
STKM on SCA: A Unified Framework with Components,
Workflows and Algorithmic Skeletons

Marco Aldinucci1, Hinde Lilia Bouziane2, Marco Danelutto3,
and Christian Pérez4

1 Dept. of Computer Science, University of Torino
aldinuc@di.unito.it

2 LIP/Lyon 1 University, ENS Lyon
hinde.bouziane@ens-lyon.fr

3 Dept. of Computer Science, University of Pisa
marcod@di.unipi.it
4 LIP/INRIA, ENS Lyon

christian.perez@inria.fr

Abstract. This paper investigates an implementation of STKM, a Spatio-
Temporal sKeleton Model. STKM expands the Grid Component Model (GCM)
with an innovative programmable approach that allows programmers to compose
an application by combining component, workflow and skeleton concepts. The
paper deals with a projection of the STKM model on top of SCA and it evaluates
its implementation using Tuscany Java SCA. Experimental results show the need
and the benefits of the high level of abstraction offered by STKM.

1 Introduction

Quite a large number of programming models have been and are currently proposed
to support the design and development of large-scale distributed scientific applications.
These models attempt to offer suitable means to deal with the increasing complexity of
such applications as well as with the complexity of the execution resources (e.g. those in
grids and/or clouds) while attempting to ensure efficient execution and resource usage.
However, existing models offer peculiar features that actually make them suitable for
specific kind of applications only. A current challenge is still to be able to offer a suitable
programming model that easily and efficiently supports multi-paradigm applications.

Three different programming models have recently been considered to support
large-scale distributed scientific applications: software components, workflows and al-
gorithmic skeletons. All these models follow an assembly/composition programming
principle, which is becoming a widely accepted methodology to cope with the complex-
ity of the design of parallel and distributed scientific applications. Software components
promote code reuse [1]. Components can be composed to build new and more com-
plex components so that applications are component assemblies. Such assemblies are
usually defined at compile time, although most component frameworks provide mech-
anisms that can be used to implement dynamic assemblies at run time. An assembly
completely determines spatial interactions among components, and therefore it is re-
ferred to as spatial composition. Due to these features, component models are suitable

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 678–690, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

STKM on SCA: A Unified Framework with Components 679

to support strongly coupled compositions. Workflow models have been mainly devel-
oped to support composition of independent programs (usually loosely coupled and
named tasks) by specifying temporal dependencies among them (and defining a tempo-
ral composition, in fact), to support efficient scheduling onto available resources (e.g.
sites, processors, memories) [2]. Last but not least, algorithmic skeletons have been
introduced to support typical parallel composition patterns (skeletons) [3]. Skeleton
composition follows precise rules and skeleton applications are (well formed) skeleton
assemblies. The composition style is mostly spatial, as in the software component case,
although skeletons processing streams of input data sets usually present several embed-
ded temporal composition aspects. Skeleton assembly “structures” can be exploited to
provide automatic optimization/tuning for efficient execution on targeted resources.

In summary, each one of these three models is worth being used in some particular
circumstances, but nevertheless all their properties seem to be relevant and worth to be
considered in a single model. In [4], we discussed STKM (Spatio-Temporal sKeleton
Model), a single programming framework providing programmers with components,
workflows and skeletons. STKM allows these three abstractions to be mixed in arbitrary
ways in order to implement complex applications. While in [4] we explored the theoret-
ical background of STKM, in this paper, we concentrate on the problems related to the
implementation of STKM components, realized as an extension of GCM (Grid Compo-
nent Model [5]) components built on top of SCA (Service Component Architecture [6]).

This paper is organized as follows: Section 2 outlines relevant related work, Section 3
sketches the main features of STKM. SCA implementation design of STKM and related
issues are presented in Section 4 while experimental results showing the feasibility of
the whole approach are discussed in Section 5. Section 6 concludes the paper.

