
Proc. of the CoreGRID symposium, Springer, Aug 2008. To appear.

TOWARDS A FORMAL SEMANTICS FOR AUTONOMIC
COMPONENTS

Marco Aldinucci
Department of Computer Science, University of Pisa, Italy
aldinuc@di.unipi.it

Emilio Tuosto
Department of Computer Science, University of Leicester, UK
et52@mcs.le.ac.uk

Abstract Autonomic management can improve the QoS provided by parallel/distributed
applications. Within the CoreGRID Component Model, the autonomic manage-
ment is tailored to the automatic – monitoring-driven – alteration of the compo-
nent assembly and, therefore, is defined as the effect of (distributed) management
code.

This work yields a semantics based on hypergraph rewriting suitable to model
the dynamic evolution and non-functional aspects of Service Oriented Architec-
tures and component-based autonomic applications. In this regard, our main goal
is to provide a formal description of adaptation operations that are typically only
informally specified. We advocate that our approach makes easier to raise the
level of abstraction of management code in autonomic and adaptive applications.

Keywords: Components, adaptive applications, autonomic computing, grid, semantics, graph
rewriting.

2

1. Introduction
Developers of grid applications cannot rely neither on fixed target platforms

nor on stability of their status [14]. This makes dynamic adaptivity of appli-
cations an essential feature in order to achieve user-defined levels of Quality
of Service (QoS). In this regard, component technology has gained increased
impetus in the grid community for its ability to provide a clear separation of
concerns between application logic and QoS-driven adaptation, which can also
be achieved autonomically. As an example, GCM (the Grid Component Model
defined within the CoreGRID NoE) is a hierarchical component model explic-
itly designed to support component-based autonomic applications in highly
dynamic and heterogeneous distributed platforms [7].

An assembly of components may be naturally modelled as a graph and, if
components are autonomic, the graph can vary along with the program exe-
cution and may change according to input data and/or grid hardware status.
These changes can be encoded as reaction rules within the component Auto-
nomic Manager (hereafter denoted as AM). A proper encoding of these rules
effectively realises the management policy, which can be specific of a given
assembly or pre-defined for parametric assemblies (such as behavioural skele-
tons) [2, 1]. In any case, the management plan relies on the reconfiguration
operation exposed by the component model run-time support.

A major weakness of current component models (including GCM) is that
the semantics of these operations are informally specified, thus making hard to
reason about QoS-related management of components. In this work

We introduce few operations useful for component adaptation; the cho-
sen operations are able to capture typical adaptation patterns in paral-
lel/distributed application on top of the grid. These are presented as
non-functional interfaces of components that trigger component assem-
bly adaptation (Sec. 2).

We detail a semantics for these operations based on hypergraph rewrit-
ing suitable for the description of component concurrent semantics and
the run-time evolution of assemblies of autonomic components along
adaptations (Sec. 3, 4, and 5).

We discuss the appropriateness of the level of abstraction chosen to de-
scribe adaptation operations to support the design of component-based
applications and their autonomic management (Sec. 6).

The key idea of our semantical model consists in modelling component-based
applications by means of hypergraphs which generalise usual graphs be allow-
ing hyperedges, namely arcs that can connect more than two nodes. Intuitively,
hyperedges represent components able to interact through ports represented

Towards a Formal Semantics for Autonomic Components 3

by nodes of hypergraphs. The Synchronised Hyperedge Replacement (SHR)
model specifies how hypergraphs are rewritten according to a set of productions.
Basically, rewritings represent adaptation of applications possibly triggered by
the underlying grid middleware events (or by the applications themselves).

SHR has been shown suitable for modelling non-functional aspects of service
oriented computing [10–11] and is one of the modelling and theoretical tools of
the Sensoria project [20]. For simplicity, we consider a simplified version of
SHR where node fusion is limited and restriction is not considered. Even if, for
the sake of simpleness, the SHR framework used in this work is not the most
general available, it is sufficient to give semantics to the management primitives
(aka adaptation operations) addressed here. The autonomic manager – by way
of these adaptation operations – can structurally reconfigure an application to
pursue the (statically or dynamically specified) user intentions in terms of QoS.

