
Autonomic management of non-functional concerns in distributed & parallel
application programming

Marco Aldinucci
Dept. Computer Science

University of Torino
Torino – Italy

aldinuc@di.unito.it

Marco Danelutto
Dept. Computer Science

University of Pisa
Pisa – Italy

marcod@di.unipi.it

Peter Kilpatrick
Dept. Computer Science

Queen’s University of Belfast
Belfast – UK

p.kilpatrick@qub.ac.uk

Abstract

An approach to the management of non-functional
concerns in massively parallel and/or distributed ar-
chitectures that marries parallel programming patterns
with autonomic computing is presented. The necessity
and suitability of the adoption of autonomic techniques
are evidenced. Issues arising in the implementation of
autonomic managers taking care of multiple concerns
and of coordination among hierarchies of such auto-
nomic managers are discussed. Experimental results
are presented that demonstrate the feasibility of the
approach.
Keywords: autonomic management, algorithmic skele-
ton, design pattern, behavioural skeleton, parallel com-
puting, distributed computing, grid, clouds.

1. Introduction

Massively parallel and/or distributed systems are now
available based on three different architectural mod-
els: high performance clusters, grids [1] and clouds
[2]. To facilitate efficient implementation of parallel
and/or distributed applications on these architectures,
a range of structured parallel programming method-
ologies is available, such as those based on parallel
design patterns [3] or algorithmic skeletons [4], [5].
It is not realistic to design programs with hundreds to
thousands of parallel/distributed activities where each
activity represents an independent flow of control with
its own code, different from the others. Even when
applications targeting this kind of architecture are not
explicitly programmed according to a structured parallel
programming model, their internal structure is usually
an implicit hand-coding of some well-know pattern such
as the embarrassingly parallel or the map/reduce one.

The management of non-functional concerns in this
kind of application is typically a complex task. Non-

0. This work has been partially supported by EU FP6 NoE
CoreGRID, EU FP6 STREP GridCOMP and Italian FIRB Insyeme
projects.

functional concerns are those concerns not directly
related to the result computed by an application, but
rather to the way this result is computed. Examples
of non-functional concerns include performance, se-
curity, fault tolerance. Management of such concerns
usually requires extensive knowledge of the target ex-
ecution environment and appropriate interaction with
the functional code of the application. Non-functional
concern management becomes increasingly complex as
the target architecture becomes more and more dy-
namic and heterogeneous, and the features of the target
execution environment are progressively hidden from
the application programmer (moving from clusters to
“invisible grids” [6] and from grids to clouds). This sug-
gests or, in some cases, imposes the adoption of some
kind of autonomic management [7] of non-functional
features. In all cases where the target architectures
features are explicitly and intentionally hidden from the
user/programmer, e.g. in clouds, the adoption of auto-
nomic features managing non-functional concerns at run
time, i.e. when the maximum amount of information
relative to the target execution environment is available,
becomes a must.

In addressing the need to accommodate autonomic
capability we adopt the IBM blueprint ideas: autonomic
management of a component is provided by a dedicated
autonomic manager which encompasses all autonomic
activities while interacting with the functional core of
the component [8]. This provides an attractive sepa-
ration of concerns and, combined with the well un-
derstood scalability properties of algorithmic skeletons,
presents a potentially effective means of structuring
applications for use in grids and clouds.

The results discussed represent the latest episode in
a longer-term programme of work that aims to allow
an application programmer using, say, a cloud-based
setting, to focus on providing the required functional
code while simply providing a contract specifying the
limits on the relevant non-functional parameters. It
will then be the job of the “system” to manage the
application so as to maintain the contract. To date

we have introduced the idea of behavioural skeletons
bringing together the idea of skeleton programming
and autonomic management [9]; presented experimental
results demonstrating the feasibility of the idea for a
single manager taking care of a single non-functional
concern [10]; and described a detailed strategy for the
interaction of a hierarchy of managers dealing with
a single concern [11]. The contribution of this work
is twofold: in section 3.2 we highlight the issues that
may arise among autonomic managers responsible for
differing (but perhaps, in some way, competing) con-
cerns; and in section 4 we discuss an implementation
of the strategies underpinning hierarchical management
of a single concern and show experimental results
demonstrating the efficacy of the approach.

The results discussed stem from various different
experiences in several projects in which we have been
involved: the Italian FIRB GRID.it [12] project, in
which the programming environment ASSIST was de-
signed, which was the first example of the use of auto-
nomic managers taking care of performance tuning in
massively parallel applications [13]; the CoreGRID Eu-
ropean Union NoE [14] where a Grid Component Model
(GCM) was designed and the concept of behavioural
skeleton [10] first introduced; and the GridCOMP EU
STREP [15] project, where the GCM reference imple-
mentation, including the behavioural skeleton idea, was
developed.

2. Functional & non-functional application
concerns

Functional concerns in the development and imple-
mentation of a parallel/distributed application relate to
the results computed by the application, i.e. to what
is computed by an application, while non-functional
concerns relate to how these results are computed. Non-
functional concerns give rise to many of the hard, error
prone problems in parallel/distributed computing. For
the purposes of this work, we consider the kind of paral-
lel patterns exploited to implement the application to be
a functional concern, while all the management issues
relating to the exploitation of the parallel patterns (for
example, parallelism degree set-up and tuning, dynamic
load balancing, adaptation of parallelism exploitation
pattern to varying features of the target architecture
and/or application) represent non-functional concerns.

Non-functional issues are usually tackled directly
at the user/application programmer level using various
techniques. The parallelism degree can be fixed, either
at compile time or at run time, or can be handled in
such a way that it can vary during application execu-
tion. Fault tolerance can be supported by introducing
appropriate checkpointing code and/or using redundant

control in such a way that a limited number of faults can
be tolerated. Security usually requires transport level
data and code encoding together with some reliable
authentication system. Adaptivity requires monitoring
facilities to be implemented that allow observation of
the actual behaviour of a parallel application as well
as mechanisms to support the adaptive strategies used
when the monitored behaviour is discovered to be
non-compliant with the expected one and appropriate
adaptation policies are used.

