
Autonomic management of multiple
non-functional concerns in behavioural
skeletons

Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

Abstract We introduce and address the problem of concurrent autonomic
management of different non-functional concerns in parallel applications build
as a hierarchical composition of behavioural skeletons. We first define the
problems arising when multiple concerns are dealt with by independent man-
agers, then we propose a methodology supporting coordinated management,
and finally we discuss how autonomic management of multiple concerns may
be implemented in a typical use case. Being based on the behavioural skeleton
concept proposed in the CoreGRID GCM, it is anticipated that the method-
ology will be readily integrated into the current reference implementation of
GCM based on Java ProActive and running on top of major grid middleware
systems.

Key words: Behavioural skeletons, autonomic computing, multi-concern
autonomic management.

1 Introduction

Efficient implementation of parallel/distributed applications requires solving
several problems related to the handling of different non-functional concerns.
A non-functional concern is a concern not related to what is computed by
the application, but rather to how the results of the application are com-

Marco Aldinucci
Dept. Computer Science, University of Torino, Italy e-mail: aldinuc@di.unito.it

Marco Danelutto
Dept. Computer Science, University of Pisa, Italy, e-mail: marcod@di.unipi.it

Peter Kilpatrick
Dept. Computer Science, Queen’s University Belfast, UK, e-mail: p.kilpatrick@
qub.ac.uk

1



2 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

puted [9]. Typical examples of non-functional concerns include performance
tuning, fault tolerance, security and power efficiency.

In [1] we discussed a framework based on the concept of behavioural skele-
ton, aimed at supporting the programming of parallel/distributed applica-
tions. A behavioural skeleton is a co-designed and optimized implementation
of a parallel algorithmic skeleton modelling a well-known parallelism exploita-
tion pattern, together with an autonomic manager taking care of one of the
non-functional concerns related to the execution of that algorithmic skeleton.
The complete behavioural skeleton framework has been experimented with in
the GCM context [7]. Simple managers, each taking care of a non-functional
concern in a single behavioural skeleton have been designed and implemented
[1], as well as hierarchies of autonomic managers, each taking care of a single
non-functional concern relative to a single skeleton in a hierarchy of skeletons
[2, 4]. In both cases, experimental results demonstrated the feasibility of the
behavioural skeleton approach and the efficiency of the GCM implementation
of behavioural skeletons in its application to real use cases.

However, the autonomic management of multiple non-functional concerns
has not yet been considered in this framework, although it is clear that it
would be a very useful and powerful tool to tackle non-functional concerns.

When dealing with autonomic management of multiple non-functional con-
cerns, several distinct issues arise, in addition to those for a single non-
functional concern. In particular, coordination of the autonomic managers
taking care of the different concerns is needed to avoid conflicting decisions
being taken that eventually impair the whole autonomic management frame-
work. This coordination represents a significant challenge.

In this paper we consider autonomic management of several different non-
functional concerns in a distributed system. We address the problem in a
structured programming framework (Sec. 2), we consider the issues related
to coordination of autonomic managers each dealing with a different concern
(Sec. 3), and we discuss the methodology proposed in Sec. 3.1 applied to
a typical use case (Sec. 4). Related work and conclusions sections end the
paper.

2 Parallel framework

We assume here that parallel applications are programmed according to struc-
tured parallel programming principles [6]. In particular, we assume a parallel
application is build of the composition of behavioural skeletons [1] and se-
quential portions of code modelling pure functions. A behavioural skeleton
(BS) models a well-know parallelism exploitation pattern. We assume here
the existence of a set of BS including: pipeline modelling computations in
stages processing streams of tasks; task farm modelling embarrassingly par-
allel computations processing streams of tasks; data parallel modelling dif-



Autonomic management of multiple non-functional concerns in BS 3

ferent kinds of data parallel patterns (embarrassingly parallel, with stencil,
with shared read only data structures, etc.); and sequential wrapping pure
functional sequential code in such a way that it can be used within other
BS. Each BS implements a known parallelism exploitation pattern and an
autonomic manager taking care of some non-functional concern. A parallel
application is thus build out of a composition of BS. The user provides the
sequential portions of code wrapped in the sequential BS, the input data and
a QoS contract. The BS run time system executes the application in such a
way that the (hierarchy of) application manager(s) takes care of ensuring the
QoS contract provided by the user.