2. Autonomic Components and GCM
Autonomic systems enable dynamically defined adaptation by allowing adap-

tations, in the form of code, scripts or rules, to be added, removed or modified
at run-time. These systems typically rely on a clear separation of concerns
between adaptation and application logic [15]. An autonomic component will
typically consist of one or more managed components coupled with a single
autonomic manager that controls them. To pursue its goal, the manager may
trigger an adaptation of the managed components to react to a run-time change
of application QoS requirements or to the platform status. In this regard, an
assembly of self-managed components implements, via their managers, a dis-
tributed algorithm that manages the entire application.

The idea of autonomic management of parallel/distributed/grid applications
is present in several programming frameworks, although in different flavours:
ASSIST [22, 3], AutoMate [18], SAFRAN [9], and GCM [7] all include au-
tonomic management features. The latter two are derived from a common
ancestor, i.e. the Fractal hierarchical component model [17]. All the named
frameworks, except SAFRAN, are targeted to distributed applications on grids.

GCM builds on the Fractal component model [17] and exhibits three promi-
nent features: hierarchical composition, collective interactions and autonomic
management. GCM components have two kinds of interfaces: functional and
non-functional ones. The functional interfaces host all those ports concerned
with implementation of the functional features of the component. The non-
functional interfaces host all those ports needed to support the component man-
agement activity in the implementation of the non-functional features, i.e. all
those features contributing to the efficiency of the component in obtaining the
expected (functional) results but not directly involved in result computation.
Each GCM component therefore contains an AM , interacting with other man-

4

agers in other components via the component non-functional interfaces. The
AM implements the autonomic cycle via a simple program based on reactive
rules. These rules are typically specified as a collection of when-event-if-
cond-then-adapt op clauses, where event is raised by the monitoring of com-
ponent internal or external activity (e.g. the component server interface re-
ceived a request, and the platform running a component exceeded a threshold
load, respectively); cond is an expression over component internal attributes
(e.g. component life-cycle status); adapt op represents an adaptation operation
(e.g. create, destroy a component, wire, unwire components, notify events to
another component’s manager) [9].

We informally describe some common adaptation operations that may be
assigned to configuration interfaces are the following:

Migration A component is required to change its running location (e.g. plat-
form, site). The request must include the new location and can be per-
formed while keeping its attached external state (go) or restating from a
fresh default state (start).

Replication A component (either composite or primitive) is replicated. Repli-
cation operation is particularly targeted to composite components exhibit-
ing the parametric replication of inner components (such as behaviour
skeletons), and can be used to change their parallelism degree (and thus
their performance and fault-tolerance properties). Replication events are
further characterized with respect to their relation with replicated com-
ponent state, if any. A component replica may be created with a fresh
external state, carry a copy of the external state (copy), or share the
external state with the source component (share).

Kill A component is killed. Due to this kind of action disconnected components
(and in particular storage managers) can subject to garbage collection.

Described primitives make possible the implementation of several adapta-
tion paradigms. In particular, migration may be used to adapt the application to
changes of grid topology as well as to performance drop of resources. Replica-
tion and kill may be used to adapt both data and task parallel computation. In
particular, replication with share makes it possible the redistribution of sub-task
in data parallel computations; replication with copy enables hot-redundancy.
Both stateful and stateless farm computation (parameter-sweeping, embarrass-
ingly parallel) may be reshaped both in parallelism degree and location run by
using replication and kill.

Towards a Formal Semantics for Autonomic Components 5

Example 1 Let P, C, SF, S, AM , W1, W2, W3 components (Producer, Con-
sumer, Stateful Farm1, Storage, Autonomic Manager, and Workers); L1 · · · L8

locations (e.g. sites, platforms). Thee kinds of bindings are used in the assem-
bly (see also Sec. 4).

P on L1

W1 on L7

W2 on L3 C on L6

AM on L4

S on L5 W3 on L8

P on L1

W1 on L2

W2 on L3 C on L6

AM on L4

S on L5

W1 = go(W1) on L7

W3 = share(W2) on L8SF SF

RPC or dataow bindings management bindings data sharing port bindings

The described assembly of components (left) is paradigmatic of many pro-
ducer-filter-consumer applications, where the producer (P) generates a stream
of data and the filter is parallel component (SF) exhibiting a shared state among
its inner components (e.g. a database). The original assembly (left) can be
dynamically adapted (right) by way of two adaptation operations to react to run-
time events, such as a request of increasing the throughput. The go operation
moves W1 from L2 to L7 (as an example to move a component onto a more
powerful machine); the share operation that replicates W2 and place it in the
new location L8 (to increase the parallelism degree). Both operations preserve
the external state of the migrated/replicated component, which is realised by
way of a storage component) attached via a data sharing interface [4].

