
Semi-formal Models to Support Program
Development: Autonomic Management within
Component Based Parallel and Distributed

Programming

M. Aldinucci1, M. Danelutto2, and P. Kilpatrick3

1 Dept. Computer Science, Univ. of Torino
2 Dept. Computer Science, Univ. of Pisa

3 Dept. Computer Science, Queen’s Univ. Belfast

Abstract. Functional and non-functional concerns require different pro-
gramming effort, different techniques and different methodologies when
attempting to program efficient parallel/distributed applications. In this
work we present a “programmer oriented” methodology based on formal
tools that permits reasoning about parallel/distributed program devel-
opment and refinement. The proposed methodology is semi-formal in
that it does not require the exploitation of highly formal tools and tech-
niques, while providing a palatable and effective support to programmers
developing parallel/distributed applications, in particular when handling
non-functional concerns.

Keywords: program modelling, rewriting, non-functional concerns,
performance tuning, autonomic computing.

1 Introduction

Modern distributed systems including grids, clouds and, more generally, service
oriented architectures, are characterized by heterogeneity and dynamism in the
sense of failure, delays and the varying availability of services. They therefore
pose new challenges to the programmer of parallel/distributed applications.

In particular,whendeveloping a parallel/distributed application, a programmer
has to deal with two distinct kinds of concern: functional and the non-functional
(a.k.a. extra-functional) concerns. Functional concerns are those related to what
has to be computed, i.e. to the algorithm defining the result as a function of the
input data. Non-functional concerns are those related to how the result has to
be computed, i.e. to the techniques needed to implement the algorithm in an ef-
ficient way on the parallel/distributed architecture at hand. Examples of typical
non-functional concerns include performance tuning, fault tolerance, security and
power management.

In fact, programming the non-functional part of a distributed application is
frequently much more demanding than programming the functional part. Pro-
gramming the functional part of these applications requires sound knowledge of

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 204–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Semi-formal Models to Support Program Development 205

the application field and of the algorithms that can be used to solve the prob-
lem at hand. This knowledge is normally in the repertoire of the application
programmer. The situation is significantly different for non-functional concerns.
In this case, specific knowledge related to the target architecture is required
in order to develop efficient solutions/implementations solving the problems re-
lated to non-functional concern management. For example, if load balancing is
to be achieved in the computation of some embarrassingly parallel application,
the overall architecture of the target machine (shared memory vs. distributed
memory, high vs. low bandwidth (latency) interconnection network, etc.) must
be known to tackle effectively the load balancing. Also, the techniques used to
manage non-functional concerns are often significantly different from those used
to address functional concerns. The “normal” application programmer, however,
usually has in his background neither specific knowledge related to the target
architecture nor knowledge related to the particular techniques needed to tackle
non-functional concerns.

It is therefore commonly recognized that, ideally, functional concerns should
be the responsibility of the application programmer, i.e. the programmer with
specific knowledge on the application field, whereas the non-functional concerns
should be addressed by system programmers, i.e. the programmers with specific
knowledge of the target architecture and of the techniques and peculiarities
of particular non-functional concerns. In the terminology of Aspect-Oriented
Programming, non-functional concerns represent cross-cutting concerns w.r.t.
functional ones, and thus typically require orthogonal techniques and experience.

The remainder of the paper is structured as follows: Sec.2 further discusses
the functional/non-functional aspects in parallel and distributed programming
and Sec. 3 introduces behavioural skeletons and GCM, the Grid Component
Model by CoreGRID where these concepts were first introduced. Then Sec. 4
introduces Orc, the formal model we use in our semi-formal program develop-
ment support methodology. Finally, Sections 5 to 7 discuss how the semi-formal
methodology supports reasoning about alternative implementations (5), auto-
nomic management strategy design (6) and metadata usage to evaluate again
alternative implementations (7).

2 Addressing Functional and Non-functional Concerns

In this work we consider some typical non-functional concerns that have to be
managed when developing parallel and distributed applications on modern ar-
chitectures and we propose a methodology based on semi-formal use of formal
models and tools to support design, refinement, improvement and in general
reasoning about non-functional concerns in parallel and distributed applica-
tions. However, as will be seen, here we do not take a classical approach to
non-functional concern management.

In both sequential and concurrent programming, coding for a specific non-
functional behaviour to achieve a given QoS goal was evident three decades
ago. The software engineering solution to achieve it was to introduce levels of

206 M. Aldinucci, M. Danelutto, and P. Kilpatrick

Analyse
Is the contract
broken? Why?

QoS
contract

Plan
Which plan can

solve the problem?

Monitor
How is Application

behaving?

Adapt
Execute the reconf.

protocol

Sensors

Monito

Effectors

Fig. 1. Basic control loop for autonomic management

abstraction, effectively yielding a tree of refinements, from the problem speci-
fication to alternative target programs [1]. The derivation of a target program
then follows a path down this tree. The transition from one node to the next
can be described formally by a semantics-preserving program transformation or
refinement. Conceptually, porting a program to a different execution platform
configuration and/or QoS specification means backtracking to a previous node
on the path and then following another path to a different target program. Typ-
ically, the goal is achieved according to the spiral model by way of a number of
tuning iterations [2]. In this, the real extent of non-functional flexibility is often
experienced ex-post. Commonly, the cost of some of those iterations turns out
to be unacceptably high, thus reducing the potential market of the applications.
Traditionally, the design backtracking happens off-line because it requires the
partial re-design of the code. This makes the approach completely unsuited to
capturing variation points modelling run time events or dynamic changes in the
required QoS. Moreover, the design backtracking cost is directly related to the
frequency of non-functional adaptations.

An alternative approach consists in moving the non-functional concern han-
dling into an autonomic manager associated with the functional application code.
This autonomic manager, implementing a control loop such as that depicted in
Fig. 1, moves the choice of different design alternatives to launch or run time.
These alternatives may have been either fully or partially abstracted out during
the static design of the application.

In this work we assume this latter approach. Thus we consider that non-
functional concerns are dealt with within autonomic managers as is the case in
behavioural skeletons – introduced in Sec. 3 – which can be considered as code
factories in the form of high-order, parametric components that can be dynam-
ically adapted along a predefined schema that is dynamically instantiated by a
previously unknown QoS contract. Having restricted the domain to autonomic
management of non-functional concerns á la behavioural skeleton, we introduce
semi-formal reasoning, i.e. a semi-formal way to use formal models [3,4,5] and
we demonstrate how several semi-formal techniques can be used to support
the design, development and refinement of autonomic managers dealing with
non-functional concerns in parallel and distributed applications.