2 Background and Related Work

Skeleton based programming models allow application programmers to express paral-
lelism by simply instantiating – and possibly nesting – items from a set of predefined
patterns, the skeletons, that model common parallelism exploitation patterns [3]. Typ-
ical skeletons include both stream parallel and data parallel common patterns [7,8,9].
Programming frameworks based on algorithmic skeletons achieve a complete and use-
ful separation of concerns between application programmers (in charge of recognizing
parallelism exploitation patterns in the application at hand and of modeling them with
suitable skeletons) and system programmers (in charge of solving, once and for all,
during skeleton framework design and implementation, the problems related to the effi-
cient implementation of skeletons and of skeleton composition). In turn, this separation
of concerns supports rapid application development and tuning, allows programmers
without specific knowledge on parallelism exploitation techniques to develop efficient
parallel applications, and eventually supports seamless (from the application program-
mer perspective) porting of applications to new target architectures.

Skeleton technology has recently been adopted in the component based program-
ming scenario by developing (composite) components modeling common parallelism
exploitation patterns and accepting other components as parameters to model the skele-
ton inner computations [10,11]. To support automatic adaptation of skeleton component

680 M. Aldinucci et al.

execution to highly dynamic features of target architectures such as grids, autonomic
management has been eventually combined with skeleton based modeling in the be-
havioural skeletons [12]. The result is that behavioural skeletons – or a proper nesting
of behavioural skeletons – can be simply instantiated to obtain fully functional, efficient
parallel applications with full, autonomic auto tuning of performance concerns.

Component based skeleton frameworks provide all the optimizations typical of al-
gorithmic skeletons. Behavioural skeletons add the autonomic tuning of non-functional
concerns. However, no support has been provided, as far as we know, to support skele-
ton components in workflows. Skeletons in workflows would allow to express compu-
tations as temporal compositions while preserving the possibility to optimize parallel
workflow stages according to the well-known results of the skeleton technology.

3 STKM

STKM (Spatio-Temporal sKeleton Model [4]) extends STCM [13], a Spatio-Temporal
Component Model merging component and workflow concepts, with (behavioural)
skeleton support. This extension promotes more simplicity of design and separation of
functional concerns from non-functional ones (management of components life cycle,
parallelism, etc.). It also promotes the portability of applications to different execution
contexts (resources). For that, a level of abstraction is offered to allow a designer to
express the functional behaviour of an application through its assembly. The behaviour
expressiveness is exploited by an STKM framework to adapt the application to its ex-
ecution context. This section outlines the unit of composition of STKM, its assembly
model and a suitable approach to manage the assembly by the framework.

An STKM component is a combination of a classical software component and task
(from workflows) concepts. As shown in Figure 1, a component can define spatial
and/or temporal ports. Spatial ports are classical component ports. They express in-
teractions between components concurrently active [13]. Temporal ports (input/output)
behave like in a workflow, instead. They express data dependences between component
tasks and then an execution order of these tasks. Like in a workflow, components in-

Fig. 1. An STKM component. T: refers to
temporal ports. Other ones are spatial.

Fig. 2. Example of an STKM assembly

STKM on SCA: A Unified Framework with Components 681

volved in a temporal relation can be instantiated when both control and data flows reach
them [13]. The difference is that the life cycle of an STKM component may be longer
than the completion of a task in a workflow.

An STKM assembly describes spatial and temporal dependencies between compo-
nents. Spatial dependencies are drawn by spatial port connections. Temporal dependen-
cies are drawn by a data flow (input and output port connections) and a control flow
(using constructs like sequences, branches (if and switch), loops (for and while), etc.).
In addition, STKM defines constructs dedicated to skeleton-based parallel paradigms.
These constructs are particular composite components representing skeleton schemes
(pipe, farm, functional replication, etc.). They can be composed with components and/or
other skeletons at different levels of an assembly. This ability preserves the pragmatic of
skeletons. Figure 2 shows a graphical STKM assembly example of a sequence(step1;
step2; step3), where step2 is a parallel composition of sequences (A;B;C)
and (D;E). A spatial dependency is drawn between these sequences, as component
D consumes the results of the (pipe) skeleton construct whose inputs are produced
by B. The figure also shows that skeleton elements (the pipe stages) may express de-
pendences with other components (those providing f and g). These further components
belong to the same assembly of the pipeline skeleton. In general, skeleton assemblies
follow a fixed schema, the one typical of the parallel pattern implemented by the skele-
ton. In this case, the assembly is a linear assembly of stages. Each stage, may involve
any number of components in a sub-assembly, provided that it has an input (output)
stream port to be connected to the previous (next) pipeline stage.