In an ideal programming scenario, functional con-
cerns should be under user/application programmer con-
trol and responsibility. Non-functional concerns should
instead be completely handled by the “system”1 in
accordance with the general “directions” provided by
the user/programmer via, for example, some kind of
Service Level Agreement (SLA). Indeed, this is what
already happens in the sequential programming sce-
nario: programmers write code using a high-level pro-
gramming language and then the HLL compiler, its run
time support and the underlying operating system take
care of those aspects related to memory management
that make efficient the computation expressed by the
user through the HLL program. The only possibility the
user has to influence memory management is through
SLAs directed to either the compiler (e.g. a register

directive modifying the default allocation of a variable
in a C program) or the run time system (e.g. a directive
modifying the stack size, such as the -Xsm nnn passed
to a JVM).

When explicitly handling non-functional concerns,
the programmer confronts several distinct problems, in
particular:

• code tangling The code taking care of the non-
functional concerns is often intermingled with code
implementing the functional part of the applica-
tion. This proves a hindrance when debugging and
tuning either the functional or the non-functional
code. Also, failure to separate functional and non-
functional code usually prevents simple reuse of
non-functional code in applications whose applica-
tion domain is different but which adopt the same
parallelism exploitation pattern(s).

• wide knowledge requirements In order to man-
age efficiently non-functional concerns, extensive
knowledge of the target architecture is needed,
which is often only available at run time, as well as
knowledge of the techniques used to handle non-
functional concerns. Both of these kinds of knowl-
edge differ substantially from the domain-specific
knowledge required to develop the functional part

1. by programming tools, compilers, run time supports, operating
systems or by some kind of cumulative and coordinated effort by
these layers altogether

of the application. Consequently, application pro-
grammers must have, and maintain, a broad range
of skills to develop effective implementations.

These problems may significantly impair the ef-
ficiency achieved by application programmers when
dealing with non-functional concerns. A possible so-
lution consists in moving all of the non-functional
concerns to the compiler/run time support of some
high-level programming environment, while leaving the
user/application programmer the duty of formulating
some general SLA with which the system may be pro-
vided and which describes the non-functional concern
goals the user requires to be achieved. This is the
approach we propose in adopting the concept of be-
havioural skeleton with associated autonomic manager.
The general idea is to provide application programmers
with pre-defined parametric parallel programming pat-
terns with built-in handling of non-functional concerns.
These patterns may be implemented using standard
static (compile time) and dynamic (run time) techniques.
The expected result is twofold: on the one hand, ap-
plication programmers may concentrate on the domain
specific application aspects, i.e. those that lie within
their area of expertise. As they are no longer distracted
by implementation detail of non-functional aspects, their
work may be much more effective. On the other hand,
non-functional feature handling is encapsulated and
becomes the responsibility of system programmers who
can bring to bear their specialized knowledge of target
architecture and non-functional techniques.

In the context of cloud computing, application pro-
grammers no longer have the possibility to program
effective non-functional concern management due to
the high “virtualization” of this kind of architecture.
Therefore non-functional concerns must be managed
within the cloud compiler/middleware/RTS. In turn, this
means non-functional concerns will be managed by
programmers with a better knowledge of the target (vir-
tualized) architecture and thus potentially more effective
non-functional concern handling can be achieved.

3. Management of non-functional concerns

To support the management of non-functional con-
cerns we employ the concept of autonomic manager
(AM). In the context of this work an autonomic manager
is an independent activity completely and autonomically
managing some specific non-functional concern within
an application. The AM is actually a concurrent activity
with respect to the main flow of control of the applica-
tion. AMs are characterized in three distinct dimensions:
i) the concern they manage ii) the autonomic policies
they implement and iii) the degree of cooperation with
other managers (if any) in the same parallel application.

In particular, the concern and the degree of cooperation
represent orthogonal dimensions in the design space
considered here. Therefore, we will consider AMs tak-
ing care of a single or of multiple goals, AMs taking
care of a goal(s) alone or in a hierarchy of coordinated
AMs, and any intermediate combination (see Fig. 1 left).

In this work, we employ classical autonomic man-
agers [16], [17]. These managers execute a control loop.
A monitor phase triggers an analysis phase. If behaviour
is not as theoretically expected, corrective actions are
planned and finally executed. Immediately after action
execution the control cycle restarts with monitoring.

As an example of a single concern autonomous
manager, consider an AM whose goal is performance
optimization in a parallel application. Several autonomic
policies can be implemented within this AM: initial
parallelism degree setup, mapping of parallel activities
to processing resources, adaptation of parallelism degree
in the event of non-temporary target architecture feature
variations (e.g. load increase or decrease), load balanc-
ing among the available resources, migration of poorly
performing activities to faster execution resources, etc.
Some of these activities represent very difficult prob-
lems, at least in the general case, even where the
AM is the only one in the computation or does not
cooperate with other AMs in the same computation.
For example, the mapping of parallel activities onto
available processing resources is a NP-hard problem
in the general case. The complexity of management
may be exacerbated when inter-AM cooperation has
to be taken into account. Suppose another AM, whose
main goal is security, is present in the same application.
Policies implemented within this manager may concern
the ability to secure data and encrypt communications
to/from remote nodes that involve non-private network
segments. In this case the mapping of parallel activi-
ties to processing resources should not only take into
account the network dependent communication costs,
but also the fact these costs increase when the related
network links are non-private.

Apart from mapping, several other examples of hard
problems related to AM policies can be cited, including
load balancing, optimal allocation of shared data, etc.
One means of reducing AM complexity is to restrict
in some way the kinds of parallel computations in
such a way that the AM problems become more man-
ageable. Here, we leverage on the fact that efficient
massively parallel/distributed computations very often
implement well-known parallel/distributed exploitation
patterns. Following this approach, we introduced in [9]
the concept of behavioural skeleton (BS). A behavioural
skeleton is a pair 〈P,MC〉, where P is a well known
parallelism exploitation pattern and MC is an AM
taking care of a concern C in the computation of P .