Semi-formal Models to Support Program Development 207

3 Components and Behavioural Skeleton

Behavioural skeletons are component abstractions that capture both the func-
tional and non-functional behaviour of some component assemblies, each of them
specialised to solve one or more management goals, such as configuration, opti-
misation, healing and protection. Given a component model, these paradigms can
be represented as parametric schema of wiring and/or nesting. The concept of be-
havioural skeleton was originally introduced to bring autonomic features within
the Grid Component Model (GCM); however, since it is more abstract than the
component model itself, it can be used in any component model admitting the
dynamic reconfiguration of component assemblies.

3.1 The Grid Component Model (GCM)

The Grid Component Model (GCM) is a hierarchical component model explic-
itly designed to support component-based autonomic applications in distributed
contexts. GCM allows component interactions to take place with several distinct
mechanisms. In addition to classical “RPC-like” use/provide ports, GCM allows
streaming ports and collective interaction patterns to be used in component inter-
action. GCM disciplines the life-cycle of components, which can be dynamically
created, destroyed, bound to and unbound from assemblies. These distinguished
features makes GCM particularly suitable for modelling distributed and dynami-
cally adaptable applications. The full specification of GCM can be found in [6].

GCM is assumed to provide several levels of autonomic managers in com-
ponents; they monitor and steer the non-functional features of the component
programs. GCM components thus have two kinds of interfaces: functional and
non-functional ones. The functional interfaces host those ports concerned with
implementation of the functional features of the component. The non-functional
interfaces host those ports needed to support the component management ac-
tivity in the implementation of the non-functional features, i.e. those features
contributing to the efficiency of the component in obtaining the expected (func-
tional) results but not directly involved in result computation. Each GCM com-
ponent contains an Autonomic Manager (AM), interacting with other managers
in other components via the non-functional interfaces.

In this vision, the AM can reconfigure the assembly of its managed components
to pursue a QoS goal. This typically happens if one of its plans is foreseen to
be effective in re-establishing the validity of the QoS contract. Alternatively, the
AM can contact a number of the other AMs in order to set up a cooperative
reconfiguration plan, which will involve the union of managed components. In
both cases, the AM may induce a structural reconfiguration of the component
assembly through a number of functionally equivalent component assemblies.

The design of those plans is clearly a critical step for the effectiveness of the
whole process. Two key aspects come into play:

1. the “creative” exploration of possible equivalent design alternatives, their
aggregation and variation points, and their non-functional profile;

2. the checking of their functional equivalence.

208 M. Aldinucci, M. Danelutto, and P. Kilpatrick

While formal tools are useful for the second aspect, they are not very effective
for addressing the first. The use of behavioural skeletons also address the second
point since they represent, by definition, families of functionally equivalent as-
semblies. In this case the issue is raised at the skeleton design time, i.e. reduced to
the first aspect. In this paper we advocate the use of a semi-formal methodology
to address the first aspect. The methodology uses Orc as specification tool.

3.2 Behavioural Skeletons

Behavioural skeletons represent a specialisation of the algorithmic skeleton con-
cept for component management [7]. Algorithmic skeletons have been tradition-
ally used as a vehicle to provide efficient implementation templates of parallel
paradigms. Behavioural skeletons, as algorithmic skeletons, represent patterns of
parallel computations (which are expressed in GCM as graphs of components),
but in addition they exploit the inherent skeleton semantics to design sound
self-management schemes of parallel components.

As shown in Fig. 2, behavioural skeletons are composed of an algorithmic
skeleton together with an autonomic manager and provide the programmer with
a component that can be turned into a running application by providing the
code parameters needed to instantiate the algorithmic skeleton parameters (e.g.
the different stages in a pipeline or the workers in a farm) and some kind of
Service Level Agreement (SLA, e.g. the expected parallelism degree or the ex-
pected throughput of the application). The choice of the skeleton to be used
as well as the code parameters provided to instantiate the behavioural skele-
ton are functional concerns, while the autonomic management itself is a non-
functional concern. In turn, the implementation of both the algorithmic skeleton
and the autonomic manager is in the charge of the “system” programmer, i.e. the
one providing the behavioural skeleton framework to the application user, while
the instantiation of the behavioural skeleton is in the charge of the application
programmer.

Algorithmic
Skeletons

Autonomic
Management

Standard code,
parameters

Behavioral
Skeletons

(factory usage)

Working
automomic
application

Developing framework concern

Application programmer concern

Functional concern Non-Functional concern

Behavioral
Skeletons

(factory design)

Fig. 2. Behavioural skeleton rationale

Semi-formal Models to Support Program Development 209

Autonomic management of non-functional concerns is based on the concurrent
execution (with respect to the application “business logic”) of a basic control loop
such as that shown in Fig. 1. In the monitor phase, the application behaviour is
observed, then in the analyse and plan phases the observed behaviour is exam-
ined to discover possible malfunctioning and corrective actions are planned. The
corrective actions are usually taken from a library of known actions and the cho-
sen action is determined by the result of the analysis phase. Finally, the actions
planned are applied to the application during the execute phase [8,9,10,4].

Component technology, promotes the engineered development of distributed
autonomic applications by enabling the co-design of autonomic management of
non-functional concerns (performance tuning, in particular) and parallelism ex-
ploitation, which can be just-in-time derived from well-known, efficient patterns,
such as behavioural skeletons [11].

In a component assembly, the autonomic management ultimately aims to
induce non-functional alterations of the component assembly, which may trans-
late into structural alterations of the component assembly. This means that an
application is really described by an evolving assembly of components, i.e. an
initial assembly and all its possible evolutions across the iterations of the adap-
tation phase. These reconfigurations of the assembly should be formally specified
(at least) because they should be encoded in the manager. In addition, since in
an autonomic system the management is inherently non-centralized, these recon-
figuration should be locally specified, whereas the global evolution of the system
is distributively realized via the cooperation of managers.

The formal description of evolving assemblies of processes, services and com-
ponents has been the subject of active research in the global computing commu-
nity [12]. Some of the results achieved in that community have also been cast
to formal specification of the evolving assembly of autonomic components (see
Sec. 8). However, the fully-fledged formal treatment of them requires enrich-
ment of the model with many details that rapidly bring the complexity beyond
reasonable (human) limits.

