
Journal of Systems Architecture 54 (2008) 868–876
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Securing skeletal systems with limited performance penalty: The
muskel experience q

Marco Aldinucci, Marco Danelutto *

Computer Science Department, University of Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 July 2007
Received in revised form 16 November 2007
Accepted 10 January 2008
Available online 5 March 2008

Keywords:
Skeletons
Parallelism
Security
Scalability
1383-7621/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.sysarc.2008.02.008

q Expanded version of [1]. This work has been partia
of Excellence CoreGRID funded by the European Com
004265).

* Corresponding author.
E-mail addresses: aldinuc@di.unipi.it (M. Ald

(M. Danelutto).
Algorithmic skeletons have been exploited to implement several parallel programming environments,
targeting workstation clusters as well as workstation networks and computational grids. When targeting
non-dedicated clusters, workstation networks and grids, security has to be taken adequately into account
in order to guarantee both code and data confidentiality and integrity. However, introducing security is
usually an expensive activity, both in terms of the effort required to managed security mechanisms and in
terms of the time spent performing security related activities at run time.

We discuss the cost of security introduction as well as how some features typical of skeleton technol-
ogy can be exploited to improve the efficiency code and data securing in a typical skeleton based parallel
programming environment and we evaluate the performance cost of security mechanisms implemented
exploiting state of the art tools. In particular, we take into account the cost of security introduction in
muskel, a Java based skeletal system exploiting macro data flow implementation technology. We con-
sider the adoption of mechanisms that allow securing all the communications involving remote, unreli-
able nodes and we evaluate the cost of such mechanisms. Also, we consider the implications on the
computational grains needed to scale secure and insecure skeletal computations.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Cole introduced algorithmic skeletons in late 1980 [2]. An algo-
rithmic skeleton is nothing but a known, parametric parallelism
exploitation pattern. It can be customized by programmers provid-
ing suitable parameters in such a way as to match the needs of the
particular application at hand. Usually, skeletons can also be
nested in such a way that users/programmers can express very
complex parallelism patterns as composite skeletons. As originally
intended by Cole, algorithmic skeletons represent a good trade-off
between expressive power and efficiency in the field of parallel/
distributed programming.

Typical examples of skeletons are task farms (parallel computa-
tion of the same function on a set of completely independent input
tasks. This kind of computation is often referred to as ‘‘embarrass-
ingly parallel” computation), pipelines (parallel computation of
stages of a computation on different input task items), map, reduce
and parallel prefix (parallel computation of the same function on
all the elements of a data structure, ‘‘summation” of all the ele-
ll rights reserved.

lly supported by FP6 Network
mission (Contract IST-2002-

inucci), marcod@di.unipi.it
ments of a data structure using a binary, associative and commuta-
tive function, and same kind of ‘‘summation” computing both final
value and all intermediate sum values) and several flavors of iter-
ator skeletons (modeling different loop schemata).

Algorithmic skeletons led to the development of several skeletal
systems, that is parallel programming environments exploiting the
skeleton concept in different flavors: libraries, new languages,
coordination languages and patterns. Examples of such program-
ming frameworks include both programming languages and li-
braries. In the former case, new languages have been designed
that include skeletons as language primitives/constructs. In the lat-
ter case, skeletons are supported by proper library calls hosted in
plain, existing sequential languages such as C/C++ or Java. Exam-
ples of skeleton programming languages are P3L [3] and ASSIST
[4,5]. These are both programming languages designed and imple-
mented by our group in Pisa in 1991 and in 2000, respectively.
Examples of skeleton libraries are eSkel [6–8], Muesli [9], Skipper
[10] and muskel [11]. eSkel and Muesli are implemented in C
and C++, respectively, and they both use MPI [12] to exploit paral-
lelism in skeleton computations. They have been recently designed
by Cole and Kuchen, respectively. Skipper is implemented in Ocaml
instead; it runs on top of plain TCP/IP workstation networks and
uses the same macro data flow implementation model of muskel.
Finally, muskel is our pure Java/RMI skeleton library derived from
Lithium [13] and it is the library we used to perform the experi-
ments discussed in this paper.

mailto:aldinuc@di.unipi.it
mailto:marcod@di.unipi.it
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

1 A data flow instruction becomes ‘‘fireable” when all its input tokens are available.

M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876 869
Most of these systems have been designed and implemented to
target workstation clusters and they happen to be very efficient
when dedicated, homogeneous clusters are taken into account.
However, when more typical heterogeneous, non-dedicated work-
station networks and grids are considered, several additional
implementation problems have to be dealt with: on the one hand,
firewalls and high network latencies have to be taken into account;
on the other hand security issues have to be safely handled.

Security issues, in particular, arise when parallel programs are
executed on distributed architectures whose remote nodes and/
or clusters are interconnected by means of public, non-dedicated
network infrastructures. In this case both code (the one staged to
remote nodes for the execution) and data (input data and compu-
tation results) flow to and from remote nodes through potentially
insecure network links. Data and code crossing insecure links can
be easily snooped or spoofed by persons that are not those actually
performing the parallel computation. The solution to this problem
is therefore to secure all the connections flowing through non-se-
cure network links. State-of-the-art, de facto standard tools can be
used to the purpose. As an example, SSL sockets can be used to con-
nect nodes through insecure network links. However, this opera-
tion might have a non-negligible performance penalty. This cost
is to be paid both on sending and receiving machines: the sending
machines should spent time to encrypt serialized data during the
marshaling process and the receiving machine should spent time
to decrypt incoming data in the unmarshaling procedures. This is
pure overhead from the functional application viewpoint, that is,
the effort spent securing communications is not directly related
to the computation of the functional result of the parallel program.
In addition, further time has to be spent while transmitting the en-
crypted data through network links due to the fact that encrypted
data is usually longer than original data. As a consequence, pro-
gramming environments succeeding to secure only those commu-
nications that turn out to be ‘‘sensitive” (e.g. those involving secret
code/data and flowing through shared, public network links) will
perform much better than environments exploiting different secu-
rity policies. In particular, they will perform better than those envi-
ronments indiscriminately securing all the communications taking
place during the parallel application execution, as these environ-
ments will demonstrate a larger communication overhead. Also,
they perform better than those environments not supporting se-
cure communications at all, as these environments will not guar-
antee user data and code confidentiality.