To date we have focused on the functional replication
pattern. In a functional replication pattern a number
of functionally equivalent computations are performed
in parallel to process a stream of input data to pro-
duce a stream of output results. By varying the way
input tasks are distributed to the available concurrent
computations, the way the results are gathered into the
output stream and the amount of data shared among the
concurrent computations, several distinct parallel pat-
terns can be modeled, including embarrassingly parallel
computations on streams (task farm) and data parallel
computation (embarrassingly parallel or with state or
stencil).

Using BSs we succeeded in reducing the complexity
of performance optimization and tuning to a tractable
size. In particular, we demonstrated that the parallelism
degree of computations implemented using a functional
replication BS can be initially set to some “optimal”2

value and then adapted to take into account different
availability (load) of the processing resources used as
well as different needs (computational power) of the
application [10]. Here we extend the work already
performed with behavioural skeletons. In particular, we
discuss both multi-concern management and coopera-
tion among managers within a hierarchy and present
experimental results in relation to the latter.

3.1. Hierarchical management of a single non-
functional concern with BS

In those cases where a hierarchy of relatively in-
dependent software modules is used to compose an
application, hierarchical management of non-functional
concerns can be exploited to achieve better results. In
hierarchical management of non-functional concerns,
managers are attached to the individual software mod-
ules within the hierarchy and therefore themselves con-
stitute a hierarchy. Managers in a higher position in
the hierarchy will take more autonomous decisions,
while managers in a lower position in the hierarchy will
behave in consequence of decisions taken at the higher
levels. In particular, the top level manager will receive
from the user a contract (SLA) specifying the con-
straints on the parameters within which the application
must operate in the context of the given non-functional
concern. In turn, each lower level manager will be given
a (sub-)contract by its parent. The contract is described
in a formalism appropriate to the non-functional concern
and represents the target for the autonomic activity.

Two main issues arise when considering hierarchical
management of non-functional features:

2. with respect to the efficiency achieved with the processing
resources used

Pspl A strategy must be devised that allows splitting of
a contract c of a top level manager into a set of
sub-contracts c1, . . . , cm to be propagated to the
nested managers.

Prol Each AM should be able to play two independent
roles: active and passive.
In active mode, a manager actively and autonom-
ically tries to ensure the contract received either
from the user or from its parent manager in the
hierarchy, by executing a classical autonomic con-
trol loop and, if required, planning and executing
appropriate autonomic actions aimed at ensuring
contract satisfaction. In passive mode the manager
only monitors the current computation status and
waits for a new contract from its parent. Passive
mode is entered when an active manager identifies
that it no longer satisfies the current contract, for
some reason, and there is no (locally available)
plan(s) that can be used to recover the situation.

Provided these two issues can be effectively ad-
dressed, hierarchical single goal autonomic management
can be implemented as follows:

• The user provides a top level contract (application
SLA).

• The contract is split into sub-contracts and the
sub-contracts are propagated to the children of the
top level manager, and the top level manager then
enters active mode.

• Recursively, each manager receiving a contract
splits it into sub-contracts, propagates them to its
children and enters active mode.

• Each manager in the active mode performs a classi-
cal autonomic control loop. Where appropriate and
possible, corrective actions are taken. If corrective
action is required and not possible, a contract
violation is reported to the parent and passive mode
is entered. The manager remains in passive mode
until it receives a new contract.

A large number of massively parallel/distributed ap-
plications exploit parallelism through compositions of
two basic stream parallel patterns: pipeline and task
farm. The former models computations in stages, where
computation of stage i on task k may proceed in parallel
with computation of stage i−1 on task k+1 and of stage
i + 1 on task k − 1. The latter models embarrassingly
parallel computations, where computation of task k may
proceed in parallel with computation of task k′ (k′ 6= k).

Let us suppose two behavioural skeletons exist,
BSp = 〈Ppipe,MC〉 and BSf = 〈Pfarm,MC〉
modelling pipeline and farms, respectively, and having
as concern C. The computations above can thus be
modelled with a tree of behavioural skeletons where
nodes are BSs and leaves are sequential portions of code
representing the lowest level of pipeline stages or task

Single goal,
autonomous AM

Multiple goal,
autonomous AM

Multiple goal,
hierarchical AM

Single goal,
hierarchical AM

increasing coordination of control

increasing targeted concerns Active
State

Passive
State

Contract violation
Perform corrective action

Contract violation & no corrective policy applies
Report violation

Receive contract
Start control loop

Figure 1. Orthogonal dimensions in autonomic management of non-functional concerns (left) and states of
autonomic managers in behavioural skeletons (right).

farm workers.
In this case, the AM associated with the BS at node n

in the tree should manage concern C by coordinating the
activities of the descendant node BSs BSn1 , . . . , BSnm

and reporting the results of such coordination to the
parent BS BSn0 . These two activities clearly require the
interaction of all the involved managers. For example,
consider a tree whose pattern structure is given by the
expression farm(pipeline(sequential, farm(sequential),
sequential))) and suppose the non-functional concern is
performance optimization. The AM associated with the
inner pipeline should optimize performance by inter-
acting with the AMs of its descendant nodes of type
sequential, farm and pipeline. Finally, it should report
to the AM of the outer, top level farm.

The Prol problem above can be solved by organizing
autonomic management of non-functional features in
two distinct parts, a passive part implementing the
mechanisms needed to monitor the behaviour of the
associated computation with respect to concern C and
the mechanisms needed to adjust the behaviour of
that computation; and an active part implementing the
autonomic policies of the AM in such a way that
these policies try to maintain the SLA contract received
from the user (top level AM) or from the parent AM
(inner AMs). This allows separation of policies from
mechanisms and ensures that policy formulation can
be carried out without consideration of how the policy
will be enacted. In Section 4 we will see how this
implementation strategy facilitates active and passive
role AMs in behavioural skeletons.