As an example, in [2] we discuss an application which is a pipeline whose
first and third stages are sequential, whose second stage is parallel (a task
farm with sequential workers) and whose autonomic manager deals with per-
formance tuning. The structure of the resulting application is shown in Fig. 1.

Restriction of the parallelism patterns the programmer can exploit by the
use of behavioural skeletons makes it possible to achieve better performance
and efficiency while implementing the application, and allows effective au-
tonomic management to be programmed in the autonomic managers while
preserving the possibility to model all (most) of the commonly used patterns
in parallel and distributed computing.

3 Autonomic management of multiple concerns in
structured parallel computations

When dealing with multiple non-functional concerns, we have to consider
that, in the most general cases, distinct autonomic management strategies
may exist for each of the non-functional concerns under consideration. More
precisely, we may assume that a collection of (possibly hierarchical) auto-
nomic managers exist AM1, . . . ,AMm that can independently and auto-
nomically take care of non-functional concerns C1, . . . , Cm. For example, the
managers AMpipe, AMseq (two instances) and AMfarm of Fig. 1 constitute
a single, hierarchically structured collection of autonomic managers. If more
concerns are to be considered, we will assume more managers will be associ-
ated with the single behavioural skeleton. Fig. 2 shows how these managers
will be organized when two non-functional concerns are involved: CP (perfor-
mance tuning) and CS (security).

We will use the term AMi to refer to the top level manager of a hierarchy
of managers handling non-functional concern Ci, if not otherwise specified.

Our approach to handling multiple non-functional concerns is based on
a five-pronged attack: identifying an overall strategy for coordinating the
managers’ activities; finding a common currency by which managers may in-
teract; finding means of reaching consensus on decisions; determining how the



4 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

management activity can be initialized; and devising a means to implement
autonomic management. We now consider each of these in turn.

3.1 Centralized vs. distributed autonomic management
of multiple concerns

When considering autonomic management of multiple non-functional con-
cerns, we must identify a general strategy to coordinate the autonomic man-
agement activities performed by the different managers (or manager hier-
archies). In general, it may be the case that manager AMi takes a deci-
sion affecting the global application that is in contrast with the strategies
of manager AMj . For example, AMP (a manager taking care of ensuring
performance contracts) may clearly take decisions that are in contrast with
the policies ensured by AMW (a manager taking care of ensuring power
management contracts).

To resolve these conflicts a means must exist by which managers may
reach mutually acceptable positions. Two strategies can be identified for this
purpose:

SM a Super Manager AM0 can be introduced, positioned hierarchically
above managers AM1 to AMm, coordinating the decisions taken locally
by these autonomic managers and relating to different, possibly interfering
concerns; or

S1

E

W1 
(S2)

W2 
(S2)

W3 
(S2)

W4 
(S2)

C

S3

(b) (c)

S1

E

W1 
(S2)

W2 
(s2)

W3 
(S2)

W3 
(S2)

C

S3

AMpipe

AMfarmAMseq AMseq

pipeline

seq farm seq

seq
(a)

S1 S3

S2

Fig. 1 Sample parallel application with behavioural skeletons: logic view (a), process
view (sample, (b)) and autonomic manager view (c)



Autonomic management of multiple non-functional concerns in BS 5

CM the managers AM1 to AMm can be modified in such a way that
before actuating any decision, they reach agreement with the others.