In the case of classical parallel programming environments, the
task of identifying the sensitive code/data parts and the subse-
quent task of implementing suitable and efficient security mecha-
nisms to protect sensitive code/data is completely in the charge of
the application programmers. The proper usage of security tools is
not easy, however. The usage of even slightly different security
tools may lead to very different performance and will provide very
different security guarantees. As an example, consider the adoption
of different encrypting suites/algorithms in the usage of SSL sock-
ets in Java. The encrypting algorithms can be changed playing with
the parameters passed to SSL socket factories, usually. Different
algorithms provide different confidentiality degrees and may in-
volve significantly different encrypting/decrypting times. There-
fore application programmers must have a fairly good knowledge
of the available security tools to exploit them decently in the appli-
cation code.

Currently available skeletal systems do not support any kind of
security feature. The MPI libraries by Cole and Kuchen are intended
to be run on MPI clusters, that usually exploit private, secure net-
works. Therefore, attention has been concentrated on other fea-
tures related to efficiency and expressive power. ASSIST was
designed to run on grids, either exploiting the Globus toolkit [14]
or using plain TCP/IP POSIX workstation mechanisms. In the latter
case, it uses ssh and scp to perform remote commanding and data
and code staging to and from remote machines. However, we never
measured the impact of the usage of the ssh/scp tools. Recently,
the Muenster university group leaded by Gorlatch introduced
HOC [15,16]. High order components (HOC) is a grid-programming
environment jointly exploiting skeleton technology and compo-
nent technology. HOC includes predefined components providing
programmers with pipeline and task farm parallelism exploitation
patterns. The implementation uses web services to manage grid re-
lated issues, such as data and code staging. At the moment, how-
ever, security issues are not yet taken into account in HOC
although there are specifications to put security over standard
XML/SOAP protocols used in web services [17].

More attention is paid to security issues in non-skeleton based
grid programming system. For instance, the Globus grid middle-
ware [14] provides a full range of tools to handle security issues
[18]. Overall, security is one of the key points to be addressed
according to the NGG reports [19]. Recently, in the framework of
the CoreGRID European Network of Excellence [20], security has
been considered an ‘‘horizontal issue” that is an issue to be consid-
ered in all the Institutes of the network, and a useful survey of
security grid related issues has been produced [21]. We considered
the results of all these experiences before investigating the impact
of security in skeletal systems.

In this work, we try to figure out the order of the costs in secur-
ing communications in a skeletal system and then we show how
proper security strategies can be adopted that do not necessarily
involve the application programmer in the security policies imple-
mentation process. At this aim, we used muskel as testbed skeletal
system. Section 2 introduces muskel. Section 3 outlines the secu-
rity related issues and discusses how they can be addressed in the
muskel skeletal system. Section 4 presents and discusses some
experimental results achieved with the secure muskel system. Fi-
nally, Section 5 discusses how aspect oriented programming (AOP)
techniques can be used to support security in skeletal systems.

2. The muskel Java skeleton library

muskel is a full Java, skeleton based, parallel programming li-
brary [11,22]. It can be used to run parallel skeleton programs on
clusters or networks of workstations as well as computational
grids. The only requisite of muskel is that the distributed process-
ing nodes all support standard Java (1.5 or later) and RMI and that
they can be accessed via standard ssh/scp tools. muskel provides
the user with a set of fully nestable stream parallel skeletons (pipe-
lines and farms). Skeletons are implemented by transforming the
user supplied skeleton program into a data flow graph. Then, each
task to be computed is used to provide the input token to a copy of
such graph, which is placed in a logically centralized graph pool.
The fireable instructions1 in the graph pool are then scheduled for
execution onto remote data flow interpreter nodes. The result tokens
computed at the remote nodes are either used as input tokens to dif-
ferent macro data flow instruction in the graph pool (possibly mak-
ing such instructions fireable) or to be output as the results of the
program execution.

The whole process is completely transparent to the user (the
application programmer). The users only have to provide code such
as the sample one depicted in Fig. 1. In this case, we assumed that
two Java classes exist that process medical images coming from
some kind of scanner (PET, CAT, MNR) to filter (class Filter) them
and then to suitably render (class Render) the filtered images. The
stream of images to be processed is taken from a file by properly
exploiting the boolean hasNext() and Object next() methods

Fig. 1. Sample muskel code.

870 M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876
implemented in the user defined input manager class. The result
images will eventually be stored in another file, invoking the void
deliver(Object r) method implemented by the user defined
output manager class. The user asks to compute the program using
as many remote data flow interpreter nodes as indicated by the
command line argument passed to the program (the program is
run with the standard Java interpreter on the user machine by issu-
ing a command such as java Medical filein.dat fileout.dat
10). Furthermore, as he knows the rendering phase takes signifi-
cantly longer than the filtering one, he asks to execute in parallel
the second stage of this pipeline computation, by writing the sec-
ond stage of the pipeline as a farm.

muskel uses Managers to manage computations. The manager
takes a skeleton program, an input and an output manager, and a
performance contract (the parallelism degree, in this case). Then
it arranges to discover and recruit a suitable number of remote
interpreter nodes and forks a ControlThread for each of the re-
cruited interpreters. The process of recruiting remote interpreters
can be executed in two different ways. In one case (version 1.0 of
muskel), the manager retrieves the addresses of the remote ma-
chines from a text file hosting a hmachinename,porti pair list. In an-
Fig. 2. muskel f
other case (current version of muskel, 2.0), a peer-to-peer
discovery protocol (exploiting UDP multicast) is started that even-
tually gathers answers from the remote machines where an inter-
preter was running hosting the same hmachinename,porti info.