The Pspl problem is much more complex. It is diffi-
cult to imagine a general strategy for splitting a contract
agreed with a particular BS into sub-contracts to be
agreed/ensured by the nested behavioural skeletons, nor
are we aware of proposed solutions to the more general
problem of splitting general purpose SLAs into sub-
SLAs that, once ensured, guarantee satisfaction of the
original SLA. However, we can adopt quite effective
domain specific heuristics once the general contract c

is fixed, using the fact that the AMs are associated
with well-know parallel patterns. For example, when
performance is considered, splitting the SLA of a
pipeline can exploit the well-known performance model
of a pipeline, in which the pipeline performance is
bounded by the performance of the slowest stage. As
a consequence, a throughput SLA for the pipeline may
be split into identical SLAs for the pipeline stage AMs,
and a parallelism degree SLA can be proportionally3

split into the parallelism degree SLAs of the pipeline
stage managers.

3.2. Multi-concern management with BS

When multiple concerns C1, . . . , Ch are considered in
the context of autonomic management of non-functional
features, further problems arise from the structuring of
autonomic management activities. Besides hierarchical
management structure deriving from nested behavioural
skeletons, we have to decide how the management of
the different non-functional features is to be coordinated
among different managers. At the two extremes lie the
following scenarios:
SM a single (hierarchy of) AM exists taking care of

the concerns C1, . . . , Ch altogether.
MM multiple (hierarchies of) AMs, each taking care of

a different concern Ci plus a general super-AM
orchestrating the multiple AMs so as to take care
of C1, . . . , Ch.

In both cases4, the challenge lies in resolving conflicts
arising from decisions taken when considering different
concerns; or how to derive some kind of “summary”
super-contract c from c1, . . . , ch with its own policies
such that managing that contract leads to fair and
efficient management of all the concerns C1, . . . , Ch.

To illustrate this issue, suppose that performance op-
timization and security are the non-functional concerns

3. depending on the relative computational weight of the stages
4. and also, in our opinion, in all intermediate cases

Non-Functional
client & server ports

membrane

ABC
LC
CC
BC

AM

S C

W

W

content

Input tasks come to S
and are dispatched to

W according to the
policy of S (scatter,
unicast, multicast,

broadcast). W compute
results that are

collected by C (gather,
reduce). AM monitors

execution, having
received an SLA

contract. In case of
contract violation, it can

either take local
corrective actions or

report violation to upper
level manager (or to

the user).
Filter

AMF

AMA

S C

Wn

W1

...

App

Prod Cons
AMP AMC

LC: Lifecycle Controller
CC: Content Controller
BC: Binding Controller

ABC: Autonomic Behaviour Controller

AM: Autonomic Mananger
W: Worker component
S: customizable input interface
C: customizable output interface

AM

AM

Figure 2. Functional replication BS in GCM (left) and nested usage of BS (right)

(Cperf , Csec) under focus in an application. The applica-
tion is implemented using a tree of behavioural skele-
tons whose internal structure is a pipeline(sequential,
farm(sequential), sequential) (such as the one in Fig. 2
right). Also, assume an SLA comprising two contract
goals is agreed with the top level BS: a minimal
throughput T (cperf) and secure communications for all
the nodes in domain untrusted ip domain A (csec).
When the contracts are propagated to the pipeline stages
it may eventually be discovered that the first sequential
stage may satisfy the cperf but, being deployed onto
a node in the domain untrusted ip domain A, com-
munications must be implemented with SSL instead of
plain TCP/IP sockets according to csec and this, in turn,
leads to violation of cperf .

Another typical situation of conflict comes from the
pipeline second stage, which is itself a farm. If the farm
cannot satisfy cperf , its manager could plan the addition
of a new worker5. Therefore it recruits a new resource6

and instantiates a new worker on the resource. As soon
as the worker has been started it is included in the
farm scheduler and tasks are submitted to the worker
for computation. If the recruited resource belongs to
domain untrusted ip domain A then a violation of
csec will arise as a result of trying to re-establish cperf .

Now, Csec is particularly interesting as it represents
a boolean non-functional concern: data and code com-
munication is either secure or it is not. Therefore, when
considering security concerns, they should be given a
priority. In both examples above this means that csec

must have priority over cperf . However, this is not
enough. Some agreement is needed to perform actions
not directly related to security whatever solution we use
in the range SM – MM.

5. after verifying the new worker does not require more communi-
cation bandwidth than is available

6. possibly interacting with some kind of external resource manager

Consider again the latter example above. Let us as-
sume that a performance manager AMperf and a secu-
rity manager AMsec are both active and are coordinated
through a “root” general manager GM . If AMperf

decides to increase the parallelism degree of the farm
in the second stage, and the new resource recruited for
the purpose belongs to untrusted ip domain A, the
decision of AMperf cannot be committed without tak-
ing into account/informing AMsec. However, informing
AMsec is not sufficient in itself. If AMperf actuates
the decision by itself, then during the time needed for
AMsec to react and direct securing of communications
to and from the new (insecure) node, all the communi-
cations with the new node will be unsecured. Therefore,
some kind of two phase protocol is needed: i) AMperf

should express the intent to add a new node, ii) AMsec

could react by prompting securing of communications
and iii) AMperf may then instantiate the new secure
worker.

In our opinion this problem and the related solutions
do not depend on the approach chosen, whether it be
SM or MM or one of the intermediate ones. However,
adopting a MM approach makes solutions easier to
devise due to the complete separation of concerns.
AMperf (AMsec) can be designed, implemented and
optimized while taking into account Cperf (Csec) alone
and there is a reasonable possibility that general purpose
policies may be designed for GM independent of the
actual Ci managed by the single AMj .