Both solutions share a common concept, which is the idea of building a
consensus on the decisions taken. In the former case (SM) the consensus
has to be sought by AM0, upon communication from one of the AMi of a
proposed decision. Upon consensus, AM0 may give the green light to AMi

in such a way that the decision is actuated. If consensus is not reached,
eventually AM0 will communicate to the AMi that the decision is to be
aborted. In the latter case (CM), the AMi that proposes to take a decision
should contact all the other managers and behave as the SM in the former
case to build a consensus on this decision. So, the two strategies considered
differ only in the way they will build the manager network, but thereafter
most of the coordination algorithms and strategies should be the same, or
very similar.

As a matter of fact, in solution CM the coordination among managers
may happen at any level of the autonomic manager hierarchy. Fig. 2 shows
how managers dealing with different concerns within the same behavioural
skeleton can be naturally paired in such a way they can coordinate locally
taken decisions.

3.2 Shared knowledge among different autonomic
managers

The second area to be addressed when reasoning about multi-concern man-
agement is the common knowledge necessary across different concern man-
agers to make possible agreement on global application management. Dif-
ferent manager hierarchies should agree on a common view of the paral-
lel/distributed application at hand in order to be able to share decisions and,
where appropriate, obtain consensus on local decisions before actuating them.

The main common concept across the different managers is the application
graph whose nodes represent the parallel/distributed activities and whose
arcs represent communications/synchronizations among these activities. Each
node and arc can be labelled with suitable metadata. For example, the node
metadata could represent mapping information (which processing element(s)
host the parallel activity, what are its features in terms of CPU, memory,
disk, network bandwidth, etc.); the arc metadata may represent features of
the corresponding communication channel (kind of protocol used, bandwidth
and latency, whether it can be regarded as a secure channel or not, etc.).

We do not address here general parallel/distributed applications. Rather,
we target only those applications build by composing behavioural skeletons.
Therefore the application graph we will deal with is the graph representing
a well formed composition of parallel/distributed patterns modelled by the



6 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

behavioural skeleton library at hand. Fig. 3 shows the application graph
(with sample associated metadata) corresponding to our sample application:
a three stage pipeline with parallel second stage (task farm with 4 workers).

The application graph represents the minimal information that can be
shared among managers to implement multi-concern autonomic management.

Consider a typical example, involving autonomic management of perfor-
mance, security and power saving options in an application such as that of
Fig. 3. A typical decision taken by the AMP consists in varying the number
of workers in the farm representing the second stage of the pipeline. For ex-
ample, the number of workers can be increased to increase the throughput of
the second stage and thus guarantee the user supplied performance contract.
In this case, the decision of the AMP will eventually lead to a different appli-
cation graph. The new worker allocated will be labelled with some metadata
representing, among other information, the resource where it will be mapped
or the set of resources where the actual resource to host the worker will be
taken from. The agreement with the other managers must be obtained in
this case before committing the decision. AMW may provide some priori-
ties among the potential target resources for allocation of the new worker, in
such a way that low consumption options are preferred. On the other hand,
AMS (an autonomic manager taking care of security concerns) may provide
a binary mapping of the resources distinguishing those that are secure (i.e.
those that can be reached using only private and trusted network segments)
from those that are not. Eventually, AMP may decide to allocate the new
worker on a low consuming, secure resource (with no additional effort), on
a low consuming, non-secure resource (with provision for encryption of com-
munications) or on a high consuming, non-secure resource (again, providing
for encryption). In all cases, the common level of agreement with the other
managers will be on the final application graph. Even where no consensus
can be reached among the different managers (e.g. no secure resources found,
user contract asking for completely secure computations, impossibility to use
alternative secure protocols) the eventual agreement will be on retaining the

S1

E

W1 
(S2)

W2 
(S2)

W3 
(S2)

W4 
(S2)

C

S3

AMpipe
S

AMseq
S

AMfarm
S

AMseq
S

AMpipe
P

AMseq
P

AMfarm
P

AMseq
P

Fig. 2 Multiple manager hierarchies (S=security managers, P=performance tuning
managers) in behavioural skeletons



Autonomic management of multiple non-functional concerns in BS 7

original graph, thus representing the fact that the decision by AMP has been
aborted.