For this reason, we advocate the idea of semi-formal reasoning, i.e. a semi-
formal way to reason about the equivalence of formal specifications [3,4,5].
Here, the main idea is to develop a, possibly partial, formal specification of
a component assembly described using some formal tool such as Orc [13]. The
specification provides the developer with a representation of the assembly and
management overlay which allows exploration of their properties and the devel-
opment of what-if scenarios while hiding the inessential detail. By studying the
communication patterns present within the Orc process traces, the designer is
able to derive for some paradigmatic assemblies (e.g. behavioural skeletons) an
alternative structure which maintains core functionality, while allowing variation
of non-functional behaviour, and thus different QoS. The derivation proceeds in
a series of semi-formally justified steps, with incorporation of insight and ex-
perience as exemplified by the inclusion of expressions such as “reasonable to
transfer this functionality” and “such modification makes sense”.

210 M. Aldinucci, M. Danelutto, and P. Kilpatrick

4 Tools to Support Reasoning about Autonomic
Management

As stated above, in modern parallel and, in particular, distributed systems much
of the challenge lies in composing the various units of core functionality, rather
than in implementation of the core functionality itself. Typically non-functional
properties of an application depend on the overall “shape” of the system and
this has led to an increased emphasis on orchestration: different designs of an
application may be used to obtain different non-functional properties. A devel-
oper may, at design time, wish to explore the nature of different designs in terms
of non-functional properties. Moreover, it is increasingly the case that dynamic
adaption of the system design is required in response, for example, to differing
resource availability, differing security considerations and so on. (Indeed, func-
tional properties may lead to demand for architecture change: the occurrence of
a hot-spot in processing data may require the addition of further resources, for
example, to maintain a throughput requirement). In essence, this requirement
for dynamic change is the raison d’être for autonomic management. The de-
velopment of such dynamic systems requires means to describe both functional
and non-functional concerns in relation to different designs; and means to sup-
port argument that the change induced by an autonomic system in response
to, for example, environmental change, maintains functionality while adapting
non-functional properties to the new conditions.

The need to explore different designs and their relation to differing non-
functional properties motivates the search for a notation to be used as a vehicle
for such investigation. We sought a notation which would

1. be oriented toward orchestration of components providing core functionality,
rather than the core functionality itself;

2. allow an operational-style description of a system so that different designs
could be described;

3. ideally, have a simple syntax and well-defined semantics so that properties
of systems could be described and reasoned about with relative ease.

To this end we identified Orc [13] by Misra and Cook as a suitable candidate:
Orc is an orchestration language which abstracts core functionality as site calls
(see Sec. 4.1); it is operational in nature and provides a very small range of
constructs and these are oriented toward describing the key aspects of concur-
rent/distributed systems. Thus it fits with our philosophy and lends itself to the
level of reasoning that we wished to pursue: that is, a semi-formal style of rea-
soning in which one benefits from the clean, abstract, semantically well-founded
description mechanism provided, but shies away from fully-formal proofs of gen-
eral properties. Generally, we are content to prove properties that hold in par-
ticular situations and to draw upon insight and experience to allow conclusions
to be drawn that are not fully supported by formal argument.

Semi-formal Models to Support Program Development 211

4.1 Orc

Orc is a language for distributed and concurrent programming that is targeted
at the description of systems where the challenge lies in organising a set of
computations, rather than in the computations themselves. Orc has, as primitive,
the notion of a site call, which is intended to represent basic computations. A
site, which represents the simplest form of Orc expression, either returns a single
value or remains silent. Three operators (plus recursion) are provided for the
orchestration of site calls:

1. operator > (sequential composition)
E1 > x > E2(x) evaluates E1, receives a result x, calls E2 with parameter
x. If E1 produces two results, say x and y, then E2 is evaluated twice, once
with argument x and once with argument y. The abbreviation E1 � E2 is
used for E1 > x > E2 when evaluation of E2 is independent of x.

2. operator (parallel composition)
(E1 E2) evaluates E1 and E2 in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams of
E1 and E2.

3. where (asymmetric parallel composition)
E1 where x :∈ E2 begins evaluation of both E1 and x :∈ E2 in parallel.
Expression E1 may name x in some of its site calls. Evaluation of E1 may
proceed until a dependency on x is encountered; evaluation is then delayed.
The first value delivered by E2 is returned in x; evaluation of E1 can proceed
and the thread E2 is halted.

Orc has a number of special sites:

– 0 never responds (0 can be used to terminate execution of threads);
– if b returns a signal if b is true and remains silent otherwise;
– RTimer(t), always responds after t time units (can be used for time-outs);
– let always returns (publishes) its argument.

The notation
(|i : 1 ≤ i ≤ 3 : workeri)

is used as an abbreviation for
(worker1|worker2|worker3).

In Orc processes may be represented as expressions which, typically, name chan-
nels which are shared with other expressions. In Orc a channel is represented
by a site [13]. c.put(m) adds m to the end of the (FIFO) channel and publishes
a signal. If the channel is non-empty c.get publishes the value at the head and
removes it; otherwise the caller of c.get suspends until a value is available.

5 Sample “Semi-formal” Usage of Orc

As an example of the way Orc can be used to support reasoning about paral-
lel/distributed programs we consider the reverse engineered model of the muskel
interpreter as derived in [3].

212 M. Aldinucci, M. Danelutto, and P. Kilpatrick

system(pgm,tasks, contract, G, t) �
taskpool.add(tasks)

| discovery(G, pgm, t)
| manager(pgm,contract, t)

discovery(G,pgm, t) � (|g∈G (if remw �= false � rworkerpool.add(remw)
where remw :∈

(g.can execute(pgm)
| Rtimer(t) � let(false))

)
) � discovery(G,pgm, t)

manager(pgm,contract, t) �
|i : 1 ≤ i ≤ contract : (rworkerpool.get > remw > ctrlthreadi(pgm, remw, t))
| monitor

ctrlthreadi(pgm, remw, t) � taskpool.get > tk >
(if valid � resultpool.add(r) � ctrlthreadi(pgm, remw, t)
| if ¬valid � (taskpool.add(tk)

| alarm.put(i) � ci.get > w > ctrlthreadi(pgm,w, t)
)

)
where (valid, r) :∈

(remw(pgm, tk) > r > let(true, r) | Rtimer(t) � let(false, 0))

monitor � alarm.get > i > rworkerpool.get(remw) > remw > ci.put(remw)
� monitor

Fig. 3. Reverse engineering of the muskel prototype

muskel is a full Java skeleton programming environment under development
at the University of Pisa1 since the early ’00s [9]. The muskel environment can
execute in parallel stream-parallel skeleton programs on networks/clusters/grids
of Java enabled workstations. A simple autonomic manager maintains “best
effort”—a performance contract (parallelism degree) provided by the user—in
the presence of faulty or malfunctioning processing elements. In fact, autonomic
managers were first implemented in muskel and then moved and greatly ex-
tended in the behavioural skeleton research framework.