This is true also for policies and contracts. For exam-
ple, in the context of policies, the two phase protocol
above is quite general, provided that all managers make
available means to ask for contract satisfiability of a
given system configuration (e.g. the one with a new
worker on the untrusted node) and ways to intervene
to finalize the configuration before it is actually used
(e.g. imposing secure communication implementation

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

M
a
c
h
i
n
e
s

I
t
e
m
/
S
e
c

Time (secs)

Medical image processing application

Throughput
Recruited Machines

Figure 3. Single AM in action: ensuring a 0.6
task/sec throughput contract/SLA in a task farm BS.

with the new worker). For contracts where non-boolean
concerns are considered, it may be possible to devise
c from c1, . . . , ch using some sort of linear combina-
tion. This is an area which requires significant further
investigation.

4. Experiments

In this section we discuss experimental results that
demonstrate the feasibility and the efficacy of the
proposed approach. The results presented here been
achieved in the framework of the GridCOMP project
[15], where a Grid Component Model (GCM, [18], [19])
reference implementation has been developed. Using
this framework we demonstrated previously that auto-
nomic managers can be used to handle non-functional
concerns in massively parallel/distributed computations
“in isolation”, that is, with a single, monolithic manager
taking care of a given non-functional feature in the
whole application. In particular, we considered sepa-
rately performance [10] and security issues [20]. Later,
we outlined strategies for the realization of hierarchical
management of structured parallel computations with-
out presenting an implementation of hierarchical BS
or any experimental results [11]. Here we show how
hierarchical management of a single concern has been
implemented using GCM.

4.1. Behavioural skeleton-based autonomic
framework in GCM

A prototype implementation of behavioural skeletons
is provided by the GCM reference implementation de-
veloped in GridCOMP. Behavioural skeletons are im-
plemented as GCM composite components and provide
autonomic management of non-functional concerns in

computations whose parallel structure is expressed by
an algorithmic skeleton [4]. In particular, autonomic
management is provided by the BS autonomic man-
ager (AM) that acts to ensure/restore a user-defined
SLA (contract). As outlined in Fig. 2, left, the AM
is a membrane7 component (i.e. a component provid-
ing non-functional services). The AM interacts with
(uses services provided by) an Autonomic Behaviour
Controller (ABC) that provides methods to access the
computation status (monitoring) and to implement the
actions ordered by the AM (actuators). The ABC,
in turn, uses services from the GCM/Fractal standard
controllers Lifecycle, Content and Binding Controller
to implement both monitoring and actuators.

The autonomic managers implemented in GCM be-
havioural skeletons use a JBoss rule engine [22] to
implement the autonomic control cycle. JBoss rules are
precondition-action rules. Preconditions are first order
formulas over the parameters monitored by the ABC
controller. Actions are calls to one or more of the
actuator services implemented, again, by the ABC. The
control loop itself invokes the JBoss rule engine period-
ically. At each invocation, “fireable”8 rules are selected,
prioritized and executed. Execution of a JBoss rule leads
to the invocation of the actuator mechanisms in the
action part of the rule, thus affecting the algorithmic
skeleton computation running in the BS [23].

Figure 3 plots typical behaviour observed when using
a single BS to implement a medical image processing
application. The BS used here implements a task farm.
Its autonomic manager takes care of performance opti-
mization/tuning. The (user provided) contract specifies
that 0.6 images per second be processed and the figure
plots the initial set-up of the task farm with the addition
of more and more processing resources up to the point
where the contract is eventually satisfied. In [10] we
have shown how contract satisfaction is guaranteed in
the case of changes in either the processing elements
used (overload or underload) or in the case of temporary
hot spots in image processing.

4.2. Hierarchical management with GCM be-
havioural skeletons

Following initial experiments with a single man-
ager taking care of a single non-functional concern,
we investigated how hierarchical management of non-
functional concerns could be implemented, using the
approach described in Section 3.1. The AM component
in the behavioural skeleton has been extended in such a

7. the concept of “membrane” is inherited from the Fractal com-
ponent model [21] which constitutes the basis of the reference
implementation of GCM in GridCOMP

8. those whose precondition holds true

incrRate
decrRate

inquire

 notEnough
tooMuch

endStream

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

T
o
p
 M

a
n
a
g
e
r

L
o
g
ic

delWorker
 rebalance
addWorker

raiseViol

contrLow
contrHight

tooMuch
notEnough
unbalance

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00F
a
rm

 M
a
n
a
g
e
r

L
o
g
ic

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

G
lo

b
a
l
B

e
h
a
v
io

u
r

Contract
Throughput

Input Task Rate

 5.0

 6.0

 7.0

 8.0

 9.0

35:20 35:40 36:00 36:20 36:40 37:00 37:20 37:40 38:00 38:20 38:40 39:00

R
e
s
o
u
rc

e
s

Wall clock Time (mm:ss)

cores

ta
sk

s/
s

CP

U
co

re
s

reconfigurations

Se
ns

or
s

Ef
fe

ct
or

s
Se

ns
or

s
Ef

fe
ct

or
s

Figure 4. Hierarchical AM in action: actions taken by a task farm BS AM in a three stage pipeline.

way that, besides providing methods to have a contract
assigned (active behaviour) and to report monitoring
data (passive behaviour), it also provides facilities to
report violations to its parent manager. Essentially this
involved addition of callback interfaces to signal vio-
lations. These new non-functional interfaces are called
in the parent manager when the local manager detects
a contract violation but cannot apply any rule (among
those stored in the JBoss engine database) leading to
local actions that could (concur to) re-establish the
contract.

The second modification concerned internal AM
component policies. The policies are stored as JBoss
rules. To model active/passive mode behaviour we sim-
ply added rules that, in the event that every other
local rule fails, report contract violation to the parent
manager. Transition to the passive state is modelled by
the absence of fireable “active” rules (rules not raising
a violation) in the JBoss database of the AM.

All the modifications have been implemented in the
GridCOMP GCM reference implementation. The BS
implementation is open source and can be downloaded
by following the links at the project web site [15].

Using this extended version of the autonomic man-
agers, and consequently the improved version of be-
havioural skeletons, we built an application whose struc-
ture is depicted in Fig. 2, right. The application is a
three stage pipeline. The first stage produces data that
are processed in parallel by the second stage and are
eventually displayed by the third stage. Four managers
are used: AMA is the manager of the pipeline BS which
is the topmost BS in the application (therefore this is
the Application AM). AMP , AMF and AMC are the
managers of the first (sequential) stage, the Producer; of
the second (task farm parallel) stage, the Filter; and of
the third (sequential) stage, the Consumer, respectively.