3.3 Impact of local decisions on global application
management

Having stated that a consensus has to be reached on the resulting application
graph (with metadata) before committing any decision, we now consider how
such consensus may be built. In particular, we discuss how the consensus
process can be established and implemented; and the possible results of the
consensus process.

3.3.1 Consensus building

Consensus building must be implemented as a two-phase process. In the first
phase, the autonomic manager whose control cycle has identified that a deci-
sion has to be implemented as a consequence of some triggering event (here
we assume it will be AM1) must initiate the consensus building, either by
interacting with AM0 (SM case) or with all the other managers (AM2 to
AMm, CM case). In the second phase, AM1 should await for the consen-
sus results and, depending on their nature, either commit the decision (i.e.
execute the actions in the plan associated with the decision) or abort it.

The intent of the two-phase protocol for consensus building is clear: no
decision may be taken locally if the management of other concerns may be
affected by the results of the decision. This in turn has two consequences:

Seq

Seq

Seq

Seq

Pipeline

Seq Seq

Task farm

S1 S3

W1

W2

W3

W4

security(unsecure)

security(unsecure)
location(S3,ipaddB)

power(cheap)

Sample metadata

Application graph

security(unsecure)
location(W4,ipaddA)

power(hungry)

Fig. 3 Sample application graph



8 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

1. decisions can be assigned to one of two classes: independent decisions, i.e.
those not affecting the behaviour of other autonomic managers handling
different concerns, and interfering decisions, i.e. those (potentially) having
an impact on contract maintenance by other concern managers. For exam-
ple, a decision to change the implementation of a parallel activity already
mapped to a given processing resource, from single to multi-threaded, will
most likely be an independent decision. On the other hand, a decision to
migrate an already mapped parallel activity or to start a new parallel ac-
tivity will be interfering decisions. In this case, new processing resources
have to be recruited and that will typically affect contract maintenance by
managers concerned with security, power management, etc.

2. decisions taken by AM1 could have several alternative equivalent imple-
mentations (i.e. plans and sequences of actions implementing the decision
at AMi) including

• plain implementation of the decision, i.e. no modification is made with
respect to the implementation plan prepared by AM1 as a consequence
of the answers provided by the other managers, and

• “adjusted implementation” of the decision, i.e. an implementation
whose actions have been modified according to the requirements gath-
ered from the AMj (j 6= i) in order to ensure maintenance of the whole
set of contracts provided to the different managers rather than taking
into account only concern C1.

Typically, independent decisions will lead to the execution of unmodified
implementation plans, whereas interfering decisions will lead to adjusted
implementations.

Clearly, the necessity to provide “adjusted” implementation plans at man-
ager AMi raises a compositionality issue: if AMi only had to take care
of concern Ci, no adjustment would be needed to its implementation plans.
Adjustments are only needed when other concerns (Cj , j 6= i) are taken into
account. It is therefore clear that adjustments will depend on the nature of the
Cj . Thus AMi will be no longer independent of the other managers/concerns.

In order to solve this issue, we propose the following methodology:

• A decision Dj taken by a manager AMi is implemented with an ordered
list of actions aj1, . . . , ajkj . This ordered list of actions is the implementa-
tion plan of decision Dj .

• The granularity of the actions is the finest possible preserving the inde-
pendence of each of the actions themselves.

• Actions are labelled as independent or interfering as above.
• Taking into account the overall set of concerns Cj , j 6= i considered in

addition to Ci, for each interfering action ak (or for each sequence of
actions ak−m, . . . , ak+n containing at least one interfering action ak) one
or more substitute plans ak1, . . . , akik

are prepared that have the same



Autonomic management of multiple non-functional concerns in BS 9

effect as ak with respect to the concern Ci but that also accomplish some
property required by other managers AMj , j 6= i.