Example 1 illustrates how the management can be described from a global
viewpoint. Indeed, the system is described by in a rather detailed way, e.g.,
components are explicitly enumerated along with their connections. Even if
this global viewpoint is useful (and sometime unavoidable) when designing
distributed systems, it falls short in describing what single components are
supposed to do when a reconfiguration is required. In other terms, it is hard to
tell what the local behaviour of each component should be in order to obtain
the reconfiguration described by the global view.

Also, it is worth remarking that, though the diagram clearly describes the
changes triggered by AM in this scenario, the lack of a formal semantics leaves
some ambiguities. For example, it is not clear if the reconfiguration should take
place if, and only if, the system is configured as on the lhs or this is rather a
”template” configuration (e.g., should the system reconfigure itself also when
W2 is connected to W1? What if W2 was not present?). Of course, such
ambiguous situations can be avoided when a formal semantics is adopted.

1This component is a composite component, and in particular it is an instance of a behavioural skeleton [2].

6

3. A Walk through SHR
Synchronised Hyperedge Replacement (SHR) can be thought of as a rule-

based framework for modelling (various aspects of) of distributed comput-
ing [11] modelled as hypergraphs, a generalisation of graphs roughly repre-
senting (sets of) relations among nodes. While graphs represent (sets of) bi-
nary relations (labelled arcs connect exactly two nodes), labelled hyperedges
(hereafter, edges) can connect any number of nodes. We give an informal al-
beit precise description of hypergraphs and SHR through a suitable graphical
notation. The interested reader is referred to [11, 16] and references therein for
the technical details.

Example 2 In our graphical notation, a hypergraph is depicted as

• l AM •l
′

•
s

σ

•
g

f •
s′

σ

Edges (labelled by f , AM and σ) are connected to nodes (g, l, l′, s and s′).
Specifically, AM connects g and l′, f connects g, l′ and s′ while two σ-labelled
edges are attached to s and s′. Notice that nodes can be isolated (e.g., l).

Hyperedges represent (distributed) components that interact through ports rep-
resented by nodes. Connections between edges and nodes, called tentacles,
allow components sharing ports to interact (e.g., in Example 2, f and AM can
interact on g and on l′).

Example 3 The hypergraph in Example 2 represents (part of) a system where
a manager AM and a component f are located at l′ and can interact on port
g. The component f has access to the store at s′ (e.g. by way of a data port
[4]). In the system are also present another location l and store s.

As in string grammars, SHR rewriting is driven by productions. In fact,
strings can be rewritten according to a set of productions, i.e. rules of the
form α −→ β, where α and β are strings (over fixed alphabets of terminal and
non-terminal symbols). Similarly, in SHR hypergraph rewritings are specified
by productions of the form L −→ R, where the lhs L is a hyperedge, the rhs
R is a hypergraphs and states that occurrences of L can be replaced with R.
Intuitively, edges correspond to non-terminals and can be replaced with a hy-
pergraph according to their productions. In SHR, hypergraphs are rewritten by
synchronising productions, namely edge replacement is synchronised: to ap-
ply the productions of edges sharing nodes, some conditions must be fulfilled.

Towards a Formal Semantics for Autonomic Components 7

More precisely, an SHR production can be represented as follows:

•l

•g f
copy〈g′,s′,l′〉

rep〈s′〉
• s

→
•g′ f •l • l′ •

s′

•g f • s

where on the lhs is a decorated edge and on the rhs a hypergraph. The produc-
tion above should be read as a rewriting rule specifying that edge f on the lhs
can be replaced with the hypergraph on the rhs provided that the conditions on
the tentacles are fulfilled. More precisely, copy and rep must be satisfied on
node g and s, respectively while f is idle on node l, namely it does not pose
any condition on l. According to our interpretation, this amounts to say that
when component f is said to replicate with copy by its AM (condition copy
on node g), it tells its store to duplicate itself (condition rep on node s). When
such conditions are fulfilled, edge f is replaced with the hypergraph on the rhs
which yield two instances of f one of which connected to the communicated
nodes as prescribed by the rhs of the production. Indeed, f exposes three nodes
on condition copy and one on rep; these represent nodes that are communi-
cated, i.e. g and l are node communication accounts for mobility as edges can
dynamically detach their tentacles from nodes and connect them elsewhere.