The hierarchy of managers takes care of performance
concerns (Cperf in the notation of previous sections).

Initially, a performance (actually, throughput) con-
tract ctRange is passed by the application user to the
topmost manager AMA stating that tasks have to be
processed at a rate in the range 0.3 – 0.7 tasks/sec.
As the topmost behavioural skeleton is a pipeline, its
manager AMA simply forwards the contract to the stage
managers AMP , AMF and AMC . In turn, AMF , which
is a farm manager, does not use the received contract

to provide contracts to the worker managers. Rather, it
passes the AMWi a cbestEffort contract in accordance
with the definition of task farm BS (see [23]). As a
consequence, the AMWi

are effectively in passive mode
from the AMF viewpoint, but in fact they autonomically
try to provide the best performance possible locally.

Figure 4 plots what happens during an execution
of the program9 due to the activity of the autonomic
manager hierarchy.

The first graph plots events and actions happening
in the top level manager AMA (the pipeline skeleton
manager). The second graph plots events and actions
happening in the farm manager AMF . The third graph
plots input task rate and throughput of the second
pipeline stage, together with the stage’s contract. Fi-
nally, the last graph plots the resources used to compute
the application. A default parallelism degree is set up
for the farm stage. The farm resources plus the resources
needed to run the producer and consumer pipeline stages
amount to a total of 5 cores, initially. The times on
the x-axis are wall clock times, in minutes:seconds
format. The y-axes represent events in the first two
graphs, throughput (tasks per second) in the third one
and number of cores used in the fourth one.

During a first phase, AMF detects that it is not
delivering the contract throughput (contrLow event,
performance lower than the required contract), but it
identifies that this is due to the fact that input pressure
(i.e. the rate of arrival of input tasks) is not sufficient
(notEnough events, insufficient tasks to keep employed
the resources allocated). Therefore, rather than taking
any kind of corrective action, it reports a contract
violation (raiseViol event) to the upper manager (AMA)
and enters passive mode.

AMA, upon receiving the first violation event from
AMF (a little bit after time 35:40 because of the
network and run time support overheads), sends a new
contract to AMP (incRate event). The new contract
demands an increase in its output rate. At time 36:10 the
first stage starts to deliver as many tasks as are needed
to ensure the contract in AMF (input task rate within
the contract stripe in the third graph). Actually, because
of the multiple incRate actions in AMA, the first stage
produces tasks more and more frequently.

In a second phase, AMF determines that there is
still a violation of the contract (contrLow after 36:10),
but this time one which can be locally managed: AMF

can increase the farm parallelism degree as now there
are sufficient tasks on the input to feed more workers.
Therefore it starts adding two new workers (addWorker
event around time 36:20) and immediately after (at
36:30) the new workers start processing incoming tasks

9. the program was run on an 8-core (dual quad-core) SMP machine
running CentOS Linux with kernel 2.6.18

and the throughput increases. No sensor data is available
for AMF during the reconfiguration, i.e. the second
graph reports no data from 36:20 to 36:30. Immediately
after that, the AMF detects that now too many input
tasks per second are arriving with respect to the number
needed to fulfil the contract ctRange and it, in turn,
reacts by asking the first stage of the pipeline (the
task producer) to slightly decrease the output rate; this
means sending a new contract to AMP (decRate event).
This type of violation is a warning and is conceptu-
ally different from the previous one because (strictly
speaking) it is useless to enforce the contract. In fact,
when too many tasks are arriving the farm can buffer
them or transiently delay the reception of messages
(buffer full). However, if the farm is configured for
“unlimited buffering”, this kind of action helps in fine
tuning the farm memory usage and is therefore useful in
the realization of dynamic self-management strategies.

At time 36:30 AMF again identifies that the contract
is still not satisfied and since the inter-arrival rate
of tasks is sufficient (contrLow and !notEnough farm
events) it therefore starts to add (two) new workers (time
36:40, new addWorker event). This time reconfiguration
takes a little bit longer due to the higher number
of components (workers) involved, but eventually the
throughput rate required by the contract ctRange is
achieved.

In the last phase (rightmost part of the graphs) all the
tasks are in the input queues of the workers10 as denoted
by the endStream events in the AMA (first graph). In
this state, the AMA stops reacting to notEnough events
received from AMF since it cannot take any significant
action; since no compensating actions are taken by the
AMF , the event notEnough will persist in time in the
event line. At the same time (e.g. at 38:10), the AMF

(second graph) locally reacts to an unbalancing event
(rebalance) to redistribute queued input tasks in a fairer
way among the workers. Figure 5 lists the rules (in
the JBoss source syntax) programmed in the AMF to
implement this case study.

This experiment demonstrates that the approach dis-
cussed in section 3.1 is feasible. Autonomic adaptation
has also been achieved in the case of additional (ex-
ternal) load upon the cores used for the computation
of the BS application. In this case, overloaded workers
(pipeline stages) began to deliver fewer results than
expected and the manager reacted by adding workers to
the farm (in the pipeline stage case we are investigating
ways to transform the pipeline stage into a farm with
the workers behaving as instances of the original stage).