• Finally, the consensus building phase will be modified as follows: the man-
agers informed of decision Dk by manager AMi will eventually report back
to AMi either an ACK message or a needProperty(propNamej) message,
where propNamej is one of the “other concern” properties AMi is able
to deal with. If no suitable propName is available at AMi to deal with
what is required by the other manager, a NACK message will be returned
that will serve to block the execution of Dk by AMi.

3.3.2 Consensus results

The smoothest outcome is the one where AMi, seeking consensus on decision
Dk, gets from other managers (CM case) or from AM0 (SM case) only ACK
messages. This will be the result both in the case of an independent Dk, and
of an interfering Dk which at the moment does not cause any conflict with
the policies implemented by the other managers.

The second case is in a sense the opposite of the first: AMi gets at least
one NACK message back from one of the other managers. In this case the
decision Dk will be aborted and manager AMi must attempt to determine
some other strategy (if any) to address the situation that triggered decision
Dk.

The last, and most interesting (and challenging) case, is that where AMi

gets only ACK or needProperty messages back from the other managers. Here
we should distinguish two further sub-cases:

• There is a single needProperty(propNamei) message. In this case, AMi

should simply implement the substitute plans for the interfering actions
in the original Dk plan corresponding to propNamei.

• There are multiple needProperty messages from the other managers. In this
case AMi should first determine which substitute implementation plans
should be used and then consider whether the simultaneous usage of all
of these substitute plans is still consistent. If it is consistent, the resulting
new implementation plan will be executed. If not, Dk will be aborted.

Once the final plan implementing Dk has been determined (consensus
having been achieved), the execution of the plan (i.e. the execution of the
sequence of actions a1, . . . , an in the plan) involves a modification of the ap-
plication graph (the structure of the graph and/or the associated metadata).
This modification has to be notified to all the other managers so that they
can maintain a consistent view of the system. Moreover, the execution of the
plan a1, . . . , an has to be implemented as an atomic procedure. This means
that any further decision taken by other managers should be processed only
after finishing action an and releasing the atomic action lock. In turn, all
of this process obviously requires a distributed coordination mechanism. To



10 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

avoid running a complicated and costly distributed coordination protocol, we
can consider here to have the application graph controlled by AM0 in a SM
implementation of the multiple concern management, and to have the single
AMi communicating the actions in the agreed plan to AM0 in such a way
that these actions can be executed directly by AM0.

3.4 Initialization of the AM hierarchy

We assume that the user submits QoS contracts to the different AMi pro-
vided with the behavioural skeleton framework. These contracts describe the
user’s (non-functional) requirements that have to be guaranteed by the be-
havioural skeleton implementation of the user application.

We assume the user provides these contracts in such a way that:

• The order of the contracts establishes a priority among the managers.
Thus, if the user provides contracts QoS1, . . . , QoSk (in order), only the
managers dealing with concerns C1 to Ck will be activated and the de-
cisions of manager i will have precedence over the decisions of manager
i + h. The relative ordering among managers and, consequently, among
manager decisions can be used to resolve conflicts when multiple decisions
are communicated for consensus or even to impose an ordering on the sub-
stitute plan implementations when multiple needProperty messages have
been directed to the AMi seeking consensus on Dj .

• The first contract QoS1 determines which manager is in charge of estab-
lishing the initial application implementation configuration. This is partic-
ularly important as multiple concern management needs a starting config-
uration to initiate the autonomic management activities. Consider the case
where performance, security and power saving concerns are of relevance.
The same application will be configured to use the maximum number of
powerful nodes if run under the sole control of AMP , on a number of
secure nodes if run under the control of AMS , or on a number of low
consumption nodes if run under the control of AMW . In the three cases,
the number of processing elements used may vary as well as the overall
performance of the application.

3.5 Rule-based multi-concern autonomic manager
implementation

In earlier work we demonstrated the suitability of business rule management
frameworks for implementing autonomic managers handling a single concern
[1]. A business rule framework implements a system of pre-condition (P )



Autonomic management of multiple non-functional concerns in BS 11

action (ai) rules in the form P (x1, . . . , xn) → a1; . . . ; ak. When executed,
the precondition part of all the rules is evaluated. Those rules that have a
precondition holding true are fired (possibly using some ordering based on
priorities); that is, the corresponding action part is executed.