To be executed, an STKM application needs to be transformed into a concrete assem-
bly, that may include a specific engine. This engine represents de facto STKM run time.
This run time comprehends the mechanisms needed to support both skeleton and work-
flow aspects of STKM components. Therefore, it differs in the way STKM components
are processed to produce the concrete component assembly from other systems that
only concentrate on skeletons [14] or worflows [15]. The concrete assembly may intro-
duce non-functional concerns like data flow management or the hidden part of skeletons
implementations (cf. Section 4.1). The STKM engine manages the life cycle of compo-
nents and the execution order of tasks. During the transformation, STKM benefits from
the expressive power of an assembly to exploit the maximum parallelism from a part or
from the whole assembly, and to adopt an adequate scheduling policy depending on ac-
tually available execution resources. Thus, both explicit (using skeleton constructs) and
implicit parallelisms can be considered. An example for the last case is the mapping of
a forAll loop to a functional replication skeleton in which the workers are the body
of the loop. Such a mapping should allow STKM to take benefits from already existing
(behavioural) skeleton management mechanisms able to deal with performance [16]
concerns, security [17], fault tolerance [18], etc.

4 An SCA Based Implementation of STKM

This paper aims at evaluating the feasibility of the STKM model. SCA (Service Com-
ponent Architecture [6]) is used to investigate whether porting STKM concepts to the
Web Service world is as effective as porting other GCM concepts, as shown in [19]. As

682 M. Aldinucci et al.

Fig. 3. An SCA component Fig. 4. From an STKM component to an SCA one

STCM was devised as an extension of GCM [13], it was natural to explore the feasibility
of STKM in the same direction.

SCA is a specification for programming applications according to a Service Oriented
Architecture (SOA). It aims to enable composition of services independently from the
technologies used to implement them and from any SCA compliant platform. SCA spec-
ifies several aspects: assembly, client and component implementation, packaging and
deployment. The assembly model defines a component as a set of ports named services
and references (Figure 3). Ports can be of several kinds such as Java, OMG IDL (In-
terface Definition Language), WSDL (Web Services Description Language), etc. They
allow message passing, Web Services or RPC/RMI based communications. The inter-
operability between communicating components is ensured through dedicated bind-
ing mechanisms. The assembly of components may be hierarchical. The hierarchy is
abstract, thus allowing to preserve encapsulation and simplifying assembly process.
The client and implementation model describes a service implementation for a set of
programming languages. Several means are used: annotations for Java/C++ or XML

extensions for BPEL [20], etc. These means permit the definition of services, proper-
ties, and meta-data like local or remote access constraints associated to a service. Last,
the packaging and deployment model describes the unit of deployment associated to
a component. For deployment concerns, an SCA platform is free to define its own
model.

4.1 Mapping STKM Concepts on SCA

Two main issues arise when implementing STKM on SCA: the projection of the user
view of an STKM component to an SCA based implementation, and the management of
an STKM assembly at execution. This section discusses these two issues.

STKM Component and Ports. As mentioned earlier, an SCA based implementation of
GCM components has been already proposed [19]. It is based on mapping components,
client/server ports, controllers and implementations on a set of services/references, SCA

components and SCA implementations. This paper does not detail this projection. It
focuses on describing a projection of the concepts added by STKM, i.e. temporal ports
(inherited from STCM) and skeleton constructs.

An STKM component is mapped to an SCA composite component and temporal ports
to a set of services/references and controllers as illustrated in Figure 4. A component
task appears as a service provided by the user implementation. Temporal ports are

STKM on SCA: A Unified Framework with Components 683

Fig. 5. Functional replica-
tion behavioural skeleton
implementation, without
the control part shown in
Figure 4.

mapped to a set of services provided/used by a transparent
control part of the component. This control part (compo-
nents TMC and eLC in Figure 4) is responsible to manage
input and output data availability and task executions. De-
tails about this management can be found in [13]. Note that
realizing controllers using components is not a new idea.
This promotes composability and code reuse.