Overall, this demonstrates that autonomic actions
can deliver dynamic adaptation of the computation in

10. the ProActive Active Objects used to implement managers and
workers use asynchronous communication primitives

rule "CheckInterArrivalRateLow"
 when
 $arrivalBean : ArrivalRateBean(value < ManagersConstants.FARM_LOW_PERF_LEVEL)
 then
 $arrivalBean.setData(ManagersConstants.notEnoughTasks_VIOL);
 $arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);
end

rule "CheckInterArrivalRateHigh"
 when
 $arrivalBean : ArrivalRateBean(value > ManagersConstants.FARM_HIGH_PERF_LEVEL)
then
 $arrivalBean.setData(ManagersConstants.tooMuchTasks_VIOL);
 $arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);
end

rule "CheckRateLow"
 when
 $departureBean : DepartureRateBean(value < ManagersConstants.FARM_LOW_PERF_LEVEL)
 $arrivalBean : ArrivalRateBean(value >= ManagersConstants.FARM_LOW_PERF_LEVEL)
 $parDegree: NumWorkerBean(value <= ManagersConstants.FARM_MAX_NUM_WORKERS)
 then
 $departureBean.setData(ManagersConstants.FARM_ADD_WORKERS);
 $departureBean.fireOperation(ManagerOperation.ADD_EXECUTOR);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
end

rule "CheckRateHigh"
 when
 $departureBean : DepartureRateBean(value > ManagersConstants.FARM_HIGH_PERF_LEVEL)
 $parDegree: NumWorkerBean(value > ManagersConstants.FARM_MIN_NUM_WORKERS)
 then
 $departureBean.fireOperation(ManagerOperation.REMOVE_EXECUTOR);
 $departureBean.fireOperation(ManagerOperation.BALANCE_LOAD);
end

rule "CheckLoadBalance"
 when
 $VarianceBean : QuequeVarianceBean(value > ManagersConstants.FARM_MAX_UNBALANCE)
 then
 $VarianceBean.fireOperation(ManagerOperation.BALANCE_LOAD);
end

Figure 5. Sample JBoss rule file: rules used in the AMF manager of Figure 2 (right), at work in Figure 4

such a way that the given contract is ensured. It also
demonstrates, as a side effect, that BS design is an
effective design: the clear separation of autonomic man-
agement and parallelism exploitation concerns allows
the adoption of very effective solutions. These solutions
comprise the rules in the JBoss engines implementing
AM control together with the actions executed upon
rule firing, i.e. the actuators provided by the ABC
controller. The results obtained are far beyond those that
can be achieved by a classical algorithmic skeleton run
time support.

5. Related work

In [24] the authors discuss how the JBoss rule engine
can be used to implement self-healing non-functional
concerns in web services orchestrated through BPEL.

Two distinct languages are introduced to program the
active and passive part of the manager, roughly corre-
sponding to the AC and AM modules in the behavioural
skeletons. There are several similarities with our work
but their approach appears to be more domain specific.
[25] discusses in general the implementation of self-
adaptive strategies aimed at ensuring given goals. The
work is heavily related to agent technology, as are
most of the papers on the subject, and do not address
the non-functional concern problem as a whole. [26]
and [27] present examples of hierarchical autonomic
management where autonomic managers cooperate to
achieve a common (non-functional) goal. In the former
power consumption is the target concern for autonomic
managers. Mathematically well-founded optimizations
are implemented in the managers, but the overall goal is
quite narrow and it is unlikely the results could be easily

generalized to the management of other typical non-
functional concerns. In the latter, performance tuning
is handled but only by relying on load redistribution
among nodes where uneven load balance is observed.
[28] discusses performance self-adaptation in grid envi-
ronments and has many points of contact with our work.
However, the authors do not assume the existence of
some abstract performance model to be matched, and
only rely on observing “low level” features relative to
the execution of the application on the target environ-
ment to take the corrective actions implementing the
self-adaptation process. Jade is a component based au-
tonomic framework that separates the level of managers
from the level of managed computations [29] in much
the same way as is done in ASSISTANT [30]. Both are
examples of how non-functional concern management
is perceived as one of the more significant aspects in
distributed/parallel computing, as we do in this work.

6. Conclusions

In this paper we outlined problems relating to the han-
dling of non-functional concerns in parallel/distributed
computing. In particular, we discussed the main is-
sues arising when multiple concerns come into play
simultaneously; and when a hierarchical structure of
components, each with its own manager, is present.
We presented an approach in which parallel exploitation
patterns are combined with autonomic managers to pro-
vide effective management of non-functional concerns
while retaining scalability. In the experiment section
we reported results that demonstrate the efficacy of
the proposed methodology in the case of hierarchi-
cal management of performance optimization/tuning
in structured parallel computations implemented via
behavioural skeletons. In previous work we reported
preliminary experiments on the cost of handling secu-
rity concerns in structured parallel computations such
as those modelled by BS hierarchies [31]. We have
also explored the autonomic management of security
in structured parallel computations. In particular, we
have investigated the possibility of determining, in an
autonomic way, whether code staging and data commu-
nications have to be performed using a secure protocol,
based on meta-information describing the security of
the network interconnections used [20]. The proposed
strategy ensures the use of secure protocols only when
strictly needed, thus avoiding the introduction of unnec-
essary overheads involved in code and data encryption
and decryption. We are currently building on this expe-
rience to implement autonomic management of security
concerns in the BS framework. Following this, we will
attempt to formulate more precisely strategies for the
combined management of security and performance

concerns based on the ideas outlined in Sec. 3.2.

Acknowledgements

We wish to thank the anonymous referees for their
helpful comments and suggestions. We wish also to
thank S. Campa, P. Dazzi, N. Tonellotto, M. Vanneschi
and G. Zoppi all of whom contributed in different ways
to the work discussed in this paper.

References

[1] I. Foster and C. Kesselmann, Eds., The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kauf-
mann, Dec. 2003.

[2] A. Weiss, “Computing in the clouds,” netWorker, vol. 11,
no. 4, pp. 16–25, 2007.

[3] T. G. Mattson, B. A. Sanders, and B. L. Massingill,
Patterns for Parallel Programming. Addison-Wesley
Professional, 2005.

[4] M. Cole, “Bringing skeletons out of the closet: A
pragmatic manifesto for skeletal parallel programming,”
Parallel Computing, vol. 30, no. 3, pp. 389–406, 2004.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Usenix OSDI
’04, Dec. 2004, pp. 137–150. [Online]. Available:
http://www.usenix.org/events/osdi04/tech/dean.html

[6] NGG3, Future for European Grids: GRIDs and
Service Oriented Knowledge Utilities. Vision and
Research Directions 2010 and Beyond, Next Generation
GRIDs Expert Group, Jan. 2006. [Online]. Available:
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg final.pdf

[7] A. Ganek and T. Corbi, “The dawning of the autonomic
computing era,” IBM Systems Journal - Autonomic Com-
puting, vol. 42, no. 1, pp. 5–18, 2003.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50,
2003.