In particular, the classical control loop (monitor→analyze→plan→execute)
implemented by each manager may be implemented in such a way that:

• the monitor phase is implemented by gathering the current values of the
variables used in the pre-condition parts of the rules;

• the analyse and plan phases correspond to evaluating which pre-conditions
are satisfied and choosing one of the corresponding rules, possibly using
some priority-based ordering;

• the execute phase is implemented by simply executing the action set (the
implementation plan) in the right hand side of the rule identified in the
previous step.

This was shown to work well when a single manager is considered. Now
the idea can be adapted to the multi-concern management as follows:

• each rule originally present in the rule set implemented by AMi in isola-
tion is transformed into two distinct (classes of) rules: 1) a rule with the
same pre-condition hosting as action part the consensus building start-up
actions; 2) one or more rules with a pre-condition evaluating the responses
by the other managers in the consensus building phase, and as the action
part the original implementation plan or one of the adjusted plans.

• specific rules are added to deal with NACK answers. These rules may in-
clude priority reordering within the manager rules, as well as new rules
exploiting the available accumulated knowledge to deal with the new sit-
uation (we assume here that some “learning” technique is used).

4 Sample case study

We consider here a case study, to illustrate the concepts and the methodology
discussed above. A more complete version of this use case may be found in
[3]. Consider the application whose schema is depicted in Fig. 1, and assume
two distinct non-functional concerns are handled by two autonomic manager
hierarchies associated with the BS used: security and performance tuning.
Let us assume that the QoS contracts provided by the user are:

1. secureData(), directed to AMS and specifying that all the data trans-
fers involving remote nodes must be secured, and

2. minThroughput(1 task/sec), directed to AMP and specifying that
the parallel application is expected to deliver at least one result per second.

As the first contract is directed to AMS , the autonomic manager dealing
with security will handle the initial configuration of the program, i.e. it will



12 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

define the initial application graph. Not being concerned with performance,
AMS will set up a graph using the default values for all those parameters
that have not been specified by the user. In this case, the parallelism degree
of the task farm will be set to some default value (say 4) and there will be
no grouping of pipeline stages. Thus, the application graph will be a graph
G = 〈N,A〉 with:

N = {ns1, ne, nw1 , . . . , nw4 , nc, ns3}
A = {(ns1, ne), (ne, nw1), . . . , (ne, nw4), (nw1 , nc), . . . , (nw4 , nc), (nc, ns3)

AMS will try to select nodes ni that belong to trusted domains (i.e.
domains that can be reached through trusted interconnections and hosting
trusted nodes). If this is not possible, nodes from untrusted domains will be
selected and metadata will be inserted in the application graph to state that
the arcs leading to the untrusted nodes should be secured.

Once the initial application graph has been produced by AMS , it will
be mapped onto the target architecture and the application will be started.
After application start, metadata will be added to the application graph
modelling node placement (e.g. location(ni, ip addressj)), resource character-
ization (e.g. nodeProp(ni, opSys(Linux), procType(dualcore), ...)), etc. This
metadata will be used to derive variables and values used in the pre-conditions
as well as in the action part of the manager rules. Metadata also represent de
facto the actual mapping of the abstract application graph to real resources.