Each ControlThread forked by the manager executes a loop.
At each loop iteration:

(i) It fetches a fireable instruction from the macro data flow
(MDF) graph pool ((r) in Fig. 2).

(ii) Delivers the fireable instruction to the remote interpreter
(s).

(iii) Gets back the results of the remote computation (t).
(iv) Eventually either it stores the results (u) as proper tokens in

the MDF graph pool or, if they are final results, it delivers
them to the output manager.

We assume here the ‘‘logically centralized” macro data flow
graph pool is actually implemented through centralized, data
structures in the user JVM address space (the current implementa-
tion of muskel actually implements the graph pool as a macro data
flow instruction Vector declared in the Manager; the reasoning
unctioning.

M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876 871
and the results discussed in the following also hold in the case of
distributed implementation of the graph pool). As a consequence,
all the communications taking place during execution of a generic
muskel program happen to be either communication of program
(chunk) code to the remote macro data flow interpreters or com-
munication of input or output tokens to or from the remote inter-
preter instances.

The muskel manager also arranges to instantiate a fresh copy of
the MDF graph in the MDF graph repository for each of the tasks
retrieved using the input manager, with the task placed as a token
in the appropriate MDF ‘‘initial” instruction of the graph. If there is
a problem with one of the remote interpreters (a remote node fault
or a network problem) the ControlThread informs the manager
and terminates. In turn, the manager tries to recover the situation
by recruiting a new remote interpreter and putting back the
uncomputed fireable instruction in the MDF graph repository.
Overall, this mechanism satisfies and maintains the user supplied
performance contract (ParDegree) without any user/programmer
intervention, implementing de facto an autonomic self-configura-
tion policy [23].

The remote interpreter instances are launched on the remote
nodes, possibly using a shell script once and for all (remote inter-
preters are plain Java remote objects running as standalone pro-
cesses or as Java Activatable objects). They are specialized to
execute the code of the application at hand by the Control-

Threads forked by the manager. The ControlThreads deliver to
the interpreters the serialized version of the relevant Compute

classes once and for all just before starting the delivery of fireable
MDF instructions.

muskel has been tested on several configurations of networked
workstations including plain, dedicated clusters, local network of
different, heterogeneous production workstations and geographi-
cal scale networks hosting different machines in two sites sepa-
rated by firewalls.2 In all the cases, almost perfect scalability has
been achieved, provided that suitably coarse grain programs are
run. We showed that local network configurations (i.e. configura-
tions hosting processing elements in a single LAN) scale well with
skeleton code involving computations with a grain (as defined in
Section 4) of the order of 10. Geographical scale networks, instead,
required computations with a significantly larger grain (one to two
order of magnitude larger than the one scaling on the local network).

3. Experimenting security in muskel

When exploiting parallelism using nodes that are intercon-
nected by public network links there is always the risk that com-
munications are intercepted and relevant data is snooped by
unauthorized people. Also, data can be snooped and substituted
with other wrong or misleading data exploiting spoofing tech-
niques, thus leading to incorrect computations. An even worst case
concerns code. Consider what happens in muskel: serialized code
is sent to the remote interpreters that is then used to compute re-
motely the fireable macro data flow (MDF) instructions related to
the user skeleton code. If such code is changed, the remote nodes
can be used to compute things they were not supposed to com-
pute. Therefore, it is fundamental, in order to avoid both data
and code problems, that

(i) the access to the remote interpreters is authenticated in a
secure way, and

(ii) that the code itself is encrypted before being sent to the
remote interpreters.
2 ProActive [24] was used in this case to perform RMI call tunneling through ssh
.
Authentication and code encrypting can be easily programmed
using Java JSSE extensions, included in the JDK since version 1.4.
Consequently, we modified the muskel prototype to provide
authentication, data confidentiality and integrity in the communi-
cations taking place among the control threads running on the user
machine and the remote data flow interpreter instances running
on the remote machines. In particular, we prepared a muskel ver-
sion exploiting the Java SSL library to perform communications
involving remote processing nodes. SSL provides authentication
exploiting asymmetric keys, and data confidentiality and integrity
exploiting a symmetric session key and message digests. Overall,
SSL represents a well known and assessed tool to secure remote
communications over TCP. We then used the modified version of
muskel (we will refer to it as secure muskel from now on) to eval-
uate the impact of security on the raw performance of the skeletal
system. Just to avoid interferences or difficulties in evaluating the
experimental results due to any kind of additional mechanism, we
stripped down the current muskel prototype by replacing the RMI
remote interpreter access with plain TCP/IP sockets connections. In
secure muskel we used the very same code modified only in the
parts opening the sockets. Those parts dealing with the opening
of plain TCP/IP sockets were modified to host the opening of SSL
connections through proper calls to the SSL socket factories pro-
vided by Java 1.5. This process resulted in the implementation of
two distinct versions of the base muskel engine able to compute
in a distributed/parallel way sets of macro data flow instructions
stored in the fireable instruction pool. The two versions have been
used to evaluate the costs related to the introduction of security in
the skeletal system, through the experiments described in the fol-
lowing section.
4. Experimental results

In order to figure out how the introduction of secure remote
communications affect the execution of muskel programs we per-
formed a set of experiments. All the experiments have been run on
a Fast Ethernet network of Pentium III machines running Linux
with a vendor modified 2.4.22 kernel (Figs. 3–5). Java networking
experiments have been run on the platform mentioned above
(Fig. 6, left), and on a Giga Ethernet network of AMD dual-core
Opteron275 machines running Linux with 2.6.9SMP kernel
(Fig. 6, right).