[9] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kil-
patrick, D. Laforenza, and N. Tonellotto, “Behavioural
skeletons for component autonomic management on
grids,” in CoreGRID Workshop on Grid Programming
Model, Grid and P2P Systems Architecture, Grid Sys-
tems, Tools and Environments, Heraklion, Crete, Greece,
Jun. 2007.

[10] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi,
P. Dazzi, D. Laforenza, N. Tonellotto, and P. Kilpatrick,
“Behavioural skeletons in GCM: autonomic manage-
ment of grid components,” in Proc. of Intl. Euromicro
PDP 2008: Parallel Distributed and network-based Pro-
cessing, D. E. Baz, J. Bourgeois, and F. Spies, Eds.
Toulouse, France: IEEE, Feb. 2008, pp. 54–63.

[11] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “To-
wards hierarchical management of autonomic compo-
nents: a case study,” in Proc. of Intl. Euromicro PDP
2009: Parallel Distributed and network-based Process-
ing. Weimar, Germany: IEEE, Feb. 2009, to appear.

[12] The GRID.it home page, 2007. [Online]. Available:
http://www.grid.it

[13] M. Aldinucci, C. Bertolli, S. Campa, M. Coppola,
M. Vanneschi, L. Veraldi, and C. Zoccolo, “Self-
configuring and self-optimizing grid components in the
GCM model and their ASSIST implementation,” in Proc
of. HPC-GECO/Compframe (in conjunction with HPDC-
15). Paris, France: IEEE, Jun. 2006, pp. 45–52.

[14] The CoreGRID web site, 2007. [Online]. Available:
http://www.coregrid.net

[15] GridCOMP Project, Grid Programming with
Components, An Advanced Component Platform for
an Effective Invisible Grid, 2008. [Online]. Available:
http://gridcomp.ercim.org

[16] IBM Autonomic Computing home page, IBM Research,
2005. [Online]. Available: http://www.research.ibm.com/
autonomic/

[17] P. Brittenham, R. R. Cutlip, C. Draper, B. A. Miller,
S. Choudhary, and M. Perazolo, “IT service management
architecture and autonomic computing,” IBM Systems
Journal, vol. 46, no. 3, pp. 565–681, 2007.

[18] Deliverable D.PM.02 – Proposals for a Grid Component
Model, CoreGRID NoE deliverable series, Institute on
Programming Model, Nov. 2005. [Online]. Available:
http://www.coregrid.net

[19] Deliverable D.PM.04 – Basic Features of the
Grid Component Model (assessed), CoreGRID NoE
deliverable series, Institute on Programming Model,
Feb. 2007. [Online]. Available: http://www.coregrid.net

[20] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Adding
metadata to Orc to support reasoning about grid pro-
gramming,” in Towards Next Generation Grids (Proc.
of the CoreGRID Symposium 2007), ser. CoreGRID,
T. Priol and M. Vanneschi, Eds. Rennes, France:
Springer, Sep. 2007, pp. 205–214.

[21] E. Bruneton, T. Coupaye, and J.-B. Stefani, The
Fractal Component Model, Technical Specification,
ObjectWeb Consortium, 2003. [Online]. Available:
http://fractal.objectweb.org/specification/

[22] JBoss rules home page, Red Hat Middleware, 2008. [On-
line]. Available: http://www.jboss.com/products/rules

[23] M. Aldinucci, M. Danelutto, G. Zoppi, and P. Kilpatrick,
“Advances in autonomic components & services,” in
From Grids To Service and Pervasive Computing (Proc.
of the CoreGRID Symposium 2008), ser. CoreGRID,
T. Priol and M. Vanneschi, Eds. Las Palmas, Spain:
Springer, Aug. 2008, pp. 3–17.

[24] L. Baresi, S. Guinea, and L. Pasquale, “Self-healing bpel
processes with dynamo and the jboss rule engine,” in
ESSPE ’07: International workshop on Engineering of
software services for pervasive environments. ACM,
2007, pp. 11–20.

[25] M. Morandini, L. Penserini, and A. Perini, “Towards
goal-oriented development of self-adaptive systems,” in
SEAMS ’08: Proceedings of the 2008 International
Workshop on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2008, pp. 9–16.

[26] N. Kandasamy, S. Abdelwahed, and M. Khandekar,
“A hierarchical optimization framework for autonomic
performance management of distributed computing sys-
tems,” in ICDCS ’06: Proc. of the 26th IEEE Interna-
tional Conference on Distributed Computing Systems.
IEEE, 2006, p. 9.

[27] B. Khargharia, S. Hariri, and M. S. Yousif, “Autonomic
power and performance management for computing sys-
tems,” Cluster Computing, vol. 11, no. 2, pp. 167–181,
2008.

[28] G. Wrzesinska, J. Maassen, and H. E. Bal, “Self-adaptive
applications on the grid,” in PPoPP ’07: Proc. of the 12th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, 2007, pp. 121–129.

[29] Jade home page, Sardes Project, 2008. [Online].
Available: http://sardes.inrialpes.fr/jade.html

[30] R. Fantacci, D. Tarchi, C. Bertolli, G. Mencagli, and
M. Vanneschi, “Next generation grids and wireless
communication networks: towards a novel integrated
approach,” Wireless Communications and Mobile Com-
puting, vol. 8, pp. 1–23, 2008.

[31] M. Aldinucci and M. Danelutto, “The cost of security
in skeletal systems,” in Proc. of Intl. Euromicro PDP
2007: Parallel Distributed and network-based Process-
ing, P. D’Ambra and M. R. Guarracino, Eds. Napoli,
Italia: IEEE, Feb. 2007, pp. 213–220.

