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Abstract. We discuss how common problems arising with multi/many-
core distributed architectures can be effectively handled through co-design
of parallel/distributed programming abstractions and of autonomic man-
agement of non-functional concerns. In particular, we demonstrate how
restricted parallel/distributed patterns (or skeletons) may be efficiently
managed by rule-based autonomic managers. We discuss the basic princi-
ples underlying pattern+manager co-design, current implementations in-
spired by this approach and some results achieved with a proof-of-concept
prototype.
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1 Introduction

The development of parallel and distributed programs is recognized to be a chal-
lenging task. The management of the concurrent activities and communications
together with the non-functional concerns, such as performance, security, fault
tolerance, all require substantial efforts during both the design and implemen-
tation phases and in debugging, tuning and maintenance of the application.

The sustained evolution in parallel and distributed architectures makes ap-
plication development even harder, as technological improvements and archi-
tectural model changes must be catered for. On the one hand the increasing
prevalence of multi- and many-core systems necessitates the use of some kind
of parameterisation of the code to support hundreds or even thousands of par-
allel activities, as it is inconceivable that a programmer may design, implement
and manage hundreds or thousands of different activities. On the other hand,
the emergence of first grid and now cloud architectures, with their inherent het-
erogeneity and dynamicity, has thrown into stark relief the burden of handling
non-functional concerns.

Researchers in two distinct areas have tried separately to tackle these issues,
but to date there is not a comprehensive methodology to attack the distributed
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application problem in general. On the one hand, algorithmic skeletons provide
programmers with higher-level abstractions that can be used as building blocks
for complex parallel and distributed applications [6]. This addresses the need for
structuring. On the other hand, autonomic computing has, with some success,
provided means to manage some non-functional aspects important in parallel and
distributed applications, such as those related to performance (self-configuration
and self-optimization) and fault tolerance (self-healing) [13].

In this paper we present an approach which is based on combining algorithmic
skeletons and autonomic computing. It advocates a structure/management co-
design approach to system development. Skeleton and autonomic management
abstractions are given, and the required interfaces allowing interaction between
the two are discussed. Refinements to component-based and services-based im-
plementations are then described briefly and results presented.

The proposed approach also provides an attractive separation of concerns
between system and application programmers. System programmers have re-
sponsibility for providing suitable skeleton frameworks taking care of issues such
as process communication, etc., and also for ensuring appropriate management
of non-functional concerns. This frees the application programmer to focus on
selecting a suitably parameterized skeleton and supplying the core functional
code; and, for specifying non-functional concern requirements via, for example,
some sort of service level agreement (SLA) (although this latter remains a con-
siderable challenge and is currently only achievable to a modest degree).

The rest of the paper is as follows: Section 2 introduces abstractions for the basic
skeleton and autonomic computing concepts, Section 3 proposes a methodology
for the co-design of computation structure and autonomic management, Section 4
describes an implementation derived using this methodology and presents exper-
imental results achieved within the GridCOMP project. Section 5 explores the
challenge of multi-concern management and Section 6 concludes the paper.

2 Programming Abstractions

We introduce here two “generic” programming abstractions: one to capture
the structure of a parallel/distributed application and one to deal with non-
functional concern management. The co-design of these two abstraction will
eventually lead to a much more powerful and effective programming abstraction,
whose preliminary implementation and results are briefly outlined in Sec. 4.

2.1 Structuring Abstractions

Successful parallel and distributed applications usually implement some well-
known and efficient parallel or distributed computation design pattern [16].
These patterns can be recognized as useful distributed programming abstrac-
tions to be implemented and optimized once and for all, and then provided to
the application programmers, in such a way that the effort of developing efficient
distributed applications is factorized across several similar application designs.
A natural choice to provide such abstractions to the application programmer
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is the algorithmic skeleton concept [7,6]. An algorithmic skeleton is a paramet-
ric, reusable, efficient implementation of a commonly used parallel/distributed
computation pattern. The application programmer can pick up an algorithmic
skeleton, instantiate it with suitable code and data parameters and obtain imme-
diately a working application. Depending on the skeleton framework available,
algorithmic skeletons can be (more or less) arbitrarily nested to obtain increas-
ingly complex parallel and distributed applications.

