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Abstract. We discuss how algorithmic skeletons (and structured parallel program-
ming models in general) can be used to efficiently and seamlessly program multi-
core as well as many-core systems. We introduce a new version of the muskel
skeleton library that can be used to target multi/many-core systems and we present
experimental results that demonstrate the feasibility of the approach. The experi-
mental results presented also give an idea of the computational grains that can be
exploited on current, state-of-the-art multi-core systems.
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1. Introduction

It is evident that multi/many-core systems (M2C, from now on) are going to replace
single core systems in the immediate future. At the moment, dual/quad core chips al-
ready provide the same aggregated performance as single core chips at a fraction of
the frequency (and therefore of power) [10]. At the same time, many-core chips have
been demonstrated that reach performances in the Teraflop range with power consump-
tion which is orders of magnitude smaller than that of clusters with comparable process-
ing power [11]. Unfortunately, M2C systems do not implement the same architectural
model as single core ones: single core systems basically present the user/compiler with a
Von Neumann architecture. M2C systems present instead a (possibly, but not necessarily,
shared memory) multiprocessor architecture. Therefore parallel programs are needed to
exploit their power. It is not possible to take a current, sequential program and run it
twice as fast on a dual core without modifying it, unless it is already a multi-threaded.
Even if the code has already been implemented as multi-threaded, it is not clear whether
it could be run on high end multi-core chips, those sporting tens to hundreds of cores,
with decent performance and scalability.

The main issue related to M2C system exploitation consists in being able to feed
these processing elements with a large number of independent threads [9]. A fundamental
principle underpinning pursuit of high performance from parallel systems is to always
have a thread ready to be scheduled any time one of the independent cores is available to
execute a new task. However, this is not the only issue. In the case of the M2C systems
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with a traditional, hierarchical memory subsystem–e.g. those systems where each core
accesses memory through one or more levels of local caches–the threads should be such
that the memory hierarchy works effectively. The number and the kind of accesses of
the different threads should not impair locality in the accesses to the memory subsystem.
When the number of threads is large, this might not be so easy. If the M2C cores do not
have access to a traditional cache/memory system–for example, as in the Cell synergic
processing elements–or the interconnection network used on the chip is not uniform–e.g.
it is a mesh, as in the 80 cores Intel experimental chip–more problems arise, leading
either to the necessity of being able to identify the memory block transfers needed to
execute a thread or to the necessity to move from threads to processes and, moreover,
to map the resulting (possibly internally multi-threaded) processes in such a way that
locality at the process level is preserved at the interconnection level.

Algorithmic skeletons have been presented for many years as an effective means of
supporting parallel computing, in contrast with the traditional one where programmers
intervene at the source code level to handle all the details related to parallelism exploita-
tion. Many skeleton programming environments have been developed, either as libraries
with bindings in well-known sequential languages ([12,5,13] in C/C++, [7,1,8,4] in Java,
to name but a few) or as new languages, perhaps providing the possibility to reuse exist-
ing sequential portions of code [3,16].

Recently, skeleton system designers have developed versions of their systems ef-
fectively targeting multi-threaded systems. Calcium [4] allows the programmer/user to
choose one of three different “execution environments” via a very simple library call.
These execution environments basically represent optimized run times relative to differ-
ent types of target architectures. One of them targets exactly those architectures capable
of running a number of independent threads, such as symmetric multi-processors (SMPs)
or M2C. However, there is as yet no possibility of having different run time systems (ex-
ecution environments) coexisting and cooperating during the same program execution to
target, for example, a network of SMP/M2C processing elements. Muesli [15] exploits
both MPI and openMP to achieve efficient implementation of skeletons on clusters of
multi-core processing elements. However, the openMP pragmas only affect data paral-
lel skeletons (distributed arrays and map/reduce/gather operations), as evinced from the
source code (see code at [15]). Stream parallel skeleton implementation–e.g. the imple-
mentation of pipelines and farms–appears not to take any advantage of the multi-core
potentialities.

Here we propose an evolution of the muskel skeleton programming environment
that seamlessly supports networked M2C and single core processing elements (Sec. 2).
The new muskel version (nmcmuskel, networked multi-core muskel) will be used to
assess the feasibility of using skeletons as a programming model for M2C and networked
M2C systems (Sec. 3). It will also be used to assess (once again) the principle that struc-
turing parallel activities at a high level of abstraction removes much of the burden from
the programmer by allowing the compiler and run time system of the skeleton framework
to implement very effective policies and strategies.