STKM skeleton constructs, which are also components,
are projected with a similar approach. The difference is
that an implementation of a skeleton may consider ad-
ditional non-functional elements like managers for be-
havioural skeletons. A simplified example is shown in
Figure 5. The figure represents a functional replication be-
havioural skeleton. Components MGR (manager), E (emit-
ter) and C (collectors) belong to the non-functional part of
the skeleton.

Thus, a simple projection of STKM components to SCA components is possible
thanks to the full support of RPC/RMI ports and hierarchical composition in SCA.

STKM Assembly. Not only STKM makes an assembly more explicit with respect to the
behaviour of an application, but it also aims to enable automatic and dynamic modifica-
tions of the assembly. Thus, it is not sufficient to have just a projection of components
as described above. It is also necessary to introduce mechanisms to deal with data trans-
fer between dependent components, to order task execution according to both data flow
and control flow, and to manage the life cycle of components. Several solutions can be
proposed. This paper presents a simple solution, based on a distributed data transfer and
a centralized orchestration engine.

With respect to data management, the data transfer between data flow connected
components can be direct if both components simultaneously exist or it can be indirect
through a proxy component, in case the target component does not exist yet. Figure 7
illustrates how such a proxy can be introduced between two components of the sequence

Fig. 6. An STKM sequence
example (user view)

Fig. 7. Data transfer through proxy components and dynamic
changes of the sequence assembly. The STKM, rather than SCA,
notation for ports is still used for simplicity.

684 M. Aldinucci et al.

assembly of Figure 6. During the execution, proxy12 receives the output of T1 and
waits a request to send it to T2 (from the STKM engine, see paragraph below). The
availability of the proxy is assumed to be at the responsibility of the transformation
engine, which is out of the scope of this paper.

The STKM engine is an SCA client program. It contains the sequence of actions
which create/destroy components, connect/disconnect ports, manage data availability/
transfer and the order of tasks executions. These actions are deduced from the behaviour
expressed by the STKM assembly. Figure 7 shows a part of the dynamic assembly evo-
lution of Figure 6 managed by a naive STKM engine which creates components when
the data/control flow reaches them. Details about this engine can be found in [21].

4.2 Usage of Tuscany Java SCA

We base the proposed SCA implementation on Tuscany Java SCA Version 1.2.1 [22].
Tuscany is still under development but it provides a preliminary support for distributed
executions. However, some features affecting the support of some STKM requirements
are not yet supported. The more relevant missing features are related to the dynamic-
ity of an assembly. In Tuscany 1.2.1, to dynamically add/remove components, there are
mainly two approaches. The first one is based on dynamic reconfiguration of
contributions (components packages). However, it requires to stop the applica-
tion execution1. The second approach is based on the addition/removal of nodes. A
node is a process hosting one or more component instances on a given execution re-
source. The approach does not require to suspend an application execution. However,
Tuscany requires nodes to be statically defined. We select this approach and make all
decisions static.

SCA specification does not offer an API to connect/disconnect references to services.
However, it provides an API to allow passing service references. Using this API, we
specified connection/disconnection operations. These operations are associated to a port
and exposed as a service implemented by the non-functional part of a component. Note
that the service passed by reference is accessed using a Web Service binding protocol
in the used Tuscany version.

The advantage of our approach to overcome Tuscany lacking or non-properly sup-
ported features, is that no modification in the distribution was needed. However, as dis-
cussed in next section, some experiment results are affected by the adopted solutions.
For the purpose of this paper, however, this does not prevent the possibility to demon-
strate the benefits of STKM and its feasibility on a Web Service based environment.