SHR has a declarative flavour because programmers specify synchronisation
conditions of components independently from each other. Once the system is
built (by opportunely connecting its components) it will evolve according to
the possible synchronisations of the edges. Global transitions are obtained by
parallel application of productions with “compatible” conditions where compat-
ibility depends on the chosen synchronisation policy2. Conditions on L −→ R
make it possible to introduce the concept of “context-freeness”: the productions
with a left-hand-side (lhs) which is either a node or an edge confer a context-
free flavour to graph grammars. Indeed, such productions do not consider the
“surroundings” of their lhs. This makes it possible to design graph rewritings
that can be locally applied, whereas other graph rewriting mechanisms (such
as double-pushout) requires to be applied in a context, which may the be in the
worst case the entire graph [11, 16]. As we shall discuss in Sec. 6, the context-
freeness of the approach is one of key features making SHR well-suited to
describe autonomic component in a grid framework.

2SHR is parametric with respect to the synchronisation mechanism adopted and can even encompass several
synchronisation mechanisms.

8

4. Productions for Non-functional Interfaces
SHR can adequately formalise the non-functional interface mechanisms in-

formally described in Sec. 2. Three conceptually distinct interfaces can be
considered: i) interfaces between components and AM (for management non-
functional bindings); ii) interfaces toward the external state (for data sharing
functional bindings); iii) interfaces for communicating with other components
(for RPC/dataflow functional bindings).

Since interfaces iii are application dependent, we focus on the coordination-
related interfaces i and ii.

A main advantage of our approach is that all aspects of non-functional inter-
faces are captured in a uniform framework based on SHR. Indeed,

components are abstracted as edges connected to form a hypergraph;

the coordination interface of each component is separately declared and
is not mingled with its computational activity;

being SHR a local rewriting mechanism, it is possible to specify confined
re-configuration of systems triggered by local conditions;

Migration. The migration of a component f is triggered when its AM raises
a signal go with the new location on node g. The synchronisation of f on the
go signal is given by following production:

•l

•g f
go〈g′,l′〉

•
s →

•g′ •l • l′

•g f • s

specifying that f running at l accepts to migrate to l′ (lhs); the “location” tenta-
cle of f is disconnected from l and attached to l′ (rhs). Notice that f maintains
the connection to the previous state s and l is still present. The tentacle con-
nected to g on the lhs is connected to g′ on the rhs; however, it might well be that
g′ = g (f is still connected to the original AM) or g 6= g′ (f changes manager).
Similarly, start moves the component to a new location l′. However, a new
external state σ is created together with its attaching node:

•l

•g fstartσ〈g′,l′,s′〉

EEEEE
•
s →

•g′ •l • l′ σ

•g f

LLLLLLL
����

•
s

•
s′

Towards a Formal Semantics for Autonomic Components 9

Replication. Unlike migration, replication of f preserves the location of the
original edge (i.e. a component):

•l

•g frep〈g′,l′〉

EEEEE
• s

→
•g′ •l •l′ f

•g f

;;;;
• s

the effect of the above production is to add a new instance of f at l′ with AM
connected to g′; of course, l = l′ and g = g′ are possible. The newly generated
instance shares external state with the original one.

Replication can also activate the new instance with a different state:

•l

•g frepσ〈g′,l′〉

EEEEE
• s

→
f •l • l′

•g f

;;;;
• s

The production above creates a fresh replica of f at l′ and assigns to it the
manager at g′; notice that the two instances of f share the state s.

Replication can also trigger a new instance of f that acts on a copy of the
state original state as described in the production of page 7 where f must notify
to its state to duplicate itself and connect the new copy on s′. Hence, the state
connected to s duplicate itself on the node s′ when the action complementary
to rep is received, as stated below.

σ rep〈s′〉 • s → σ • s •s′ σ

Component killing. Components are killed using the following production:

•l

•g fkill〈〉 • s
→

•l

•g • s

stating that f disappears when its corresponding AM sends a kill signal.