4.1. Secure muskel vs. plain muskel

The first set of experiments measured the performance
achieved when running the same muskel skeleton program a
workstation network first using the original muskel prototype,
with insecure communications, and then using the secure muskel
prototype. We considered programs with different computational
grain, i.e. programs whose macro data flow instructions have a dif-
ferent average computation to communication time ratio. In other
words, we first defined computational grain G as

G ¼ Tw

Tc

Here Tw represents the time spent by a remote interpreter instance
to compute the macro data flow instruction on the local data and Tc

represents the time spent in transferring the input data to the re-
mote interpreter instance plus the time spent getting back the com-
puted results from the remote interpreter instance. Then we
measured the performance of several programs with different val-
ues of G. Fig. 3 shows the results we achieved running the same
experiments with the non-secure (left) and secure (right) muskel
system. In the legend, W ¼ x=C ¼ y means that the average Tw of

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sp
ee

dU
p

n. of Processing Elements

Ideal
W=60mS/C=2K

W=473mS/C=2K
W=1893mS/C=2K

W=60mS/C=4K
W=473mS/C=4K

W=1893mS/C=4K

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sp
ee

dU
p

n. of Processing Elements

Ideal
W=60mS/C=2K

W=473mS/C=2K
W=1894ms/C=2K

W=60mS/C=4K
W=473mS/C=4K

W=1894mS/C=4K

Fig. 3. (left) muskel speedup (plain TCP/IP sockets); (right) secure muskel speedup (SSL).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500

Ti
m

e
(S

ec
s)

Messages size (KBytes)

~ 150 KByte
s/s

ec

~ 650 KBytes/sec

 SSL_RSA_WITH_RC4_128_MD5
plain Java sockets

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sp
ee

dU
p

n. of Processing Elements

G=300

G=70

Ideal
Plain: W=947mS/C=4K G=300
SSL: W=8200mS/C=4K G=300

Plain: W=222mS/C=2K G=70
SSL: W=947mS/C=2K G=70

Fig. 4. (left) muskel vs. secure muskel bandwidth (serialization time is included); (right) effect of grain on speedup.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sp
ee

dU
p

n. of Processing Elements

Ideal
0% of SSL links

32% (+/-3%) of SSL links
65% (+/-3%) of SSL links

100% of SSL links

 6 8 10 14 18 22 26 30 2 4 6 8 10 14 18 22 26 30
n. of Processing Elements

 20%

 40%

 60%

 80%

 100%

 0%
 2 4

C = 8K Bytes

n. of plain tasks
C = 8K Bytes

n. of plain tasks
C = 128 Bytes

n. of SSL tasks
C = 128 Bytes
n. of SSL tasks

Fig. 5. muskel with selectively introduced SSL communication links. (left) Speedup vs. percentage of SSL links; (right) distribution of tasks among workers interconnected
through plain and SSL links for 128 and 8 kbytes tasks.

872 M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876
macro data flow instructions was x and the average amount of input
data transferred to the remote interpreter to compute the instruc-
tion plus the amount of output data retrieved from the remote
interpreter was y bytes. The workstations used were dedicated to
muskel runs, the programs were the same, the input data were also
the same and therefore the only factor influencing the completion
times is the usage of the SSL sockets. Both plots, the muskel and
the secure muskel ones are actual speedup plots, rather than scala-
bility plots: the point corresponding to one processing element de-
scribes the sequential execution of the macro data flow instructions
on a single processor, rather than the usage of just one remote inter-
preter instance. In this case, no communication overhead at all is
counted in the execution time.

4.2. SSL vs. plain TCP/IP bandwidth

We measured the raw communication bandwidth of muskel
and secure muskel in order to be able to correctly interpret the re-
sults of our experiments. Fig. 4 (left) shows the bandwidth
achieved in the two cases. The lower bandwidth of secure muskel
is mostly due to the overhead introduced at processor level due to
the encrypting/decrypting activity taking place at the sending and

12.5M

4M

1M

256k

64k

16k

4k

1k

1M256k64k16k4k1k25664

By
te

s/
s

Messages size (Bytes)

Network Ideal
no_serialization

no_serialization+SSL
serialization

serialization+SSL_proxy
serialization+SSL

SSL overhead

serialization
overhead

SSL overhead

125M
64M

16M

4M

1M

256k

64k

16k

4k

1k
1M256k64k16k4k1k25664

By
te

s/
s

Messages size (Bytes)

Network Ideal
no_serialization

no_serialization+SSL
serialization

serialization+SSL_proxy
serialization+SSL

Fig. 6. Java socket performances with raw messages (byte []), serialized messages (Integer []), raw messages on SSL (TLS_DHE_DSS_WITH_AES_128_CBC_SHA), serialized
messages on SSL, serialized messages through an SSL proxy thread on two different clusters: (left) PIII@800 MHz 100 Mbit/s Ethernet, and (right) dual-core Optero-
n275@2.2 GHz 1 Gbit/s Ethernet.

M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876 873
receiving node. It is only partially due to the initial key exchange
handshake, which is performed once and for all, and to the slightly
longer (about 10%, actually) message encoding used in SSL. From
these measures, we can conclude that the introduction of SSL af-
fects the computational grain G needed to mask the longer com-
munication times involved in muskel computations. As a
consequence, we expected that coarser grain programs (that is pro-
grams with higher values of G) are needed to achieve good secure
muskel performance figures.

