31 guard_recursion_elab(in guard_recursion out stream_task,stream_result){

32 VP {proc_M2(in stream_rec out stream_task,stream_result);}

33 }

34 }

35 output_section {

36 collects stream_task from ANY vp;

37 collects stream_result from ANY vp;}

38 }

39 parmod M3(input_stream task_t stream_task

40 output_stream task_t stream_task_out) {

41 topology none vp; /* behave as farm */

42 input_section {

43 guard_task: on ,,stream_task {

44 distribution stream_task on_demand to vp;}

45 }

46 virtual_processes {

47 guard_task_elab(in guard_task out stream_task_out) {

48 VP {proc_M3(in stream_task out stream_task_out);}

49 }

50 }

51 output_section {collects stream_task_out from ANY vp;}

52 }

53 /* -------- sequential functions (procs) declaration -- */

54 proc proc_M1 (out task_t start_out) $c++{ ... }c++$

55 proc proc_M2 (in task_t task_in out task_t task_out) $c++{ ... }c++$

56 proc proc_M3 (in task_t task_in out task_t task_out) $c++{ ... }c++$

57 proc proc_M4 (in task_t end_in) $c++{ ... }c++$