5 Evaluation

To evaluate the benefits of STKM, this section discusses the performance of the pro-
posed SCA based implementation. We developed an application according to differ-
ent compositions: sequence, loop, pipeline and nested composition of pipeline and
farm/functional replication skeleton constructs, such that we could experiment various

1 Efforts have been made to overcome this limitation [23]. Its feasibility was proved using
Tuscany 1.1.

STKM on SCA: A Unified Framework with Components 685

Time in s

Remote node Launching 45.56
Programmed 3.20

port connection

Fig. 8. Average of times to deploy
and connect components

RTT Intra-node Inter-Node Inter-Node
in ms Inter-comp. Intra-host Inter-host

Default protocol 0.076 20.35 20.17
WS protocol 22.66 24.23 24.11

Fig. 9. Round Trip Time (RTT) in ms on a local Ethernet
network for different situations. WS: Web Service

execution scenarios for a same application with respect to different execution contexts.
The application is synthetic and its parameters (amount of involved data, relative weight
of computation steps, etc.) have been tuned to stress the different features discussed.

The projection from STKM assembly to SCA components and an STKM engine was
manually done using Tuscany Java SCA version 1.2.1 and Java 1.5. The deployment
of components was done manually by using scp and their creation was done at the
initiative of the engine by using ssh. Experiments have been done on a cluster of
24 Intel Pentium 3 (800 MHz, 1 GB RAM), running Linux 2.4.18 and connected by a
100 MBit/s switched Ethernet.

5.1 Metrics

We first evaluated basic metrics, including overheads of dynamic life cycle management
– nodes launching and port connections – and inter component communications. The
results are displayed in Figure 8 and Figure 9. First, it must be pointed out that starting a
node is an expensive operation. This is due to remote disk accesses, done through NFS,
required to launch a JVM and to load a node process by the used common-daemon li-
brary2. The time is also stressed by the significant usage of reflection and dynamic class
loading by Tuscany as well message exchanges between a node and an SCA domain
(application administrator) for services registry/checking. Second, the time necessary
to connect ports through the reference passing mechanism (Section 4.2) is explained
by the serialization/deserialization activity needed to pass a reference, and by multiple
reflection calls. Globally, the overheads stem from the framework and from “tricks”
explained in Section 4.2. The round trip times are measured for an empty service in-
vocation for two binding protocols (default “unspecified” SCA and WS) and various
placements of components. As explained in Section 4.2, the WS protocol is used for
services passed by reference. The results show that the choice of a binding protocol
affects communication times. There is a quite important software overhead, that makes
network overhead almost negligible in next experiments. This is not a surprise as SCA

specification addresses this issue and claims that SCA is more adequate for coarse grain
codes or wide area networks.

5.2 Benefits of Resources Adaptation Capability: A Sequence Use Case

This section studies the impact on performance when mapping an STKM assembly to
different concrete assemblies. A sequence of 4 tasks (Figure 6) is mapped to the config-
urations presented in Figure 10. This leads to two concrete assemblies for the abstract

2 Apache commons: http://commons.apache.org/daemon

http://commons.apache.org/daemon

686 M. Aldinucci et al.

Fig. 10. Configurations used in Figure 11. T: Task in
component, P: Proxy, H: Host, N: Tuscany Node, Col:
Collocation

Efficiency (%)

T-P 27.03
T-P-H-Col 20.13
T-P-N-Col 28.38

T-P-N-H-Col 28.50
Pipeline 51.14

Fig. 11. Efficiency to execute a se-
quence of 4 tasks. The execution
time of each task is 20s. The life
cycle of a component is delimited
by input/output data availability

one shown in Figure 6 and a given placement of components. For the assembly on the
left part of Figure 10, the execution and life cycle management of components follows
the principle presented in Section 4.1. On the right part, the sequence is mapped to a
pipeline composition. In this case, all concerned components are deployed on different
hosts and connected by the engine before the execution of the first task.

Figure 11 reports the execution efficiency in terms of the percentage of the whole ex-
ecution time (including remote (Tuscany) node creation, component instantiation and
port connections) spent in the sequence computation. Without surprise, the Pipeline
configuration leads to a more efficient execution. This will remain true even if the over-
heads are lower for coarser grain codes. However, the performance criterion may be
not sufficient to choose a particular configuration. Other criteria, such as resource us-
age, could also be taken into account. Therefore, the Pipeline configuration may
cause an over-consumption of resources. That may be problematic when using shared
resources, like Grids. Other configurations may offer the ability to optimize resource
usage with efficient scheduling policies. The objective of this paper is not to study such
policies, so they are not treated and only base cases are tested.