When a muskel skeleton program is run, the muskel framework scans the avail-
able network looking for processing nodes hosting a muskel runtime system and re-
cruits a number of these resources to execute the program.Thenumber of resources
recruited is as close as possible to the parallelism degree requested by the user via
a performance contract provided with the program code. Then, the recruited re-
sources are used to compute tasks appearing on the program input stream. In par-
ticular, an instance of the distributed macro data flow interpreter used in muskel
to execute skeleton programs is used on each of the resources recruited.

1 See http://cotognata.di.unipi.it/∼marcodanelutto/wiki/doku.php?id=muskel

http://cotognata.di.unipi.it/~marcodanelutto/wiki/doku.php?id=muskel

Semi-formal Models to Support Program Development 213

The muskel prototype is written in Java and uses RMI to interact with remote
interpreter instances and UDP multicast to discover available resources in the
network. The full muskel environment amounts to some 5K lines of code.

In Fig. 3 we show the “reverse engineering” of the muskel prototype in Orc.
The Orc code here presents all the significant features of the actual prototype.
This code has been manually derived from the actual Java code of the muskel
prototype. A first version of the Orc code was written, which was much more
complex than that of Fig. 3. This version was then refined to produce that of
Fig. 3. No specific tools were used in this process, but most of the techniques out-
lined in this work relating to transformation and manipulation of Orc programs
were used.

The discovery process, performed in parallel with the complete execution of
the skeleton program, is modelled by the process behind the discovery(G, pgm, t)
expression. G represents the grid environment on which the program executes,
pgm is the skeleton program itself, and t is the timeout delay before initiating
another discovery action.

The autonomic manager action is modelled by the manager(pgm,contract,t)
term. The manager starts a pool of contract control threads. Each of the control
threads is in charge of fetching fireable macro data flow instructions2 from the
task pool and executing them on the remote interpreter instance (remw in the
control thread) associated with the control thread. The manager also starts a
monitor process in charge of getting a new remote resource from the discovery
process and launching a new control thread when a previously running control
thread terminates upon discovery of failure of the associated remote interpreter.

This Orc code can be understood much more readily than the actual Java
muskel implementation and can be used to investigate properties of the imple-
mentation. In fact, in [3] it has been used to derive a new version of muskel
where the potential bottleneck represented by the centralized discovery service
has been removed. The new version was derived in three steps:

– First, the Orc code was analysed looking for possible modifications that may
be used to remove the bottleneck. In fact we first analysed process traces
to aid understanding of the interactions involved and, using insight gleaned
from this, identified functionality that could be shifted between processes to
achieve the desired non-functional goal—removal of the bottleneck—while
retaining the functional behaviour.

– Then a new Orc model was written with the bottleneck removed—with a
discovery service distributed among the control threads.

– Finally, the actual muskel code was modified in accordance with the model
redesign to produce a new decentralized discovery version.

The whole process allowed us to postpone all Java related coding until a feasible
solution had been identified and modelled in Orc. The modified version of the
Java muskel prototype fulfilled the expectations of its Orc model.

2 That in turn derive from the compilation of the muskel skeleton program.

214 M. Aldinucci, M. Danelutto, and P. Kilpatrick

The technique used to derive the new Orc model of autonomic management
and discovery in muskel uses traces derived from Orc computations. In particu-
lar, the approach followed to derive the new manager/discovery structure in the
muskel interpreter is the following:

– we take the Orc description of the muskel interpreter and expand terms so as
to obtain traces modelling the evolution of the different parallel/distributed
computations involved;

– we match traces by identifying matching pairs of send receive statements;
– we try to merge these traces into a single trace by collapsing send/receive

pairs and moving item generation accordingly;
– we finally reverse-engineer an Orc expression that generates the resulting

trace.

This process is effectively the application of a rule such as:

a > x > ch.put(x) > R) | (. . . � ch.get() > y > S)
R | . . . � a > y > S

(1)

where R should be a term with no occurrence of x. Rule 1 states that part of
process A leading to the generation of a value x eventually sent to process B
can be moved to process B in place of the actions receiving the x value from A,
provided x is not needed in the continuation of A.

The same procedure will be used in Sec. 6 to validate skeleton transforma-
tion rules used within behavioural skeleton autonomic managers in a completely
different context. It is worth pointing out the kind of usage made of Orc here:
we use a formal notation to develop an abstract version of the code needed to
implement the application at hand. The programmer can then reason on the
abstract version in terms of mechanisms and tools close to his background: com-
putations, traces, pairing of communication primitives, etc. Eventually, when
something satisfactory from the viewpoint of the goal he had in mind has been
achieved in the abstract code, this solution can be programmed with the actual
programming tools at hand, that are much more difficult to manage properly and
require a significantly more substantial effort than “programming” with Orc.

6 Demonstrating the Validity of Autonomic Management
Policy with Semi-formal Reasoning in Orc

In this section we illustrate in more detail the kind of reasoning we have found
useful with models expressed in Orc. We first introduce a model of the auto-
nomic managers used in GCM behavioural skeletons (as discussed in Sec. 3).
Then we introduce the skeleton structured programming model defined through
behavioural skeletons and we provide an Orc modelling of the skeletons used.
Finally, we show how we can justify the source-to-source transformations applied
by autonomic managers of behavioural skeletons taking care of the performance
tuning of an application.

Semi-formal Models to Support Program Development 215

6.1 Modelling Autonomic Management

We introduce an Orc model of the autonomic management activities in be-
havioural skeletons. Any autonomic manager in a GCM behavioural skeleton
can be modelled by the following Orc code:

Mgr(Sk, SLA) = distribute(Sk, SLA) > s >
monitor(s) > m > analyse(s, m) > (b, p, v) >
((if(b) � adapt(s, p) > s1 > Mgr(s1, SLA))
| (if(∼ b) � raise(v) > Mgr(s, SLA))

where Sk is the skeleton program derived from the behavioural skeleton nesting
used by programmers to model their application and SLA is the contract the user
specifies/requires to be ensured. The manager structure clearly reflects the con-
trol cycle outlined in Fig.1. During the adapt phase, a new version of the original
Sk program may be produced to adapt the program to the dynamic change in ei-
ther the target architecture or in the computation, as perceived from the monitor
phase. This new version may differ from the pervious one, either by some non-
functional feature (e.g. a varied number of workers in the implementation of a
task farm skeleton) or by some functional feature (e.g. a varied parallelism ex-
ploitation pattern). In this latter case, the varied pattern will be one among the
possible rewritings of the original skeleton program Sk that preserve the function-
ality of the application while (possibly) improving some non-functional feature.
The new version of the program—s1—is eventually used to call recursively the
Mgr. If the analyse phase does not succeed in finding a corrective plan for a mal-
function perceived through the monitor phase, a violation is raised to the upper
levels of management (upper level autonomic managers in the case of a hierarchy
of behavioural skeletons, or to the user if this is the top level manager).