Consider a classical skeleton, often used to model distributed computations
running on classical distributed architectures, such as COW/NOWs and grids:
the divide and conquer pattern. This pattern can be abstracted as a higher order
function:

(D&C t b d c) x = if(t(x)) then b(x) else c((map(D&C t b d c)(d(x)))

where the parameters represent: the function deciding if a termination case has
been reached (t : α → boolean1), the function computing the base case (b :
α → β), the function splitting a non-base case into sub-cases (d : α → [α])
and the function combining the results of sub-cases (c : [β] → β). By providing
the appropriate parameters the user can obtain the working divide&conquer
function (D&C t b d c) : α → β. For example, in order to get a working D&C
sort function the user should provide a t indicating when the sorting has to be
performed sequentially, a b sequentially computing the sort for base cases, a d
for splitting (long) lists into a list of (shorter) sublists and finally a c function
for combining ordered sublists into an ordered list. All the details relating to
the actual computation of the sort according to the divide&conquer pattern are
hidden (or “embedded”) within the D&C higher order function.

More generally, complex and richer sets of skeletons are provided that al-
low the user to express a computation as a skeleton/pattern composition. The
following core (abstract) skeleton set has been defined (in slightly different
forms) in a large number of skeleton frameworks, including P3L [4], Muesli [14],
Lithium/muskel [3,8], SkeTo [15], ASSIST [2] and Calcium [5]:

S = seq(C) | farm(S) | pipe(S, S) | map(S) | reduce(S)

C = 〈some function code in any suitable host language〉
In this case, farm denotes the embarrassingly parallel, stream apply-to-all pat-
tern, pipe denotes the usual stream parallel computation in stages, map and
reduce model the corresponding data parallel collective operations, and, finally,
seq just wraps sequential code in such a way it can be used as a parameter in
another skeleton.

These higher-order functions can be provided in a way suitable for to the
programming model adopted by the user. For example, as library objects for
OO programmers, or as composite components or plain services for component
and service-oriented programmers.
1 We denote with f : α → β the type of a function processing items of type α to

produce results of type β.
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Algorithmic skeletons may be used to raise the level of abstraction presented
to the programmer of parallel and distributed applications by abstracting (and
confining in the implementation level) all those aspects not directly related
to the function the programmer wants to compute and to the kind of paral-
lel/distributed patterns to be exploited. Those details are dealt with in the
implementation of the algorithmic skeleton and thus do not directly concern
the application programmer. Furthermore, some quantitative aspects that have
an impact on the skeleton implementation and, as a consequence, on its per-
formance, can be abstracted through parameters, thus allowing easy skeleton
tuning by the application programmer or, as alternative, viable ways to control
skeleton behaviour in the implementation (i.e. in the compiling tools and/or in
the run time support). For example, consider the parallelism degree. This could
either be one of the parameters provided by the application programmer as a
kind of SLA when instantiating the skeleton, or it could be a parameter com-
pletely managed by the implementation. In the former case, the programmer
may make several test runs before identifying the “optimal” parallelism degree
for his application, possibly without the need of recompiling the application2.
In the latter case, the run time system may adjust the parallelism degree upon
recognition that the performance of the application does not fit that predicted
by the abstract performance model.

2.2 Management Abstractions

When managing parallel and distributed applications, several non-functional
concerns such as performance, fault tolerance, security and adaptivity may re-
quire consideration on an on-going basis with little or no input from the user.
These concerns can be handled at two different levels: either directly at the
application code level or within some autonomic manager interacting with the
application code. In the former case, the burden lies completely with the appli-
cation programmer; in the latter case, it becomes a system programmer concern.
Furthermore, in the latter case many more autonomic aspects can be included
in the manager, making it potentially even more effective, leveraging on the fact
that it is implemented as an independent activity. In both cases, however, what
typically has to be implemented is a control loop:

(AM m a p e)(C) = (AM m a p e)(e (p (a (m C))) C)

where m represents the monitoring actuated on the current computation, a rep-
resents the analyse activity identifying a suitable policy to be executed, p is the
function providing plans to implement a given policy and finally, e is the execute
function, applying plans to computations (C) in order to adapt the computation
according to the chosen policy.

As in the case of structuring abstractions, if users are provided suitable ab-
stractions modelling this kind of autonomic controller, they can obtain running,
2 Assuming the compiled application will run with some kind of -np, MPI-like

parameter.
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optimized autonomic manager by specializing the general, second order, recur-
sive function with appropriate parameters.