The T-P-N-H-Col configuration behaves better because all components are ex-
ecuted in the same process. Also, the lazy instantiation of components in Tuscany
reduces the number of concurrent threads. However, components in a sequence may
require different nodes because of execution constraints on memory or processor speed.
In such a case, the T-P-N-Col configuration may be more suitable. For the remainder
of this section, we selected this configuration.

5.3 Need for Form Recognition

STKM promotes the ability to recognize implicit parallelism forms from an assembly
and to exploit them to improve the performance when possible. For that, the approach
is to map recognized parallelism forms to a composition of skeleton constructs. This
section illustrates the benefits of this approach through a sequential for loop. The body
of this loop is the sequence shown in Figure 6. The sequence is assumed to be stateless

STKM on SCA: A Unified Framework with Components 687

Fig. 12. Overview of the configurations used for executing
the For loop in a parallel way

Efficiency (%)

data size: 10x
Loop 28.40

Loop-Opt 56.16
Pipe 76.96

data size: 100x
Loop 28.40

Loop-Opt 90.68
Pipe 95.90

Fig. 13. Results of executing a loop
according to different configura-
tions. The loop body is a stateless
sequence of 4 tasks of 20s

and to be executed for each element of an array of data (input of the loop). The output
of the loop is the collection of all the outputs of the different iterations. To execute such
a loop, let us study three configurations: Loop, Loop-Opt and Pipe.

In the Loop configuration, no parallelism form is recognized. All iterations are exe-
cuted sequentially and the sequence is mapped to the T-P-Node-Col configuration
shown in Figure 10. The Loop-Opt configuration exploits the independence of the iter-
ations and the fact that components are stateless to make use of a pipelined execution.
The concrete assembly is the same as for the Loop configuration. The difference oc-
curs in the management of the data flow and the life cycle of components as shown in
Figure 12. As can be noted, the STKM engine is responsible to split/collect the loop
input/output data. The pipelined execution is done thanks to the control part of compo-
nents. This part is responsible to queue received data and to ensure one task execution at
a time and the order of treated data (STCM specific behaviour). Note that a component
Ti is instantiated once the first output of Ti−1 is available and removed after the loop
execution. The Pipe configuration projects the loop to a pipeline skeleton construct. The
result is shown on the right part of Figure 12. It introduces two components: distrib
and collector responsible to respectively split (collect) the loop input (output) data
into several (one set of) data. All components are instantiated when the control flow
reaches the loop and destroyed after retrieving the loop result.

Figure 13 reports results for two different data set sizes. The measures include the
overhead related to the life cycle management. Several conclusions can be drawn. First,
the Pipe configuration presents a more efficient execution. In fact, it is not sufficient
to have a pipelined execution (Loop-Opt) to reach better performance: an efficient
implementation of a pipeline, such as one of those available exploiting assessed skeleton
technology, is also needed. Second, the overhead of life cycle management can as usual
be hidden with longer computation time. Third, in order to achieve efficient execution
and management it is necessary to consider the behaviour of the global composition,
i.e. combined structures, in an assembly when mapping on a concrete assembly.

688 M. Aldinucci et al.

Global time (in s)

Without FRa 3105
Farm: 3 workers 1182

FR: dynamic addition 1409
of workers

Fig. 14. Pipeline step parallelization using
a farm construct. The pipeline is composed
of 4 tasks. The execution time of each task
is (in order): 10s, 30s, 5s and 5s. Step 3
and 4 are collocated for load balancing. The
number of the pipeline input data is 100.

a FR: Functional Replication

Fig. 15. Dynamic management of workers in a
behavioural farm skeleton construct. The farm
construct is used to parallelize the second step
of the pipeline construct of figure 14.

5.4 Need for Efficient Behavioural Skeleton Management

This section presents experiments illustrating the advantage that behavioural skeletons
should offer in the context of STKM. Experiments are relative to the execution of a
pipeline composition. The mapping of this composition on a concrete assembly is di-
rected by two criteria: performance and resource usage. For a pipeline, improving these
criteria is usually achieved by load-balancing its stages, collocating stages and/or par-
allelizing bottleneck stages (e.g. by integrating a functional replication skeleton).