For example, if in the analyse phase the manager discovers that the user de-
fined SLA cannot be guaranteed due to the too fine grain of two consecutive
pipeline stages in Sk it may consequently decide to apply a stage merging rule
(i.e. a rule merging the computation of two consecutive pipeline stages at the
same computing element)3 in the adapt phase, and therefore restart with de-
ployment (distribute) of the (possibly new) SLA related to the new program
version s1 with the collapsed stages.

Another notable case of adaptation is represented by the variation of non-
functional features of the skeleton program in execution—typically, variations
of the parallelism degree used when implementing task farms. If in the analyse
phase the manager discovers that there is a farm with a small inter arrival
time for input tasks and a longer service time, its parallelism degree can be
increased—new workers can be added—to improve the overall program efficiency
[14].

Once more, the Orc model allows system designers to reason about the logical
behaviour of the system at hand without needing to resort to analyzing the
actual implementation code. In the following sections, we will show how Orc

3 This rule will be better explained and demonstrated in Sec. 6.2.

216 M. Aldinucci, M. Danelutto, and P. Kilpatrick

based reasoning can be used in the application of one of the transformation
rules used within the manager.

6.2 Reasoning about Program Transformation Rule Correctness
with Orc

We assume the availability of behavioural skeletons modelling the more com-
mon patterns of stream parallel computations, namely pipeline and task farm
computations (i.e. computations organised in stages, and embarrassingly paral-
lel computations over streams of input tasks). We also assume the availability
of a skeleton modelling sequential composition of other skeletons onto the same
processing resources (aka “in place” pipeline, henceforth named comp).

An application parallel program will thus be structured as a hierarchical tree
of skeletons with pipeline, farm and comp skeletons in the nodes of the tree,
and sequential components in the leaves providing the sequential code to be
computed in the lowest level pipeline stages or task farm workers. Here we will
assume that the structure of the parallel application, in terms of the skeleton
used, can be represented with terms derived using the following grammar:

Sk ::= farm(Sk) | pipeline(Sk, Sk) | comp(Sk, Sk) | seq(f)

where seq models a sequential component implementing some function f4. The
task farm and pipeline skeletons can be modelled in Orc as follows:

pipeline(A, B, chin, chout) = stage(A, chin, chnew) | stage(B, chnew, chout)

farm(W, nw, chin, chout) = | i = 1, nw : stagei(W, chin, chout)

seq(A, chin, chout) = stagei(A, chin, chout)

comp(A, B, chin, chout) = cBody(A, B, chin, chout) �
comp(A, B, chin, chout)

cBody(A, B, chin, chout) = chin.get() > task > A(task) > y >
B(y) > result > chout.put(result)

stage(A, chin, chout) = body(A, chin, chout) � stage(A, chin, chout)

body(A, chin, chout) = chin.get() > task > A(task) >
result > chout.put(result)

In the algorithmic skeleton framework it has been demonstrated that suit-
able rewriting can be performed at the skeleton tree level to obtain differently
performing applications.

For example, pipeline computations with sequential stages can be collapsed
to sequential computations to provide higher grain stages/workers and therefore
to improve efficiency of the parallel computation:

pipeline(seq(f), seq(g)) ≡ comp(seq(f); seq(g))
4 That is represents the skeleton wrapping of sequential code modelling a function (i.e.

code with no side effects).

Semi-formal Models to Support Program Development 217

This result can be easily demonstrated using the Orc modelling of the skele-
tons presented above, and we will use this example to illustrate the Orc-based
semi-formal reasoning that underpins our methodology.

The approach followed to demonstrate the equivalence above is the same as
that used to derive the new version of the muskel manager in Sec. 5: we generate
traces relative to the execution of Orc code, we look for matching put and get
pairs, and we try to collapse traces using rule 1 of Sec. 5.

Applying this rule to our sample equation gives the following transformation:

pipe(A, B, c1, c3) =

stage(A, c1, c2) | stage(B, c2, c3)

= body(A, c1, c2) � stage(A, c1, c2) | body(B, c2, c3) � stage(B, c2, c3)

= c1.get() > t > A(t) > y > c2.put(y) � stage(A, c1, c2) |
c2.get() > t > B(t) > y > c3.put(y) � stage(B, c2, c3)

≡ stage(A, c1, c2) |
c1.get() > t > A(t) > y > B(y) > z > c3.put(z) � stage(B, c2, c3)

= stage(A, c1, c2) |
comp(A, B, c1, c3) � stage(B, c2, c3)

and unfolding another iteration we get:

= c1.get() > t > A(t) > y > c2.put(y) � stage(A, c1, c2) |
comp(A, B, c1, c3) � c2.get() > t > B(t) > y > c3.put(y) � stage(B, c2, c3)

≡ stage(A, c1, c2) | comp(A,B, c1, c3) �
c1.get() > t > A(t) > y > B(y) > z > c3.put(z) � stage(B, c2, c3)

= stage(A, c1, c2) | comp(A, B, c1, c3) � comp(A, B, c1, c3) � stage(B, c2, c3)

It is clear that pipe(A, B, c1, c3) unfolds to an iterated sequence of comp(A, B,
c1, c3) when rule 1 is applied. The parallelism degree of the original program
schema (pipe(A, B, c1, c3)) is clearly higher than that of the derived schema
(comp(A, B, c1, c3)). The original schema allows A and B to be computed in
parallel on two consecutive tasks appearing on the pipeline input stream. The
derived schema allows only computation of one item at a time, but this compu-
tation has clearly a higher computation grain5 and therefore is more suitable for
use in conditions where communication overheads are not negligible. In other
words, the two schemas can be considered functionally equivalent but they differ
non-functionally in that they offer different grains of computation and thus are
suitable for differing execution platforms.