2. Skeletons going multi/many-core

muskel is a full Java skeleton library implementing skeletons according to the macro
data flow model [6]. It currently provides a subset of stream parallel skeletons (pipeline



public static void main(String [] args) {
   // declare the skeleton program
   Compute stage1 = new F(...); 
   Compute worker = new W(...); 
   Compute stage2 = new Farm(W); 
   Compute stage3 = new G(...); 
   Compute main = new Pipe(stage1,
          new Pipe(stage2,stage3));

   // declare the manager, with input and output stream
   // performance contract and program to compute
   Manager mgr = new Manager(
     new InputStreamManager("input.dat"),
     new ConsoleOutputStreamManager(),
     new ParDegreeContract(Integer.parseInt(args[0]))
     main);

   // start computation of program, in parallel 
   // according to the contract
   mgr.eval();
}
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Figure 1. Sample muskel code (left). Structure of a muskel ControlThread (right).

and task farm) and a simple data parallel skeleton (map). Furthermore, it allows users
to extend the skeleton set by defining new entries in the skeleton library and providing
a macro data flow implementation of these new skeleton entries. Originally, muskel
targeted clusters and networks of workstations, provided the processing elements support
Java and RMI accesses.

A muskel program has the form depicted in Fig. 1, left (this is a three stage
pipeline, with parallel second stage, computing G(W (F(xi ))) for each input task xi ).
First, the code to be executed is defined as a composition of available skeletons and
sequential portions of code subclassing the Compute class. This class assumes only
the existence of a method sequentially computing the result relative to the input data
passed as parameter(s), without any side effect. All the details relative to the paral-
lel execution of the program defined by the user are hidden in the muskel applica-
tion Manager. The user instantiates a Manager and then uses the manager’s eval()
method to execute the skeleton program. When the eval() method terminates, the
parallel execution of the skeleton program is terminated and its results can be pro-
cessed. The parallelism degree for the execution of the whole program is passed to the
Manager (in this case taking it from the command line parameters). An input and an
output stream manager should be given to the Manager to handle skeleton program I/O.
The InputStreamManager is basically a Java Iterator providing input tasks,
while the OutputStreamManager provides a deliver(Object res) method
handling (post-processing, storing, etc.) a single item of the result stream. Programmers
should instantiate a manager and provide a program, an input and an output stream and
then request computation of the program. When the eval() method of the Manager
is called

• The program is compiled into a macro data flow graph (a data flow graph where
instructions compute sequential, side effect free portions of code modelled by
Compute subclasses).

• Then each item on the input stream is used to instantiate an input token of a new
graph instance in the muskel TaskPool. The TaskPool is the repository of
macro data flow instructions processed by the muskel distributed interpreter.
It is a logically centralized data structure. Its implementation may obviously be



implemented in a distributed way to avoid bottlenecks, but in the current version
of muskel it happens to be centralized.

• A set of ControlThreads (set up by the Manager, according to the user sup-
plied PerformanceContract1, each managing a different remote processing
element hosting a distributed macro data flow interpreter instance) fetches fire-
able macro data flow instructions from the instruction TaskPool and dispatches
them for execution on remote interpreters, ensuring load balancing and fairness in
remote interpreter usage. The results of the remote executions are dispatched as
new tokens to the instructions in the TaskPool (if intermediate) or to the out-
put stream (in the case of final results). The operation of a ControlThread is
shown in Fig. 1 right.

The computation of a muskel program therefore consists in the execution of the
Manager (with the associated ControlThreads) on the local user machine and on
the execution of distributed macro data flow interpreter instances (RemoteInterpreter
objects) on remote resources. The exact number of remote interpreters required by the
Manager according to the user supplied PerformanceContract are dynamically
recruited through a multicast based discovery protocol run by the Manager and by
the RemoteInterpreters. Interactions between the Manager and the remote inter-
preter instances use plain Java RMI. In the initial phase of a muskel program execution
the Compute subclasses used to execute the different macro data flow instructions are
staged to the remote computing elements before program execution actually starts. Then,
each time an instruction has to be executed, only the input tokens are serialized to the
remote node for execution of the macro data flow instruction. Fig. 2 shows the Orc [14]
model of the muskel skeleton interpreter, as introduced in [2]2.