The stage collocation experiment compares the execution of 4 pipelined tasks with
and without applying load balancing. The computation times of the tasks are, in order:
10s, 15s, 5s and 20s. To load balance the stages, the approach was to collocate the
second and third stages to be executed on a same host. The efficiency is 96.04% for the
collocation scenario and 95.92% without collocation. Thus, it is possible to improve
resource usage while preserving performance. While the load balancing was done man-
ually for this experiments, a behavioural skeleton implementation is expected to do it
automatically, by monitoring the task execution times and then adequately “grouping”
pipeline stages to match the pipeline ideal performance model.

The stage parallelization experiment compares the execution of a pipeline composi-
tion according to two load-balancing approaches. The pipeline has 4 stages of durations
10s, 30s, 5s and 5s. The objective is to parallelize the execution of a costly pipeline
step, here 30s. In addition to the possibility to collocate the third and fourth stages, the
second stage is mapped a) to a farm skeleton (Figure 5) with a static number of work-
ers – three in this case – or b) to a “replication” behavioural skeleton (Figure 5) with
autonomic and dynamic addition of workers [12]. The skeleton manager implements a
simple adaptation policy which adds a worker if the output frequency of the skeleton
is less than a given value, 10s, in this case. The results are shown in Figure 14 and
Figure 15. As expected, the whole execution time is improved – by a 2.6 factor – when

STKM on SCA: A Unified Framework with Components 689

using a farm with static number of workers. For dynamic workers addition, the number
of workers reaches 4 with an improvement of 2.2 instead of 2.6. This is due to the adap-
tation phase overhead and to the fact that adaptation does not rebalance tasks already in
the workers queues. The experiment illustrates the feasibility of realizing a behavioural
skeleton in STKM as well as the ability to preserve the advantages of such constructs.

6 Conclusion and Future Works

STKM is a model that aims to increase the abstraction level of applications with enabling
efficient executions. Its originality is to unify within a coherent model three distinct
programming concepts: components, workflows and skeletons. This paper evaluates its
feasibility and its benefits. The proposed mapping introduces a set of non-functional
concerns needed to manage an STKM assembly; concerns that can be hidden to the end
user and that can be used for execution optimizations. Hand-coded experiments show
that STKM can lead to both better performance and resource usage than a model only
based on workflows or skeletons.

Future works are fourfold. First, model driven engineering techniques should be con-
sidered for implementing STKM to automatize the assembly generation and existing
component based behavioural skeleton implementations [19]. Second, investigations
have to be made to understand which assembly has to be generated with respect to
the resources and to criteria to optimize. Third, techniques to optimize an application
are also needed. Fourth, a validation on real word applications [4] has to be done. For
that, it should be worth investigating the usage of recent SCA implementation overcom-
ing part of the limitations of the one we used here (e.g. the recently available Tuscany
version 1.4).

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software - Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley/ACM Press (2002)

2. Fox, G.C., Gannon, D.: Special issue: Workflow in grid systems: Editorials. Concurr. Com-
put.: Pract. Exper. 18(10), 1009–1019 (2006)

3. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing 30(3), 389–406 (2004)

4. Aldinucci, M., Danelutto, M., Bouziane, H.L., Pérez, C.: Towards software component
assembly language enhanced with workflows and skeletons. In: Proc. of the ACM SIG-
PLAN compFrame/HPC-GECO workshop on Component Based High Performance, pp. 1–
11. ACM, New York (2008)

5. CoreGRID NoE deliverable series, Institute on Programming Model: Deliverable D.PM.04 –
Basic Features of the Grid Component Model, http://www.coregrid.net/mambo/
images/stories/Deliverables/d.pm.04.pdf (assessed, February 2007)

6. Beisiegel, M., et al.: SCA Service Component Architecture - Assembly Model Specification,
version 1.0. TR, Open Service Oriented Architecture collaboration (OSOA) (March 2007)

7. Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS,
vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