Although the result emerging here from transformation of the Orc model is
well-known (pipeline stage collapsing to coarsen granularity) the intent here is
to illustrate the way in which we use Orc descriptions supported by semi-formal
reasoning to investigate design alternatives for non-functional properties. In the

5 Ratio between the time spent to compute and the time spent to communicate, i.e.
the time spent to receive the input task and to deliver the result.

218 M. Aldinucci, M. Danelutto, and P. Kilpatrick

case of the earlier muskel example, no such well-known pattern underpinned the
design, but reasoning at a similar level allowed redesign to achieve the desired
non-functional property—bottleneck removal.

7 Extending Orc with Metadata

In the previous sections we showed how an Orc based framework can be used to
described parallel/distributed programs, to analyze their features and possibly
to compare different versions of the same parallel/distributed applications with
respect to some well defined features (e.g. number of actual parallel activities,
kind of synchronizations involved, etc.).

The next step in the methodology is aimed at extending the amount and the
kind of information within the Orc based framework, in such a way that further
applications of the methodology presented so far can be investigated.

The kind of enrichment of the Orc framework we consider is adding metadata
to the Orc expressions and terms used to model the parallel application [15].
By metadata we mean any data associated with Orc terms and expressions to
represent non-functional concerns of the computation. Metadata are therefore
annotations associated with Orc terms.

We will demonstrate how metadata can be used by considering a simple case:
metadata representing locations of the computation where the associated Orc
terms are actually computed. Other typical kinds of metadata modelling infor-
mation on the non-functional concerns include those related to security (e.g.
whether a given computation described by an Orc term has to be considered
confidential or not), to performance (e.g. actual and predicted performance val-
ues relative to computations performed by the Orc term/expression) or to fault
tolerance (e.g. MTBF of a node). Using location metadata we will eventually be
able to evaluate the best implementation among a set of functionally equivalent
implementations differing only with respect to their non-functional features.

7.1 Introducing location Metadata

According to our methodology, metadata is associated to Orc terms in a formal
way. We assume that each Orc expression has one or more metadata associated.
We also assume that metadata are represented by using names (functors) and
parameters (parameters of the functors). As an example, the term location(E, a)
represents the fact that location(a) is associated with the Orc expression E.

Location metadata can be formally associated to complex Orc expressions in
a completely formal way. For example, consider Orc expressions using the farm
and pipeline skeletons presented in Sec. 6. Location metadata can be associated
as follows:

– explicit association of user supplied metadata with expressions/terms in the
Orc code;

– a rule rewrite method is defined to derive location metadata from the user
supplied metadata in such a way that location information is propagated
along the entire skeleton tree.

Semi-formal Models to Support Program Development 219

Several policies can be defined to propagate location metadata along the skele-
ton tree. We consider, at the extremes:

conservative placement policy the location of the root skeleton nodes are
propagated unchanged to all the immediate descendant nodes, unless differ-
ently specified by the user/programmer. The process is applied recursively.

speculative placement policy independent of the location of the root node,
a fresh location is assigned to each of the immediate descendant nodes, un-
less differently specified by the user/programmer. The process is applied
recursively.

What usually will happen is that the user supplies location metadata for a few,
notable expressions, and then the other metadata location can be derived with
one of the available policies, possibly the one identified by appropriate metadata
provided by the user/programmer. For example, consider the code:

prog(f, g, h) ≡ pipeline(seq(f), pipeline(seq(g), seq(h))

In our example, the programmer may be interested in expressing the maxi-
mum parallelism degree possible, and to keep the root of the tree on his own
workstation. Therefore the program sketched above can be user annotated as
follows: location(prog,my workstation), locPropagPolicy(speculative).
This in turn, will lead to the following annotation of the skeleton tree:

〈 location(prog, my workstation), location(seq(f), fresh loc()),
location(pipe(seq(f), pipe(seq(g), seq(h))), fresh loc()),
location(pipe(seq(g), seq(h)), fresh loc()),
location(seq(g), fresh loc()), location(seq(h), fresh loc()) 〉

where the fresh loc() function will query a resource manager and return the
name of a fresh location.

7.2 Exploiting location Metadata

The annotation of a skeleton tree with location metadata can be used for different
purposes. First (and obviously) it can be used to drive the deployment of the
skeleton program on the distributed architecture at hand (the one represented
by the resource manager answering the fresh loc() calls. Then, it can be used
to analyse those non-functional concerns that depend on (relative) location of
computations: communication cost analysis, for example.

If we wish to evaluate the communication cost of our sample computation,
we can keep expanding the relevant Orc terms and adding/deriving location
metadata in such a way that we eventually get the locations of the sites in-
volved in sends and receives. In turn, this information can be used to derive
the cost of all the communications involved, assuming we know some constant
Tlc and Trc for communications having partners on the same node (Tlc local

220 M. Aldinucci, M. Danelutto, and P. Kilpatrick

communication) and those having the involved partners on different nodes (Trc

remote communication), respectively6.
Traces may also be considered, associated to location metadata. In this case,

the cost derived using metadata represents the overall amount of time spent
communicating in the parallel/distributed application generating the trace.

These results, however, are not so interesting of themselves. The ability to take
a program model and come up with a figure stating that the communication cost
is k × Tlc + h × Trc is not so meaningful, independent of the ks and hs involved.

A much more interesting result stems from the ability to compare two alterna-
tive implementations. Let us assume that the parallel/distributed computation
at hand can be implemented with two different algorithms/applications, mod-
elled by Orc terms OrcAppla and OrcApplb

In this case, we can proceed with the same user supplied initial metadata and
location propagation policies and evaluate the final ground location labelling of
our program (or, better, of the corresponding traces). Once this is done, we can
compute the communication costs in terms of Tlc and Trc. This time, however, by
getting the two resulting terms giving the communication costs of traces relative
to the same computation in OrcAppla and OrcApplb, we can compare them
and therefore determine which is the better of the computations with respect to
communication costs.

More formally, this example of exploitation of Orc associated metadata can
be expressed by:

– a grammar of terms over Orc expressions and metadata values is defined.
For example:

E ::= . . . Orc expressions . . .
LocationMetadata ::= location(E, M) | locPropPolicy(M)

M ::= fresh loc() | loc(〈literal〉) | . . .

The grammar is used to denote all the “admissible” metadata for our Orc
code.

– a set of rewriting rules are defined that provide a rewriting system propa-
gating metadata along the Orc expressions modelling the computations: As
an example, the following rule will belong to the set, denoting propagation
of location in case of a conservative policy within a pipeline program:

location(pipe(A, B), L)
location(A, L), location(B, L)

Cons.1

– an abstract interpreter that computes the Orc expressions with respect to
the associated metadata only and exploiting the rewriting rule set mentioned
above.