4.3. Iso-grain speedup

In order to evaluate the effect of computational grain on speed-
up, we ran another experiment. We chose different values of G and
ran programs with that G value on both muskel and secure musk-
el prototype. As the Tc values depend on the communication li-
brary, we had to use larger data flow instructions in the secure
muskel runs to get the same G with the same amount of data
transferred to and from the remote interpreter instances.
Fig. 4(right) shows the results achieved in this experiment. When
the grain is high G ¼ 300, both muskel and secure muskel scale
pretty well (also in this case, the plot is related to speedup, not
to scalability). However, the secure muskel run required computa-
tions significantly longer than the standard muskel run in order to
achieve comparable speedups. Actually, secure muskel required
computations eight times longer than those required by standard
muskel to reach the G ¼ 300 value that led to quasi-linear speed-
up. This is due to the overhead involved to the usage of SSL sockets.
When computational grain is smaller, however, both muskel and
secure muskel stop scaling quite early, as shown by the G ¼ 70
plots in the same figure.

4.4. Skeleton related optimizations

The experimental results clearly show that the costs involved in
security handling are definitely not negligible. Although this is not
a ‘‘brand new” nor an unexpected result, the numbers in the plots
give a precise dimension to the cost of introducing security. Being
related to skeleton based parallel programming, they also show
how the impact is relevant despite the relative simplicity of the
run time support used. The clear and simple structure of the musk-
el run time, in fact, makes evident that the overhead measured is
coming only from the (correct) usage of the SSL support.

It is clear, then, that we must figure out how such costs can be
optimized. In particular, we must be able to exploit the knowledge
available at compile and run time, derived from the analysis of the
structure of both the skeleton program and of the process network
used to implement it, to improve the efficiency of the secure ver-
sion of muskel. One kind of knowledge, we can exploit in this pro-
cess is the knowledge related to the location of the remote
processing elements recruited to act as remote MDF interpreter
nodes. The muskel manager arranges to recruit remote MDF inter-
preter nodes either using a peer-to-peer discovery service or con-
sulting some kind of machine list configuration file. At the end of
the recruitment process, the IP addresses of these machines are
known. By comparing these addresses with the address of the
workstation the user is currently using to run the program, the
manager can figure out, immediately before starting the control
threads managing the remote MDF interpreter nodes, which ones
are local (that is belong to the same LAN as the user machine run-
ning the muskel main) and which ones are not. Presumably, the
local nodes happen to operate in a controlled environment, and
therefore they can be reached with plain TCP/IP instead than using
a more costly secure communication mechanism. Non-local nodes,
on the other hand, must be reached by using a secure mechanism if
the network path to the nodes flows through public networks or
generically insecure links. With this information available, the
muskel Manager can thus decide whether to fork a plain control
thread (the one using plain TCP/IP RMI) or a secure control thread
(the one using SSL RMI) for each of the remote processing elements
recruited with a very small amount of additional code.

We therefore ran another experiment: we modified secure
muskel to use SSL only with non-local nodes and to use plain
TCP/IP sockets with the local nodes. Then, we ran the same pro-
gram on two clusters, with the same kind of machines, that is Linux
machines with the same processors and the same amount of mem-
ory. One cluster was in the same network as the user machine run-
ning the main muskel program. The other cluster was remote and
therefore was managed by SSL muskel control threads. Actually, to
remove the problem in the result analysis deriving from the differ-
ent latencies in reaching local and remote nodes, we configured
part of the local nodes as if they were non-local. Therefore, again,
the only difference was in the usage of SSL muskel control threads
rather than plain, non-SSL control threads. The results are shown in
Fig. 5. Fig. 5(left) shows the speedups achieved in runs of the same
program performed using a variable mix of the distributed data
flow interpreter instances placed on local machines and on remote
machines. The speedups achieved in the mix runs are clearly smal-
ler than the ones reached in runs only involving the local/secure
nodes. However, the muskel manager and control threads imple-
ment a self-adapting load balancing strategy. Each control thread
only dispatches a new fireable MDF instruction when the results

Fig. 7. Encrypting and serializing proxies in a pipeline.

874 M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876
of the execution of the previous one have been received. Therefore
‘‘slow” remote interpreters get fewer tasks to be computed com-
pared to ‘‘fast” ones. Fig. 5(right) shows the measured percentage
of fireable instructions (tasks) computed by each one of the remote
interpreters. In case the amount of data transferred to the remote
interpreter instance is small (left part of the figure), and therefore
the weight of encrypt/decrypt is small, local and remote instances
get about the same amount of tasks to be computed. However,
when the amount of data transferred becomes significant (right
part of the figure), the remote interpreter instances get fewer tasks
to be computed, due to the combined effect of the longer time
spent in communications and of the load balancing mechanism.
Actually, this control mechanism was thought to solve load balanc-
ing in case of usage of heterogeneous workstations (different CPUs,
different amounts of central store or even different operating sys-
tems) but it proved very effective also in this case.

4.5. Serialization and encrypting overhead

As introduced in Section 2, the muskel manager forks several
ControlThreads to distribute MDF instructions to remote MDF
interpreters. In particular, fireable MDF instructions are actually
(code, data) pairs. The easiest and the more Java orthodox way to
distribute this kind of objects involves the Java native serialization
mechanism, which is a very general but quite inefficient process.
The muskel version used in the reported experiments is compliant
to this view. However, it has been optimized to avoid the full seri-
alization of all fireable MDF instructions. In particular, the com-
plete MDF graph is serialized and uploaded just once to all
remote interpreters, while the fireable MDF instructions actually
sent to the remote interpreters are codified to refer to the nodes
of this graph. On the other hand, the data component of MDF
instructions can be serialized with a lightweight, ad-hoc marshal-
ing procedure, although this does not happen in the current ver-
sion of the muskel prototype.