Both AMS and AMP will start their control loops. AMS , being solely
responsible for the initial allocation, will have no rules triggered and therefore
will not execute any action affecting the system. On the other hand, AMP

will immediately evaluate the performance achieved by the program and this,
in turn, will make some rules fireable if the performance is not consistent with
the supplied QoS contract. Sample rules used in a hypothetical stand-alone
AMP should include the following rules for farms:

Name Rule
Farminc priority(x),

instanceof(farm) & Tarr > QoS & Throughput < QoS
→ findNewResource, allocateNewWorker,

connectNewWorker
Farmdec priority(x),

instanceof(farm) & Throughput >> QoS
→ removeWorker

(priority(x) denoting the fact that the rule has priority x, Tarr being the
inter-arrival time of tasks to the farm and QoS being the throughput contract
issued by the user). These two rules will be different in an AMP that is aware
of the fact that it is managing performance while some other manager (AMS)
is managing another concern. In this case they should be of the form:



Autonomic management of multiple non-functional concerns in BS 13

Name Rule
FarmincP H1 priority(x),

instanceof(farm) & Tarr > QoS & Throughput < QoS
→ findNewResource, askConsensus(G′, R′)

FarmincP H2 priority(x),
ackFromAll→ allocateNewWorker, connectWorker

FarmincP H2 priority(x),
ackFromAll & needProperty(security)
→ allocateNewWorker, connectSSLWorker

FarmincP H2 priority(x),
nackConsensus→ lowerPriority(Farminc)

Farmdec priority(x),
instanceof(farm) & Throughput >> QoS
→ removeWorker

(where G′ is the new application graph resulting from the decision taken in
the rule, R′ is the newly recruited resource).

In this case we assume the use of priorities to smooth the effect of aborted
rules. Consider the example above. For the sake of simplicity, we omit other
rules relating to autonomic management of performance in the task farm
behavioural skeleton. However, it would be probable that other rules exist
that also happen to be fireable when rule FarmincP H1 is fireable, i.e. when
we have sufficient tasks to compute but still do not meet the QoS contract.
For example, a rule whose effect is to move a farm worker from a slow resource
to a faster resource may exist, or a rule changing the kind of task-to-worker
scheduling adopted in the farm to speed up computation. Now, if a rule
has been selected and eventually aborted (as in FarmincP H2 third item),
by lowering the priority of the rule aborted we make fireable (at the next
control loop iteration) an alternative rule firing on the same pre-condition
but previously ignored due to its lower priority. This is a mechanism ensuring
fairness in rule selection in the presence of NACKs during the consensus
building phase.

In classifying actions as being independent/interfering (Sec. 3.3) we con-
sider actions such as findNewResource, askConsensus, allocateNew −
Worker as independent while actions such as connectWorker are regarded
as being interfering. In fact, the way we connect a worker (e.g. the way we
implement the communications between ne and nwnew and between nwnew

and nc) impacts the security (confidentiality and integrity) of the communi-
cated data or code. Indeed, if AMW (power management) is also included,
the allocateNewWorker action must be considered interfering : the choice of
a resource from those available will lead to a particular power consumption
that in turn will eventually affect the power management concern managed
by AMW . Notice that allocateNewWorker actions could have been consid-
ered to be interfering actions when taking into account only the existence of
AMS . However, the choice of a non-secure node in place of a secure one can
be tolerated provided the actions and plans used by AMP can be “adjusted”
as outlined in Sec. 3.3. This is actually what happens in the rules above where



14 Marco Aldinucci, Marco Danelutto and Peter Kilpatrick

the plan findNewResource, allocateNewWorker, connectWorker is substi-
tuted (after consensus) by the plan findNewResource, allocateNewWorker,
connectSSLWorker.

In general, the decision to label an action as interfering depends on the
set of concerns Cj (i 6= j) involved in addition to the concern Ci of the
manager executing the actions. Also, it is worth pointing out that metadata
associated with the element of the application graph may influence handling
of interfering actions. If the metadata associated with the application graph
allows AMS to conclude that the node added by AMP is a secure node, no
“adjustment” will be necessary to the interfering action connectWorker, for
example.

5 Related work

The IBM blueprint paper on autonomic computing has already established, in
a slightly different context, the need to orchestrate independent autonomic
managers [10]. In [8] strategies to handle performance and power manage-
ment issues by autonomic managers are discussed. However the approach is
much more oriented to the generic combination of target functions relating to
the two non-functional concerns considered, rather than to the constructive
coordination of the actions planned by the two managers.