6 More realistically, we may consider functions of the sizes d of transmitted data
Tlc(d) = d/memory bandwidth and Trc(d) = latency +d/bandwidth, with the same
kind of results.

Semi-formal Models to Support Program Development 221

7.3 Exploiting location Metadata within Autonomic Managers

In previous sections, we have shown how location metadata can be used to eval-
uate which is the best implementation—with respect to a particular aspect, e.g.
communication cost—among a set of equivalent, alternative implementations.

Such a result can be exploited in the manager described in Sec. 6.1. In particu-
lar, the result can drive choices made during the analyse(s, m) > (b, p, v) phase,
i.e. when analyzing a particular skeleton implementation s and the correspond-
ing monitored behaviour m to determine whether some corrective action can
be planned (b:boolean), which is the relative actuation plan p and, if necessary,
which violation v has to be reported to the upper level manager. If alternative,
feasible plans p′ and p′′ exist the result of analyze(s, m) will be (b, px, v) with
px ∈ {p′, p′′} being the plan that in the subsequent adapt(s, p) > s1 phase will
generate the improved new skeleton configuration, s1.

8 Related Work

In this work we concentrated on various issues relating to autonomic manage-
ment of non-functional features in parallel/distributed computations. Although
there is extensive work demonstrating how various aspects of parallel and dis-
tributed programming can be modelled using formal tools, there is much less
work on exploitation of semi-formal techniques to support reasoning about non-
functional concerns in parallel and distributed programs. We mention here a few
research areas where reasoning schemas similar to that discussed in this work
can be adopted.

The Service Component Architecture (SCA) [16] focuses on policies and
implementation aspects of services but does not natively support dynamic re-
configuration of service assembly. However, the model can be extended to sup-
port dynamic reconfiguration. For example, the Spatio-Temporal sKeleton Model
(STKM) [17,18], which can be defined in term of SCA, supports model recon-
figuration by way of behavioural skeletons [4]. The STKM does not provide
any specific methodology to reason about functionally equivalent assemblies or
workflows of components.

An alternative approach is based on UML models. The work of [19] pro-
poses the use of modes to address dynamic reconfiguration of service-oriented
architectures and extends the UML to visualise such reconfiguration. The UML
extension sticks to the mode terminology and does not include a visualisation of
the transformation rules. The OMG is also working to standardize a UML profile
and metamodel for services (UPMS) [20]. The current version does not support
reconfigurations. Those approaches also propose a non-formalised approach (i.e.
neither formal nor semi-formal). The only exception is the UML extension for
service-oriented architectures that can be found in [21], which proposes refine-
ment issues based on architectural styles formalised by graph transformation
systems.

Architectural styles are the basis of the Architectural Design Rewriting (ADR)
approach, which has been inspired mainly by graph-based approaches [22,23].

222 M. Aldinucci, M. Danelutto, and P. Kilpatrick

The use of graphs and graph transformations to model architectural styles has
been proposed by several authors (e.g [24]) who based their approaches on the
concept of shapes in programming languages. ADR shares also concepts with
approaches based on process calculi with reconfigurable components (e.g. [25]).
iADR is also related to approaches that deal with reconfigurations in software
architectures defined by an ADL [26], and by graph transformation such as
the Synchronised Hyperedge Replacement (SHR)[27]. Models in this family typi-
cally support the fully-fledged formal reasoning on assembly reconfiguration and
equivalence; they have been proved effective in proving the correctness of single
adaptations and simple sequences of them [28]. However, to be checked, these
abstract models should be mapped down into concrete models describing a spe-
cific implementation enormously increasing the complexity of the description. As
a matter of a fact, this complexity often prevents the designer from reasoning
about the expected long-term evolution of the distributed system.

Model Driven Architecture [29] concepts look close to the idea of using Orc
as the modelling language for actual application code. In this perspective, Orc
can be intended as the PIM (platform independent model) to be used to derive,
with some kind of automatic or semi-automatic tools, the PSM (platform specific
model) and eventually an actual implementation.

Aspect Oriented Programming techniques have been taken into account in
different frameworks to model and handle non-functional concerns (see, for ex-
ample, [30,31]). We believe this approach is complementary to the behavioural
skeleton idea adopted here. However, AOP techniques and mechanisms could
probably be exploited in the autonomic manager implementation to further re-
lieve system programmers of non-functional concern handling details, providing
a finer grain of “separation of concerns” within the non-functional ones.

Finally, we chose Orc as our modelling language for two reasons. First, our
interest was in management of functionality, and Orc’s emphasis on orchestration
of computations made it thus a perfect fit; second we wished to have a very
compact language that allowed us to develop constructive representations of
different designs, and reason about them at a high (but not too high) level of
abstraction: this caused us to steer away from, on the one hand, very abstract
notations such as π-calculus [32] which support a more abstract level of reasoning
than we desired; and, on the other hand, parallel programming languages such
as Erlang [33] and Oz [34] which are suitable for implementation rather than
design.

9 Conclusions

In this paper we have discussed the challenge of non-functional concern manage-
ment in parallel/distributed systems and emphasized the desirability of separation
of functional and non-functional concerns. We have presented behavioural skele-
tons as a means of extending component-based parallel/distributed skeletons with
autonomic managers taking care of non-functional concerns. The suitability and
use of Orc (and its extension with metadata) to specify such autonomic manage-
ment has then been argued and, to this end, we have emphasized a semi-formal

Semi-formal Models to Support Program Development 223

style in which the specifications are treated as designs and an informal style of
reasoning, drawing heavily upon insight and experience, is used to compare non-
functional properties of alternative designs. While the experience has suggested
the efficacy of the approach, much more experimentation is needed to determine
the extent to which aspects of the methodology such as, for example, the rule iden-
tified in section 5 are transferable across different applications within a domain
and even across domains of application. Ideally, rules of thumb of this sort would
be identified at a level consistent with the approach, that is, an approach in which
one gains benefit from the curt, well-founded definitions without resort to onerous
formal reasoning.