Experiments in Fig. 6 break down the two main overhead
sources of the muskel implementation with respect to MDF
instruction distribution: serialization and encrypting. Abstractly,
both of them are aspects of MDF communication that can be inde-
pendently considered. As is clear from Fig. 6, both Java serialization
cost and SSL securing significantly affect communication perfor-
mance. Despite the fact that the exact balance between the two
overheads can be determined by considering only the particular
serialization and encrypting processes (e.g. data type, algorithm,
key length), experiments highlight that the serialization process
is in general heavier (more CPU demanding) than encrypting.

4.6. Network impact

The results discussed in the previous sections (but those of
Fig. 6, right) must be considered while taking into account that
the network used for the experiments was Fast Ethernet. The NIC
(network interface cards) used do not support any kind of on-board
data processing. In particular, the cards used just provide hardware
support to access via DMA the packets to and from the main store
from and to the internal buffer. Therefore, the whole cost of secur-
ing messages, i.e. the whole cost of encrypting data packets, is paid
by the central CPU serially to the time spent by the NIC to actually
send the message. In other words, the classical cost model for com-
munication that assumes a cost of

Tcommð#bytesÞ ¼ tinit þ#bytes� tbyte

where tinit represents the cost of preparing the message and initial-
izing the NIC and tbyte is basically the inverse of the network band-
width has to be read considering that tinit incorporates not only data
encapsulation in proper packets of the protocol stack but also the
encrypting of the payload using the symmetric key negotiated in
the SSL setup phase.

The additional messages exchanged in the initial phase of the
establishment of a SSL connection to negotiate the symmetric ses-
sion key, on the other hand, are paid just once and for all, as the
connections between remote MDF interpreters and the manage-
ment control threads are established once and for all when the
manager is asked to start the muskel parallel code execution with
the manager.compute() method call. Therefore these additional
messages (with respect to plain TCP/IP connection setup) add a
negligible overhead in the case that non-trivial (long) input
streams are processed.

If different network hardware is used, things may change a lot.
In particular, if modern, high performance network hardware is
used, such as QsNet II [25], then NIC on board processors can be
exploited to implement payload encryption. In this case, the over-
head on the CPU falls back to the same class as the overhead paid in
the case of plain TCP/IP usage. According to this scenario, we intro-
duced in each communication channel a pair of encrypting proxies.
They can be placed at deployment time between two communicat-
ing partners A, and B to secure their communications via SSL. A
proxy is realized as a thread that inter-operates with A on the
one end (via Java shallow memory copy), and with B (or its proxy)
on the other end (via a SSL-secured socket). The thread runs the
encrypting algorithm on all messages exchanged with B. As shown
in Fig. 6, the SSL proxy introduction has little or no impact on com-
munication performance with respect to standard SSL communica-
tions. In addition, in the case of dual-core machine (Fig. 6, right),
the thread may run on a different core with respect to the commu-
nication partner, thus improving the overall communication per-
formance. It is worth pointing out that the benefit of the
approach cannot be fully sensed with just a communication exper-
iment, such as the one leading to the results of Fig. 6. In this case,
the communications performed are ‘‘rendez-vous” communica-
tions: the single ControlThread asks for the evaluation of a fire-
able MDF instruction and then waits for its results. In addition to a
slight improvement of absolute communication performance, the
SSL proxies free the partners from encrypting CPU work that is
moved to another thread that may run on another core. This may
result in a significant improvement of communication perfor-
mance for asynchronous partner interactions, such as stream-ori-
ented interactions. In particular, such stream data traffic is the
one involved by the usage of a suitable proxy on the user machine
taking care of all the communications happening between Con-

trolThreads and remote interpreter instances. As sketched in
Fig. 7, the approach can be naturally generalized to consider also
data serialization. We believe these techniques will naturally
match the current trend of CPU architecture, which is moving to-
wards an ever increasing number of cores per CPU, by using some
of CPU resources as communication-oriented co-processors.

M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876 875
We are currently experimenting the autonomic usage (as self-
protection mechanism) of encrypting proxies between compo-
nents of a distributed application for grid [26]: each component
of a distributed application can autonomously and dynamically
negotiate with wired partners the introduction of encrypting prox-
ies to deal with insecure links.
5. Exploiting skeletons to drive security handling

As discussed above, the introduction of security in distributed
systems might have significant performance drawbacks. In skele-
ton systems these drawbacks can be ameliorated by selectively
introducing secured channels just along communication paths that
are considered insecure. This technique is particularly effective on
a macro data flow implementation of skeleton systems because of
the implicit load balancing these systems guarantee among macro
data flow interpreters.

In this section, we discuss how the muskel skeleton program-
ming model can be exploited to provide the user convenient tools
to drive security introduction in the muskel interpreter. In partic-
ular, we discuss how the user can tell the muskel system which is
the sensitive code and data, as well as communicating hints about
the ‘‘untrusted” nodes, i.e. those nodes that always need secured
communications, independently of their network location and con-
nections. This kind of information is then exploited in the run time
of the skeleton system to selectively introduce security in the
places where it is actually needed.