For example, consider performance tuning in an embarrassingly data parallel
computation. In this case, the user may provide a monitor function computing
current throughput (time spent computing a single data item and time spent to
retrieve input data and to deliver (partial) results), an analyse phase that will
consider whether the grain limit for this computation has been reached (i.e. the
grain such that the time spent to deliver input data to and retrieve results from
remote computing elements equals the time spent to compute the data item
locally), a plan phase determining either to increase or to decrease the allocated
computational resources and finally an execute function applying the planned
activities on the current computation to implement policy decisions.

Autonomic managers may be used to raise the level of abstraction presented
to the programmer of parallel and distributed applications by abstracting all
those aspects directly related to management of their non-functional concerns.
To enhance further the abstraction level presented to the autonomic manager
designers/implementors, we found it beneficial to express the autonomic cycle
behaviour through business rules rather than via the functions mentioned above.
In this case, the system programmer is given a set of monitoring and actuation
actions, that can be used to get measures about the current computation and
to implement adaptive actions, respectively. Then he may completely customize
the autonomic manager behaviour by providing if-then rules where the if part
is a first order predicate on the monitored values and the then part corresponds
to the plan/execute component of the control loop. The autonomic manager
periodically scans the (prioritized) rules available, identifies the fireable ones
(those whose if predicate evaluates to true) and finally applies the adaptive
actions specified in the corresponding then part.

3 Structuring and Management Co-design

In this section we propose a co-design approach to developing the structure
and management of distributed systems. The aim is to devise a methodology
for identifying and implementing distributed programming abstractions which
model parallel/distributed computation patterns and handle non-functional fea-
tures. This methodology may be used to make available programming abstrac-
tions that i) can be used (i.e. instantiated according to the general programming
model chosen3) to implement applications matching exactly the particular par-
allel/distributed pattern defined by the abstraction, and ii) take care of relevant
non-functional aspects via autonomic managers, where the non-functional re-
quirements are specified by the user via a SLA.

In order to be able effectively to co-design distributed application structuring
and non-functional concern management, we must identify first suitable interac-
tion patterns between the two. In other words, we have to establish which plays an
active role and which a passive role, and how the active actor may impact upon the
3 OO, component based, service based, ...
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passive counterpart. It seems natural to consider the managers as being the active
entities and the skeletons the passive ones as autonomic managers are devoted to
taking decisions that have to be applied in the execution of an application.

The second step concerns identification of the kind of malleability supported
by the passive actor. This requires definition of those parameters which may
be controlled from outside an algorithmic skeleton, and thus, as a consequence,
which adaptive actions can be ordered by the manager. Triggering of the adap-
tive actions requires definition of the observable measures of the skeleton that
can be sampled via monitoring and, in turn, definition of the policies and plans
to be considered in the manager. If the skeleton does not provide suitable mech-
anisms to monitor relevant parameters then, no matter how good the abstract
performance model we have in the manager, it is not possible to perceive in the
manager that the computation is not performing as expected and thus trigger
some adaptation action. Similarly, if the skeleton implementation does not pro-
vide effective actuation mechanisms, then the manager cannot implement any
kind of corrective policy. Therefore the skeleton implementation must provide
appropriate monitoring and actuation interfaces for the manager.

Skeleton malleability can be achieved via appropriate parameters. Thus we
will assume that each of the skeletons considered has more that just the func-
tion parameters outlined in Sec. 2.1. In particular, we will consider that each of
the skeletons has a parameter specifying the parallelism degree of the skeleton
itself. In addition, a skeleton may have a boolean parameter stating whether
the communications involving that skeleton should be secured or not. Whether
this should be an actual parameter or some kind of meta-data (e.g. provided
via annotations) is beyond the scope of this work. With these parameters avail-
able, one can easily envisage managers interacting with running skeletons by
setting/resetting those parameters via appropriate setter/getter methods pro-
vided by the skeleton interface.

The factors listed determine the nature of the co-design that can be used
for structuring skeletons and autonomic managers. It is clear that the more
effects we want to control via the manager, the more monitoring and actuators
methods should be implemented in the managed skeletons. It is equally clear
that the better interaction we have among manager and managed entities, the
better autonomic management policies we can implement.

The methodology mentioned at the beginning of this section, can thus be
summarized as follows.

1. First, the skeleton set used to structure our application is identified.
2. Then the malleable skeleton interface is designed and implemented allowing

i) monitoring of the measures of interest for implementing the autonomic
management policies and ii) actuation of the decisions taken by the auto-
nomic manager.