References

1. Parnas, D.L.: On the design and development of program families. IEEE Trans. on
Software Engineering SE-2(1), 1–9 (1976)

2. Boehm, B.W.: A spiral model of software development and enhancement. Com-
puter 21(5), 61–72 (1988)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Management in distributed systems:
A semi-formal approach. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 651–661. Springer, Heidelberg (2007)

4. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Dazzi, P., Laforenza,
D., Tonellotto, N., Kilpatrick, P.: Behavioural skeletons in GCM: autonomic man-
agement of grid components. In: Baz, D.E., Bourgeois, J., Spies, F. (eds.) Proc.
of Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing,
Toulouse, France, pp. 54–63. IEEE, Los Alamitos (2008)

5. Aldinucci, M., Danelutto, M., Kilpatrick, P., Dazzi, P.: From Orc models to
distributed grid Java code. In: Gorlatch, S., Fragopoulou, P., Priol, T. (eds.)
Grid Computing: Achievements and Prospects. CoreGRID, pp. 13–24. Springer,
Heidelberg (2008)

6. CoreGRID NoE deliverable series, Institute on Programming Model: Deliverable
D.PM.04 – Basic Features of the Grid Component Model (assessed) (2007),
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

7. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

9. Danelutto, M.: QoS in parallel programming through application managers. In:
Proc. of Intl. Euromicro PDP: Parallel Distributed and network-based Processing,
Lugano, Switzerland, pp. 282–289. IEEE, Los Alamitos (2005)

10. Aldinucci, M., Danelutto, M.: Algorithmic skeletons meeting grids. Parallel Com-
puting 32(7), 449–462 (2006)

11. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Co-design of distributed systems using
skeletons and autonomic management abstractions. In: César, E., et al. (eds.) Euro-
Par 2008 Workshops. LNCS, vol. 5415, pp. 403–414. Springer, Heidelberg (2009)

12. Sensoria Project: Software Engineering for Service-Oriented Overlay Computers
(2008), http://sensoria.fast.de/

13. Misra, J., Cook, W.R.: Computation orchestration: A basis for a wide-area com-
puting. Software and Systems Modeling (2006), doi:10.1007/s10270-006-0012-1

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://sensoria.fast.de/

224 M. Aldinucci, M. Danelutto, and P. Kilpatrick

14. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In: Proc.
of Intl. Parallel & Distributed Processing Symposium (IPDPS), Rome, Italy. IEEE,
Los Alamitos (2009)

15. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Adding metadata to orc to support
reasoning about grid programming. In: Priol, T., Vanneschi, M. (eds.) Towards
Next Generation Grids (Proc. of the CoreGRID Symposium 2007). CoreGRID,
Rennes, France, pp. 205–214. Springer, Heidelberg (2007)

16. IBM: Service Component Architecture (SCA),
http://www.ibm.com/developerworks/library/specification/ws-sca/
(last accessed 2008)

17. Aldinucci, M., Danelutto, M., Bouziane, H.L., Pérez, C.: Towards software com-
ponent assembly language enhanced with workflows and skeletons. In: Proc. of the
ACM SIGPLAN Component-Based High Performance Computing (CBHPC), pp.
1–11. ACM, New York (2008)

18. Bouziane, H.L., Pérez, C., Priol, T.: A software component model with spatial and
temporal compositions for grid infrastructures. In: Luque, E., Margalef, T., Beńıtez,
D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 698–708. Springer, Heidelberg (2008)

19. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Leveraging modes and UML2 for ser-
vice brokering specifications. In: CEUR 2008. LNCS, vol. 389, pp. 76–90. Springer,
Heidelberg (2008)

20. Object Management Group (OMG): UML Profile and Metamodel for Services
(2008)

21. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-based modeling and refinement
of service-oriented architectures. SOSYM 5(2), 187–207 (2006)

22. Hirsch, D., Montanari, U.: Shaped hierarchical architectural design. In: ENTCS,
vol. 109 (2004)

23. Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D., Lluch Lafuente, A.: Graph-based
design and analysis of dynamic software architectures. In: Degano, P., De Nicola,
R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp.
37–56. Springer, Heidelberg (2008)

24. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, New Jersey (1996)

25. Aguirre, N., Maibaum, T.S.E.: Hierarchical temporal specifications of dynamically
reconfigurable component based systems. In: ENTCS, vol. 108, pp. 69–81 (2004)

26. Bruni, R., Lluch-Lafuente, A., Montanari, U., Tuosto, E.: Architectural design
rewriting as an architecture description language (position paper). Technical Re-
port MSR-TR-2008-61, Microsoft Research Cambridge, Proceedings of R2D2,
Workshop on the Rise and Rise of Declarative Datacentre (2008)

27. Ferrari, G.-L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-
peredge replacement as a model for service oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

28. Aldinucci, M., Tuosto, E.: Towards a formal semantics for autonomic components.
In: Priol, T., Vanneschi, M. (eds.) From Grids To Service and Pervasive Comput-
ing (Proc. of the CoreGRID Symposium 2008). CoreGRID, Las Palmas, Spain,
pp. 31–45. Springer, Heidelberg (2008)

29. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Professional, Reading (2003)

http://www.ibm.com/developerworks/library/specification/ws-sca/

Semi-formal Models to Support Program Development 225

30. Jingjun, Z., Furong, L., Yang, Z., Liguo, W.: Non-functional attributes modeling
in software architecture. In: SNPD 2007: Proceedings of the Eighth ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, Washington, DC, USA, pp. 149–153. IEEE
Computer Society, Los Alamitos (2007)

31. Lohmann, D., Spinczyk, O., Schröder-Preikschat, W.: On the configuration of non-
functional properties in operating system product lines. In: Proceedings of the 4th
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (AOSD-ACP4IS 2005), Chicago, IL, USA, Northeastern University, Boston
(NU-CCIS-05-03), 19–25 (2005)

32. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

33. Cesarini, F., Thompson, S.J.: Erlang Programming, A Concurrent Approach to
Software Development. O’Reilly, Sebastopol (2009)

34. Van Roy, P. (ed.): MOZ 2004. LNCS, vol. 3389. Springer, Heidelberg (2005)

	Semi-formal Models to Support Program Development: Autonomic Management within Component Based Parallel and Distributed Programming
	Introduction
	Addressing Functional and Non-functional Concerns
	Components and Behavioural Skeleton
	The Grid Component Model (GCM)
	Behavioural Skeletons

	Tools to Support Reasoning about Autonomic Management
	Orc

	Sample ``Semi-formal'' Usage of Orc
	Demonstrating the Validity of Autonomic Management Policy with Semi-formal Reasoning in Orc
	Modelling Autonomic Management
	Reasoning about Program Transformation Rule Correctness with Orc

	Extending Orc with Metadata
	Introducing $location$ Metadata
	Exploiting $location$ Metadata
	Exploiting $location$ Metadata within Autonomic Managers

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