In order to allow users to provide muskel interpreter such
information, we exploit Java annotations and aspect oriented pro-
gramming (AOP), that is we use state-of-the-art Java metapro-
gramming tools. Programmers may use annotations to
distinguish both sensitive code and sensitive data. To denote sen-
sitive code, users may use the @SensitiveCode marker annota-
tion, whereas sensitive data can be denoted with a
@SensitiveData annotation. Both annotations should be used
to tag Compute object compute methods. As an example, consider-
ing the code in Fig. 1, we can assume that all the patient data are to
be considered sensitive, whereas only the Render code is sensitive.
Therefore, we can annotate the code as follows:

public class Filter extends Compute {

@SensitiveData(‘‘INOUT’’)

public Object compute(Object task) {
Image inImg = (Image) task;

. . .

return filteredImg;

}
}

public class Render extends Compute {
3
SecureControlThread performs the same tasks as a ControlThread1 bu

uses secured communications to handle remote macro data flow interpreter calls
rather than plain TCP/IP connections.
@SensitiveCode

@SensitiveData(‘‘INOUT’’)

public Object compute(Object task) {
Image inImg = (Image) task;

. . .

return renderedImg;

}
}

meaning that the computation of the image rendering is code that
must be kept confidential when the code is staged to remote macro
data flow interpreters connected through public, shared network
links, and that both input parameters and output results have to
be kept confidential both when computing Filter and Render.

Users can also provide insecure node IP information using the
InsecureIP annotation to annotate the manager declaration:

@InsecureIP(‘‘alpha1’’,‘‘131.114.2.14’’)

Manager mng = new Manager(main,inM,outM);

The information provided by the user is qualitative information.
No detail is to be given by the programmers about the mechanisms
to be used to implement security policies. The whole task of taking
care of the security issues is delegated to the muskel run time.
Exploiting AOP techniques and introspection, calls to the remote
nodes related to the evaluation of @SensitiveCode annotated
compute method are processed in such a way that the correspond-
ing code is staged to the remote data flow interpreter through an
SSL connection. Also, data representing input tokens related to a
@SensitiveData(‘‘IN’’) compute methods are sent to a re-
mote interpreter over SSL connections and @SensitiveDa-

ta(‘‘OUT’’) results (output tokens) are retrieved from the
remote workers using SSL connections rather than plain, unsecured
TCP/IP sockets. Finally, the manager can introspect the IP addresses
known to be insecure, according to the user/programmer hints, and
arrange to setup SecureControlThreads instead of plain Con-

trolThreads3 to manage those remote nodes.
Overall, this approach allows the clear separation between the

concerns about qualitative security aspects handling and the con-
cerns related to the actual implementation of the strategies to
implement security aspects in the execution of the skeleton pro-
gram, and in particular

(i) It is in line with the skeleton programming model (program-
mers only give hints to the skeleton system about the way
parallelism should be exploited, not details about how paral-
lelism exploitation is to be implemented).

(ii) It implements the separation of concerns inherent in the
AOP methodology.

(iii) It delegates to the muskel run-time the choice of the more
suitable mechanisms to implement the security policies
‘‘suggested” by the user through the annotations, leaving
the possibility to the muskel run-time to exploit all the
knowledge available related to the execution environment
and to the target architecture.

6. Conclusions

We discussed the cost of introducing security features into a
skeletal system such as muskel, i.e. a skeletal system implemented
exploiting macro data flow technology. We modified the muskel

implementation in such a way that the communications taking
place between the remote machines are performed guaranteeing
authentication, data confidentiality and integrity, by exploiting
the SSL Java library. We evaluated the cost of such operation. Then
we showed how the exploitation of the information available at
run time can mitigate its high cost.

We discussed experiments that clearly confirm that indiscrimi-
nate adoption of security techniques has a high cost and that
exploiting proper information (either provided by the user or gath-
ered from the execution environment) in the structured program-
ming environment may mitigate the overhead induced by security
t

876 M. Aldinucci, M. Danelutto / Journal of Systems Architecture 54 (2008) 868–876
mechanisms. As security is a fundamental issue in highly distrib-
uted systems, such as multi-cluster and grid architectures, we
think this could be considered an interesting contribution to the
skeletal system implementation technology.

Acknowledgement

We are grateful to Peter Kilpatrick for his substantial help in
improving the presentation of this work.

References

[1] M. Aldinucci, M. Danelutto, The cost of security in skeletal systems, in: P.
D’Ambra, M.R. Guarracino (Eds.), Proceedings of the International Euromicro
PDP 2007: Parallel Distributed and Network-based Processing, IEEE, Napoli,
Italia, 2007, pp. 213–220.

[2] M. Cole, Algorithmic skeletons: structured management of parallel
computations, Research Monographs in Parallel and Distributed Computing,
Pitman, 1989.

[3] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, M. Vanneschi, P3L: a structured
high level programming language and its structured support, Concurrency
Practice and Experience 7 (3) (1995) 225–255.

[4] M. Vanneschi, The programming model of ASSIST, an environment for parallel
and distributed portable applications, Parallel Computing 28 (12) (2002)
1709–1732.

[5] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, C.
Zoccolo, Dynamic reconfiguration of grid-aware applications in ASSIST, in: J.C.
Cunha, P.D. Medeiros (Eds.), Proceedings of 11th International Euro-Par 2005
Parallel Processing, vol. 3648 of LNCS, Springer, 2005, pp. 771–781.

[6] M. Cole, Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming, Parallel Computing 30 (3) (2004) 389–406.

[7] A. Benoit, M. Cole, S. Gilmore, J. Hillston, Flexible skeletal programming with
eSkel, in: J.C. Cunha, P.D. Medeiros (Eds.), Proceedings of the 11th International
Euro-Par 2005 Parallel Processing, vol. 3648 of LNCS, Springer, Lisboa, Portugal,
2005, pp. 761–770.

[8] A. Benoit, M. Cole, S. Gilmore, J. Hillston, Using eskel to implement the multiple
baseline stereo application, in: G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P.
Tirado, E. Zapata (Eds.), Parallel Computing: Current & Future Issues of High-
End Computing, Proceedings of the PARCO 2005, vol. 33 of NIC, Research
Centre Jülich, Germany, 2005, pp. 673–680.