A framework that can be used to reason on multiple concerns was intro-
duced in [11]. Based on the concepts of state and action (i.e., state transi-
tion) adopted from the field of artificial intelligence, this framework maps
three types of agenthood concepts (action, goal, utility-function) into au-
tonomic computing policies. Action policies may produce and consume re-
sources, which are used by a resource arbiter (i.e. a super manager) to har-
monize conflicting concerns. The framework, however, does not provide any
specific support to policy design and distributed management overlay.

A similar approach was followed in [5], which also exploits the same policies
(action, goal, utility-function) defined on the (Cartesian product of) state and
configuration space of the system. These policies are extended with resource-
definition policies, which specify how the autonomic manager exposes the
system to its environment; this makes it possible to dynamically extend man-
ager knowledge with other resources/parameters, possibly coming from other
managers, thus supporting management overlay.

6 Conclusions

In this work we discussed a general methodology that can be used to support
autonomic management of multiple non-functional concerns in a behavioural



Autonomic management of multiple non-functional concerns in BS 15

skeleton framework. The methodology is based on coordination of decisions
taken by mostly independent autonomic managers (each taking care of a
single non-functional concern) through a two-phase consensus protocol. We
also discussed how the methodology can be applied to a typical use case.

While protocols and policies may be established to coordinate the activi-
ties of different concern managers, the main challenge lies in not being over-
whelmed by the sheer complexity of their interactions. To this end, we need
to exploit to the full the fact that the structure of the underlying skeleton
is known and use this knowledge in marshalling the activities of the overlaid
autonomic management structure.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Dazzi, P., Laforenza, D.,
Tonellotto, N., Kilpatrick, P.: Behavioural skeletons in GCM: autonomic man-
agement of grid components. In: D.E. Baz, J. Bourgeois, F. Spies (eds.) Proc. of
Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing,
pp. 54–63. IEEE, Toulouse, France (2008). DOI 10.1109/PDP.2008.46

2. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In:
Proc. of Intl. Parallel & Distributed Processing Symposium (IPDPS). IEEE,
Rome, Italy (2009)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Handling multiple non-functional
concerns in Behavioural Skeletons. Tech. Rep. TR-09-10, Dept. Computer Sci-
ence, Univ. of Pisa (2009). Available at http://compass2.di.unipi.it/TR/

4. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Towards hierarchical management of
autonomic components: a case study. In: F.S. Didier El Baz Tom Gross (ed.) Proc.
of Intl. Euromicro PDP 2009: Parallel Distributed and network-based Processing,
pp. 3–10. IEEE, Weimar, Germany (2009). DOI 10.1109/PDP.2009.48

5. Calinescu, R.: Resource-definition policies for autonomic computing. In: Proc.
of the 5th Intl. Conference on Autonomic and Autonomous Systems (ICAS), pp.
111–116. IEEE (2009). DOI 10.1109/ICAS.2009.16

6. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

7. CoreGRID NoE deliverable series, Institute on Programming Model: Deliverable
D.PM.04 – Basic Features of the Grid Component Model (assessed) (2007). URL
http://www.coregrid.net

8. Das, R., Kephart, J.O., Lefurgy, C., Tesauro, G., Levine, D.W., Chan, H.: Au-
tonomic multi-agent management of power and performance in data centers. In:
Proc. of the 7th Intl. Conference of Autonomic Agents and Multiagent Systems
(2008)

9. Glinz, M.: On non-functional requirements. Requirements Engineering, IEEE
International Conference on 0, 21–26 (2007). DOI 10.1109/RE.2007.45

10. IBM Corp.: An Architectural Blueprint for Autonomic Computing (2005). http:
//www-01.ibm.com/software/tivoli/autonomic/

11. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic
computing policies. In: Proc. of the 5th Intl. Workshop on Policies for Distributed
Systems and Networks (POLICY’04). IEEE (2004)