3. Finally, autonomic manager control loop is implemented that i) gathers the
relevant monitoring values from the malleable skeleton, ii) activates the rule
engine and iii) finally executes the fireable rules through the actuation mech-
anism interface of the malleable skeleton.
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The result will be a programming framework where application programmers
build applications by instantiating the skeleton/manager programming abstrac-
tions with suitable parameters and devote to the implementation4 most (all) of
the cumbersome activities needed to develop efficient, autonomically managed
parallel/distributed applications.

4 Implementation and Results

The approach described in Section 3 has been experimented with in several
projects, and the table in Fig. 1 recalls the distinguishing features of the corre-
sponding prototypes. The more important experiments have been made in the
framework of the CoreGRID FP6 NoE while designing the GCM (Grid Com-
ponent Model) and then within GridCOMP, the spin-off FP6 STREP aimed at
providing an open source reference implementation of GCM.

Fig. 1. Different features of several co-designed skeleton+autonomic manager frame-
works (GCM Behavioural skeleton framework [1], SCA service autonomic task farm
experiment [9], muskel full Java skeleton library [8])

In this context, the behavioural skeleton concept has been developed [1] within
the reference GCM implementation built on top of ProActive middleware [17].
A behavioural skeleton (BS) is a component modeling a common parallelism
exploitation pattern on parallel and distributed architectures and providing an
autonomic manager taking care of the performance non-functional aspects re-
lated to the parallelism exploitation pattern considered. In GCM, task farm and
data parallel behavioural skeletons have already been implemented and the im-
plementation of a pipeline behavioural skeleton is undergoing. The task farm BS
models embarrassingly parallel computations, the data parallel BS models sev-
eral kinds of data parallel computations, including those sharing a state among
their parallel activities, and the pipeline BS models computation in stages. All
the current behavioural skeletons handle only performance issues in their auto-
nomic managers.

4 To the system programmers, but this activity is needed just once, when the skele-
ton/manager pairs are designed and implemented.



410 M. Aldinucci, M. Danelutto, and P. Kilpatrick

Fig. 2. Abstract schema of Behavioural skeleton: P represents the functional interface,
the grey part represents component “membrane”, i.e. the non-functional part of the
composite GCM component, AC is the the autonomic controller providing a monitor-
ing and actuator interface to the manager. The W are the inner components whose
parallel/distributed interaction is managed by the skeleton.

Autonomic managers in behavioural skeletons are implemented using a JBoss
rule engine [12]5. Rules establish manager policies. The precondition part uses
methods provided by an autonomic controller (AC) bean associated with the
implemented skeleton (see Fig. 2). Actuation mechanisms are provided also as
methods of the same AC bean, and they are called while executing the action part
of fireable rules. The rules are evaluated in a control loop: once the execution
of the currently (higher priority) fireable rule action part is terminated, the
evaluation of the precondition part starts again. Rules currently included in the
autonomic managers allow increase and decrease of the resources allocated to a
BS in such a way that a user supplied performance contract (SLA) is ensured in
the presence of variations in the load and availability of the computing and inter-
networking resources used to run the application. Performance contracts, in turn,
are expressed in terms of throughput via JBoss rules submitted (statically, at
the beginning of the application execution, or dynamically, while the execution
progresses) to the autonomic manager of the BS.

Separation of concerns is achieved as proposed in Section 3 as behavioural
skeletons are implemented by system programmers and application programmers
need only choose one of the available BS and provide the appropriate parameters
to get a fully working, performance optimized application.

Using the GCM BS prototype we developed several synthetic applications
and GridCOMP partners developed more realistic use cases, including biometric
identification and fluid-dynamic parameter sweeping applications [11]. Typical
results achieved with the GCM BS are shown in Fig. 3. The plot relates to an

5 Jboss uses Drools, that is “a business rule management system (BRMS) with a
forward chaining inference based rules engine, more correctly known as a production
rule system, using an enhanced implementation of the Rete algorithm” according to
Wikipedia (http://en.wikipedia.org/wiki/Drools)

http://en.wikipedia.org/wiki/Drools
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Fig. 3. GCM behavioural skeletons at work

application looking up items in a databases. Several user provided databases are
supplied, each with its own stream of items to be searched. Comparing input
items with an item in the database takes a non-negligible time. The user-specified
contract requires that each worker should have between 100 and 150 database
entries to compare, in order to get a reasonable response time (grey bar in the
second graph). The dimensions of the databases supplied are plotted on the first
graph and the actual database partition size in workers is the line plot of the
second graph. The autonomic manager of the data parallel BS reacts by adding
and removing workers (third graph) in such a way that the requested partition
size varies within the contract range and an acceptable service time is achieved
(fourth plot). These results have been achieved by running the application on
three different architectures: a Fast Ethernet NOW, GRID 5000 [10] and an SMP
multicore core architecture (up to 8 cores). In all cases, the BS autonomic man-
agers reacted as expected and performance has been adapted to the varying load
conditions of the target architecture. Experiments are ongoing that demonstrate
that the same results can be achieved when heterogeneous NOWs of single and
multi-core machines are targeted.