10

5. Synchronising productions
The operational semantics of SHR is illustrated through an example that

highlights the following steps:

1 individuate the adjacent tentacles labelled by compatible conditions;

2 determine the synchronising productions and replace the (instances of)
edges on their lhs with the hypergraphs on their rhs;

3 fuse the nodes that are equated by the synchronisations.

Let us apply the previous steps to show how migration works in a situation
represented by the following hypergraph

AMstartσ〈g,l1,s1〉 • l •l1

•g fstartσ〈g′,l′,s′〉 •s σ

where component f is running at l and shares g with a manager AM located
at l1. For brevity, tentacles are decorated with the conditions triggering the
rewriting (step 1). Indeed, the tentacles of AM and of f incident on node g
yield compatible output and input conditions respectively so that AM orders f
to migrate to l1 and to use the store at s1 while staying connected to g.

Productions synchronisation consists in replacing the occurrences of the
edges on the lhs with the hypergraphs specified in the rhs of the productions and
applying the node fusions obtained by the node communicated. For instance, in
the previous example the synchronising productions are the startσ production
of f given in Sec. 4 and the production of AM whose lhs and rhs consist of
AM connected to g and l1 (step 2). Hence, after the synchronisation, the node
fusions g′ = g, l′ = l1 and s′ = s1 are applied (step 3), so that the hypergraph
is rewritten as

AM • l •l1

•g f •s σ •s1 σ

Let us remark that l, σ and s remain in the final hypergraph. In fact they
should not be removed because other edges can be allocated on l or access σ.

Towards a Formal Semantics for Autonomic Components 11

The intuitive description of SHR given in this section suggests the following
design style and execution style:

assign an edge to each component and specify their productions;

represent the system as a hypergraph;

decorate the tentacles with the synchronisation conditions;

synchronise the productions until possible.

It is worth remarking that, unlike other semantical frameworks (e.g., pro-
cess calculi), in SHR synchronisation conditions may require more than two
(productions of) components to be synchronised. This actually depends on the
synchronisation policy at hand. For instance, in the migration rewriting de-
scribed in this section, it is possible to use broadcast interactions on the node g
so that all the components connected on g will move at l′ when the productions
are synchronised.

6. SHR provides a suitable abstraction for GCM Managers
We envision the GCM applications as composed of assemblies autonomic

components. These components are locally managed by their ownAM , whereas
the global managing of the application is distributely realised via the coopera-
tion of all AMs. This cooperation may happen in different fashions, although
an arrangement in a hierarchical fashion appears quite natural for GCM appli-
cations due to the hierarchic nature of the model [7].

Irrespectively of any given schema chosen for managing orchestration, each
manager can be described in terms of the adaptations that it can locally induce,
and the coordination actions it can handle towards other managers. Observe,
however, that the ultimate nature of those coordination actions consist in give
rise to a broader adaptation involving (also) not directly managed components3.
As discussed in Sec.3, SHR enables the system designer to uniformly formalise
and encode adapt op as local rules in the AM . These rules may

drive the adaptation of directly managed components, via the synchroni-
sation with nodes included in the managed (composite) component, such
as go, start, rep, copy, and kill;

drive broader adaptations via the synchronisation with other AMs. The
formalisation of these rules is currently under investigation and it not
fully discussed in this work. Preliminary results suggest the feasibility
of a design based on just two rules for interaction among managers: a

3Indeed, both classes of operations have been denoted as adapt op (see Sec. 2).

12

rule to (dynamically) send a new set of rules to other AMs, and a rule to
raise exception/violation toward other AMs.

An implementation of GCM exploiting described principles is currently on-
going. The feasibility of the approach has been prototyped with SCA/Tuscany
[19, 21] leveraging on a JBoss-based [13] encoding of when-event-if-cond
-then-adapt op rules. [8]. This kind of encoding makes easy the serialisation
of rules to support their portability across different AMs.

A distinguished feature of our approach is the high level of abstraction that
can be achieved through SHR formalisation of adaptation operations. This
results in:

The possibility to model very different attributes related to QoS manage-
ment. As an example, in the previous sections we uniformly used nodes
of the graphs to model locations, storage ports, functional ports, and non-
functional ports. The concept can be easily and uniformly extended to
cover other attributes that may be of interest of a particular instance of the
model, inter alia attributes concerning security, robustness, and platform
configuration.