690 M. Aldinucci et al.

8. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eSkel. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 761–770. Springer,
Heidelberg (2005)

9. Caromel, D., Leyton, M.: Fine Tuning Algorithmic Skeletons. In: Kermarrec, A.-M., Bougé,
L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 72–81. Springer, Heidelberg (2007)

10. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D., Scarponi,
L., Vanneschi, M., Zoccolo, C.: Components for high performance Grid programming in
Grid.it. In: Proc. of the Intl. Workshop on Component Models and Systems for Grid Appli-
cations, Saint-Malo, France. CoreGRID series, pp. 19–38. Springer, Heidelberg (2005)

11. Gorlatch, S., Duennweber, J.: From Grid Middleware to Grid Applications: Bridging the Gap
with HOCs. In: Future Generation Grids. Springer, Heidelberg (2005); selected works from
Dagstuhl 2005 FGG workshop 2005

12. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Dazzi, P., Laforenza, D., Tonellotto,
N., Kilpatrick, P.: Behavioural skeletons in GCM: autonomic management of grid compo-
nents. In: Baz, D.E., Bourgeois, J., Spies, F. (eds.) Proc. of Intl. Euromicro PDP 2008: Parallel
Distributed and network-based Processing, Toulouse, France, pp. 54–63. IEEE, Los Alamitos
(2008)

13. Bouziane, H.L., Pérez, C., Priol, T.: A software component model with spatial and temporal
compositions for grid infrastructures. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par
2008. LNCS, vol. 5168, pp. 698–708. Springer, Heidelberg (2008)

14. Falcou, J., Sérot, J.: Formal Semantics Applied to the Implementation of a Skeleton-Based
Parallel Programming Library. In: Parallel Computing: Architectures, Algorithms and Ap-
plications. NIC, vol. 38, pp. 243–252. John Von Neumann Institute for Computing, Julich
(2007)

15. Yu, J., Buyya, R.: A Taxonomy of Workflow Management Systems for Grid Computing.
Journal of Grid Computing 3(3-4), 171–200 (2005)

16. Aldinucci, M., Danelutto, M.: Algorithmic Skeletons Meeting Grids. Parallel Comput-
ing 32(7), 449–462 (2006)

17. Aldinucci, M., Danelutto, M.: Securing skeletal systems with limited performance penalty:
the Muskel experience. Journal of Systems Architecture 54(9), 868–876 (2008)

18. Bertolli, C., Coppola, M., Zoccolo, C.: The Co-replication Methodology and its Application
to Structured Parallel Programs. In: CompFrame 2007: Proc. of the 2007 symposium on
Component and framework technology in high-performance and scientific computing, pp.
39–48. ACM Press, New York (2007)

19. Danelutto, M., Zoppi, G.: Behavioural skeletons meeting services. In: Bubak, M., van Al-
bada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 146–
153. Springer, Heidelberg (2008)

20. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0 (oasis
standard). Technical report (2006)

21. Aldinucci, M., Bouziane, H., Danelutto, M., Pérez, C.: Towards a Spatio-Temporal sKele-
ton Model Implementation on top of SCA. Technical Report 0171, CoreGRID Network of
Excellence (2008)

22. Apache Software Found: Tuscany home page, WEB (2008),
http://tuscany.apache.org/

23. Aldinucci, M., Danelutto, M., Zoppi, G., Kilpatrick, P.: Advances in autonomic components
& services. In: Priol, T., Vanneschi, M. (eds.) From Grids To Service and Pervasive Com-
puting (Proc. of the CoreGRID Symposium 2008), CoreGRID, Las Palmas, Spain, pp. 3–18.
Springer, Heidelberg (2008)

http://tuscany.apache.org/

	STKM on SCA: A Unified Framework with Components, Workflows and Algorithmic Skeletons
	Introduction
	Background and Related Work
	Stkm
	An Sca Based Implementation of Stkm
	Mapping Stkm Concepts on Sca
	Usage of Tuscany Java Sca

	Evaluation
	Metrics
	Benefits of Resources Adaptation Capability: A Sequence Use Case
	Need for Form Recognition
	Need for Efficient Behavioural Skeleton Management

	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