These results assess the concepts and methodologies discussed here. Further-
more, in [9] we discussed a similar implementation providing a WorkPool service
computing independent tasks according to a task farm skeleton, whose execution
is managed by a WorkpoolManager service using a JBoss drools engine and in-
terfacing (monitor and actuator interfaces) the managed skeleton to the manager
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via a suitable interface bean. With this prototype6 we demonstrated that the
co-design methodology described in Sec. 3 can be easily exported to other pro-
gramming frameworks (the service framework in this case) while preserving the
programmer’s investment and fulfilling the “minimal disruption” requirement
stated by Cole in his skeleton “manifesto” [6].

5 Multiple Non-functional Concern Management

While the proposed approach has been shown to be effective for a range of under-
lying programming paradigms, there remain significant challenges, not least in
addressing systems where multiple non-functional concerns are to be managed si-
multaneously. For example, the manager may be required to handle performance,
security and fault tolerance aspects of the pattern/skeleton at hand. Thus, in
the general case, monitoring may involve different, possibly independent values,
independent policies may exist relative to the different non-functional concerns
and, finally, decisions taken in relation to different policies may be somehow
inconsistent or even conflicting.

Therefore some meta policy may be needed to handle autonomic management
of different non-functional concerns. The simplest such policy is the weighted
one. Different non-functional concerns are given a weight (or a priority) and ei-
ther those with higher weight/priority are considered first (i.e. the corresponding
policies are considered and the corresponding actions taken) or, in the case of
policies whose effects can be somehow “scaled” a weighted policy effect is con-
sidered (i.e. policy i actions are executed with weight wi). However this strategy
cannot be applied in the general case, as in the general case it makes no sense
to execute an action “with weight wi”. We need more complex strategies, and
these strategies can probably best be implemented using some business rule en-
gine such that used to implement the rules relating to autonomic management
of a single concern.

In this case, we have to distinguish rules used to implement intra-non-functional
concern policies (ground rules) from those implementing inter -concern policies
(meta rules). In addition to normal priority-based handling of rules, system pro-
grammers should be able to exploit meta-rules before actually actuating fireable
ground-rules, but after knowing which exact ground rules are fireable and the rel-
ative priorities.

For example, consider the case where both performance and security are being
managed. Suppose we have a rule stating that we can add more resources to the
current computation if it is under performing, and another stating that a resource
can be managed without the need to use secure communications and that both
are fireable. Application of either rule will probably increase the performance of
the application and so there should be some meta-rule stating how they should
be applied: both, and if so which one first, or just one, and then which one.
6 The prototype is implemented on top of the Tuscany [19] implementation of SCA,

the Service Component Architecture [18] and is referred to as “SCA service” in
Fig. 1.
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This simple example indicates how complexity escalates when even straight-
forward concerns are combined. The challenge of determining policies for dealing
with multiple non-functional concerns in concert is huge but we believe the idea
of meta-rules will at least provide a framework in which these issues can be
addressed.

6 Conclusions

We discussed how co-design of parallel/distributed computation structuring and
autonomic management can facilitate the development of distributed systems by
enforcing a separation of concerns at two levels. First, suitable abstractions may
be provided to the application programmer, ensuring that he can concentrate
on the core functional code and on specifying non-functional requirements as a
SLA. In turn, many of the more challenging aspects of the distributed system
development are left in the hands of the system programmer who is well placed
to deal with these challenges. Second the system programmer is further aided by
the separation of structure from (non-functional concern) management together
with clear guidelines as to how the two should interface.

Preliminary results indicate that the approach is reasonable and feasible, both
in the case COW/NOWs and of multi- many-core networks.

The proposed programming abstractions and co-design approach appears also
to be suitable for implementing cloud programming environments, as they de-
couple programming effort from specific knowledge of the target architecture
while, at the same time, preserving those positive aspects deriving from effi-
cient implementation of both structuring and management patterns. Indeed, in
the case of non-functional aspects in cloud computing, an approach similar to
that proposed is essential, as the application programmer typically will have no
possibility of directly managing such concerns.
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