The possibility to describe autonomic behaviour irrespectively of any
particular implementation. This is mostly due to the neutrality of the
description with respect to lower level detail of the component model
behaviour, inter alia component life-cycle, interactions between func-
tional and non-functional ports. As an example, the proposed descrip-
tion of adaptation operation is suitable for GCM/P [2], ASSIST [3], and
SCA/Tuscany [8] implementation of autonomic components.

In regard to the latter point, observe that our approach substantially differs
from other formalisation efforts aiming to model and check a particular imple-
mentation of an adaptive component framework (such as [6]). In particular, the
SHR description cannot be directly checked before being mapped onto a con-
crete model. We believe, however, this is a strength of the approach rather than
a limitation. On the one hand, because the concrete model can be automatically
generated through compilation once implementation-specific details has been
fixed, whereas in other approaches the model is entirely manually designed.
On the other hand, because it can support different concrete models matching
different implementations.

Example 4 The reference implementation of GCM (GCM/P [12], developed
on top of the Proactive middleware [5]) and ASSIST [3] exploit slightly different
autonomic component models and substantially different implementations. i)
ASSIST is implemented in C++ whereas GCM/P in Java. ii) ASSIST does not
require a component subject of a copy to be in stopped state, whereas GCM/P

Towards a Formal Semantics for Autonomic Components 13

does. iii) ASSIST implements kill as component destruction, whereas GCM/P
as logical marking. iv) ASSIST provides a native Distributed Shared Memory
for external storage in share, whereas GCM/P does not. v) ASSIST does not
implements go for all components, whereas GCM/P does. However, they both
implement the same set of adaptation operations, which is the one described
in the previous sections. As expected, the same operation exhibits different
limitations and overheads in the two implementations4.

Finally, observe that proposed approach to formalisation of autonomic com-
ponents slightly extends classic (run-time) autonomic approach. We believe that
the GCM equipped with those adaptation operations make it possible the defini-
tion of a malleable component model in which adaptations may be either applied
autonomically at run-time (under the control of the AMs) or statically exploited
to achieve static or launch-time optimisation targeted to generate/configure a
particular component assembly for a well-known running environment (e.g. a
cluster), thus potentially achieving a significant reduction of overhead in the
running code while keeping the full ubiquity potential of the GCM applications.

7. Conclusions
In this work we introduced a SHR formalisation of adaptation operations

suitable to support the definition and the evolution autonomic components,
and in particular GCM-based autonomic components, which has been defined
within the CoreGRID NoE.

A reference implementation of GCM (GCM/P) autonomic components is
currently ongoing within the GridCOMP STREP project [12]. In this imple-
mentation, the autonomic manager of a component is currently defined as a
chunk of plain Java code (wrapped into a proper placeholder) invoking moni-
tor and adaptation operations. This approach, despite already fully functional
[2], is excessively low-level and implementation-dependent, thus is unlikely to
properly support the design of management for large/complex component as-
semblies, to sustain the design of reusable management policies, and to survive
to the porting of these policies to other implementations of the same (or similar)
component models.

The proposed formalisation aims to raise the level of abstraction of adaptation
operations and their effects (i.e. their semantics), thus providing

the application designer with a theoretical tool to design management
policies, and reason about their effects (effectiveness, correctness, etc.);

4On the whole, GCM/P focuses on generality whereas ASSIST on performance [3, 2].

14

the component model developers with a formal specification of adapta-
tion operations as reference for their implementation and manipulation
(parsing, serialisation, dynamic installation, etc.)

SHR has been previously exploited in [10] for managing application level
service level agreement (SLA) in a distributed environment, and in [11] to
tackle several programming and modelling facets arising in service oriented
computing. Here, we shown that SHR is a suitable tool to describe adaptation
operations at the “proper” level of abstraction, thus making possible to achieve

the uniform description of the attributes involved in component assembly
adaptation (such as location, storage ports, etc.);

describe adaptations at the level of the component model (as opposed to
its implementation);

the design of effective and reusable autonomic management policies.

The presented adaptation operations are currently implemented (as Java
code) in GCM/P; their effectiveness and overhead in managing the QoS of
grid applications is discussed in [1–2].