[9] H. Kuchen, A skeleton library, in: B. Monien, R. Feldman (Eds.), Proceedings of
the Eighth International Euro-Par 2002 Parallel Processing, vol. 2400 of LNCS,
Springer, Paderborn, Germany, 2002, pp. 620–629.

[10] J. Serot, D. Ginhac, Skeletons for parallel image processing: an overview of the
SKiPPER project, Parallel Computing 28 (12) (2002) 1685–1708.

[11] M. Danelutto, QoS in parallel programming through application managers, in:
Proceedings of the International Euromicro PDP: Parallel Distributed and
Network-based Processing, IEEE, Lugano, Switzerland, 2005, pp. 282–289.

[12] MPI forum home page, 2007. <http://www.mpi-forum.org/>.
[13] M. Aldinucci, M. Danelutto, P. Teti, An advanced environment supporting

structured parallel programming in Java, Future Generation Computer
Systems 19 (5) (2003) 611–626.

[14] Globus web site, 2007. <http://www.globus.org/>.
[15] J. Dünnweber, S. Gorlatch, HOC-SA: a grid service architecture for higher-order

components, in: IEEE International Conference on Services Computing,
Shanghai, China, IEEE, 2004, pp. 288–294.

[16] M. Alt, J. Dünnweber, J. Müller, S. Gorlatch, HOCs: higher-order components
for grids, in: Component Models and Systems for Grid Applications, CoreGRID,
Springer, 2005, pp. 157–166.

[17] C. Geuer-Pollmann, J. Claessens, Web services and web service security
standards, Information Security Technical Report 10 (1) (2005) 15–24.

[18] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C.
Kesselman, S. Meder, L. Pearlman, S. Tuecke, Security for grid services, in:
Proceedings of the 12th International Symposium on High Performance
Distributed Computing (HPDC), IEEE, Los Alamitos, CA, USA, 2003, pp. 48–57.
[19] Next Generation GRIDs Expert Group, NGG3, Future for European Grids: GRIDs
and Service Oriented Knowledge Utilities, Vision and Research Directions 2010
and Beyond, 2006. <ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3_eg_final>.

[20] CoreGRID web site, 2007. <http://www.coregrid. net/>.
[21] CoreGRID NoE deliverable series, Institute on Trust and Security, Deliverable

D.IA.03 – Survey Material on Trust and Security, 2005. Available at: http://
www.coregrid.net/.

[22] M. Danelutto, P. Dazzi, Joint structured/non-structured parallelism
exploitation through data flow, in: V. Alexandrov, D. van Albada, P.M.A.
Sloot, J. Dongarra (Eds.), Proceedings of the ICCS: International Conference on
Computational Science, Workshop on Practical Aspects of High-level Parallel
Programming, LNCS, Springer, Reading, UK, 2006.

[23] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Computer
36 (1) (2003) 41–50.

[24] ProActive home page, 2007. <http://www-sop.inria.fr/oasis/proactive/>.
[25] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D. Roweth, F. Petrini, J.

Nieplocha, QsNetII: defining high-performance network design, IEEE Micro 25
(4) (2005) 34–47.

[26] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, N.
Tonellotto, Behavioural skeletons for component autonomic management on
grids, in: CoreGRID Workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, Heraklion,
Creete, Greece, 2007.

Marco Aldinucci got the PhD in Computer Science in
2003, he has been researcher at the Institute of Infor-
mation Science and Technologies of the Italian National
Research Council (ISTI/CNR, 2003–2006), and he is
currently research associate at Computer Science
Department of the University of Pisa, Italy. He is author
of more than 50 papers appearing in journals and
international refereed conference proceedings, together
with more than 40 different co-authors. He has been
and is currently participating in more than 10 national
and international research projects concerning parallel
computing, autonomic computing, and Grid topics,

including the Grid.it Italian National Project, CoreGRID EC Network of Excellence,
GridComp EC-STREP, BEinGRID EC-IP, INSYEME MIUR-FIRB. His main research is
focused on parallel/distributed computing in network of workstations and grids,

and in particular on models and tools for high-level parallel programming, auto-
nomic computing, component-based frameworks and distributed shared memory
systems. He led the design and the development of a number of tools for parallel
processing, including compilers, libraries and frameworks, both in industrial and
academic teams.

Marco Danelutto is an Associate Professor at the
Department of Computer Science, University of Pisa,
since 1998. His main research interests are in structured
parallel/distributed/grid programming (algorithmic
skeletons, parallel design patterns, macro-data flow
implementation models), autonomic computing, soft-
ware components and semi formal methods and tools
supporting parallel and distributed computing. He is
currently leading the Programming model Institute
within CoreGRID EU Network of Excellence and he has
been formerly the leader of the GRID.it (Italian national
FIRB project) workpackage responsible of the ASSIST

programming environment design and implementation. In the past, he has been
one of the main designers of P3L and he is currently maintaining Muskel, a full Java
skeleton library targeting generic networks of Java enabled workstations. Marco

Danelutto is author and co-author of about 110 papers appearing in international
journals and refereed conferences.

http://www.mpi-forum.org/
http://www.globus.org/
http://www.coregrid.net/
http://www.coregrid.net/
http://www.coregrid.net/
http://www-sop.inria.fr/oasis/proactive/

	Securing skeletal systems with limited performance penalty: The muskel experience
	Introduction
	The muskel Java skeleton library
	Experimenting security in muskel
	Experimental results
	Secure muskel vs. plain muskel
	SSL vs. plain TCP/IP bandwidth
	Iso-grain speedup
	Skeleton related optimizations
	Serialization and encrypting overhead
	Network impact

	Exploiting skeletons to drive security handling
	Conclusions
	Acknowledgement
	References