Acknowledgments
This research has been supported by the FP6 Network of Excellence Core-

GRID, the FP6 GridCOMP project funded by the European Commission (IST-
2002-004265 and FP6-034442), and the Sensoria project funded by the Eu-
ropean Commission (FET-GC II IST-2005-16004).

References
[1] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonel-

lotto. Behavioural skeletons for component autonomic management on grids. In M. Dane-
lutto, P. Frangopoulou, and V. Getov, editors, Making Grids Work, CoreGRID. Springer,
May 2008.

[2] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-
lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid
components. In D. E. Baz, J. Bourgeois, and F. Spies, editors, Proc. of Intl. Euromicro
PDP 2008: Parallel Distributed and network-based Processing, pages 54–63, Toulouse,
France, Feb. 2008. IEEE.

[3] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing,
32(7):449–462, 2006.

[4] G. Antoniu, H. Bouziane, L. Breuil, M. Jan, and C. Pérez. Enabling transparent data
sharing in component models. In 6th IEEE Intl. Symposium on Cluster Computing and
the Grid (CCGRID), pages 430–433, Singapore, May 2006.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici. Grid Com-
puting: Software Environments and Tools, chapter Programming, Deploying, Composing,
for the Grid. Springer-Verlag, Jan. 2006.

Towards a Formal Semantics for Autonomic Components 15

[6] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical components.
In P. Godefroid, editor, Model Checking Software, Proc. of the 12th Intl. SPIN Workshop,
volume 3639 of LNCS, pages 154–168, San Francisco, CA, USA, Aug. 2005. Springer.

[7] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable
D.PM.04 – Basic Features of the Grid Component Model (assessed), Feb. 2007. http:
//www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

[8] M. Danelutto and G. Zoppi. Behavioural skeletons meeting services. In Proc. of ICCS:
Intl. Conference on Computational Science, Workshop on Practical Aspects of High-level
Parallel Programming, volume 5101 of LNCS, pages 146–153, Krakow, Poland, June
2008. Springer.

[9] P.-C. David and T. Ledoux. An aspect-oriented approach for developing self-adaptive
fractal components. In W. Löwe and M. Südholt, editors, Proc. of the 5th Intl Symposium
Software on Composition (SC 2006), volume 4089 of LNCS, pages 82–97, Vienna, Austria,
Mar. 2006. Springer.

[10] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A formal basis for
reasoning on programmable Qos. In Intl. Symposium on Verification – Theory and Practice
– Honoring Z. Manna’s 64th Birthday, volume 2772 of LNCS. Springer, June 2003.

[11] G. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised hyperedge
replacement as a model for service oriented computing. In F. de Boer, M. Bonsangue,
S. Graf, and W. de Roever, editors, Formal Methods for Components and Objects: 4th
Intl. Symposium, FMCO, volume 4111 of LNCS, Amsterdam, The Netherlands, Nov. 2006.
Springer. Revised Lectures.

[12] GridCOMP Project. Grid Programming with Components, An Advanced Component
Platform for an Effective Invisible Grid, 2008. http://gridcomp.ercim.org.

[13] JBoss rules home page. http://www.jboss.com/products/rules, 2008.

[14] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien,
H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt,
D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a framework for preparing and
executing adaptive Grid programs. In Proc. of NSF Next Generation Systems Program
Workshop (IPDPS 2002), 2002.

[15] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, 2003.

[16] I. Lanese and E. Tuosto. Synchronized Hyperedge Replacement for Heterogeneous Sys-
tems. In J. Jacquet and G. Picco, editors, International Conference on Coordination
Models and Languages, volume 3454 of LNCS, pages 220 – 235. Springer, April 2005.

[17] ObjectWeb Consortium. The Fractal Component Model, Technical Specification, 2003.

[18] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri. AutoMate:
Enabling autonomic applications on the Grid. Cluster Computing, 9(2):161–174, 2006.

[19] Service component architecture. http://www.ibm.com/developerworks/library/
specification/ws-sca/, 2008.

[20] Sensoria Project. Software Engineering for Service-Oriented Overlay Computers, 2008.
http://sensoria.fast.de/.

[21] Tuscany home page. http://incubator.apache.org/tuscany/, 2008.

[22] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