Moving to M2C we decided to perform two different sets of experiments with
muskel: i) modify the muskel Manager in such a way that a single M2C resource is
efficiently targeted, and ii) modify the muskel Manager and the RemoteInterpreter
in such a way that a cluster of M2C resources can be efficiently targeted. The resulting
prototype will eventually turn out to be nmcmuskel. Both the modifications required a
minimal set of changes in the current version of the muskel interpreter:

i) in order to have a Manager targeting a single M2C resource, we modified the
way ControlThreads are paired with the remote resources. Instead of passing
the ControlThread a resource name obtained from the discovery service, we
simply passed the ControlThread a new instance of the RMI Remote object
run by the RemoteInterpreter in the original version of muskel. In terms
of the Orc model of Fig. 2, this means the discovery(G, pgm, t) definition is
substituted by

discovery(G, pgm, t) ,
(|i=1,ncore let (worker.new())) > w > rmworker pool.add(w)

where worker.new() is the instantiation of a new local object of the same class as
the one instantiated by the remote interpreter on remote resources in the original
muskel. The rest of the interpreter is left unmodified.

1ParDegree is a subclass of PerformanceContract
2The reader not familiar with Orc may refer to the Orc web site http://orc.csres.utexas.edu/

index.shtml for tutorial and documentation



system(pgm, tasks, contract, G, t) ,
taskpool.add(tasks) | discovery(G, pgm, t) | manager(pgm, contract, t)

discovery(G, pgm, t) ,
(|g∈G ( if remw 6= false � rworker pool.add(remw)

where remw ∈ ( g.can_execute(pgm) | Rtimer(t) � let ( f alse) ) ) )
� discovery(G, pgm, t)

manager(pgm, contract, t) ,
|i 1≤i≤contract (rworker pool.get > remw > ctrlthreadi (pgm, remw, t))
| monitor

ctrlthreadi (pgm, remw, t) , taskpool.get > tk >
( if valid � resultpool.add(r) � ctrlthreadi (pgm, remw, t)
| if ¬valid � ( taskpool.add(tk)

| alarm.put (i) � ci .get > w > ctrlthreadi (pgm, w, t) ) )
where (valid, r) ∈

( remw(pgm, tk) > r > let (true, r) | Rtimer(t) � let ( f alse, 0) )

monitor , alarm.get > i > rworker pool.get > remw > ci .put (remw)
� monitor

Figure 2. muskel interpreter modelled: Orc modelling/specification

ii) in order to target M2C remote resources, instead, we changed the discovery ser-
vice in such a way that remote resources publish their number of cores in response
to the discovery protocol messages. Then, the Manager is free to recruit multiple
instances of RemoteInterpreters on the remote resources sporting multiple
cores. The original multithreaded implementation of RMI servers in Java guaran-
tees that multiple execution requests of macro data flow instructions directed to
the same remote object are executed concurrently. Referring to the Orc model of
Fig. 2, this means the portion

|g∈G ( if remw 6= false � rworker pool.add(remw)
where remw ∈ (g.can_execute(pgm)|Rtimer(t) � let ( f alse) )

is changed to

(|g∈G ( if remw 6= false � (|i∈1,#ncore rworker pool.add(remw) )
where (remw, #ncore) ∈

(g.can_execute(pgm)|Rtimer(t) � let ( f alse) ) ) )

The result is that for each remote resource declaring #ncores available, up to
#ncore ControlThreads will eventually be forked, if needed according to the
PerfConctract. The rest of the interpreter is left unmodified.

We modified the muskel prototype in accordance with i) and ii) above to get the
first version of the nmcmuskel interpreter. Using nmcmuskel, we are able to demonstrate
that heterogeneous workstation networks, hosting different CPUs, single or multi-core,
can be efficiently exploited using skeletons. In the general case, and provided the average
computational grain of the macro data flow instructions executed after compiling the
skeleton application is not too fine, a network with k processing elements and a total
number of M cores can achieve a speedup proportional to M (speedup = α × M) rather
than k (values of α depend on the processing power of the single cores involved).
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Figure 3. nmcmuskel: synthetic (floating point) benchmark on different SMP configurations (left) and effect
of computational grain on completion time and efficiency of a synthetic (floating point) benchmark on a dual
quad core (length of the tasks varied through command line parameters) (right)

3. Experimental results

With the nmcmuskel prototype we performed a set of experiments aimed at validating
our M2C targeting strategy. The experiments have been run on a network of multi-core
systems in Pisa, including dual quad core, dual dual core and dual core Linux systems and
dual core Mac OS X systems. The interconnection network used is a (shared) 100Mbit
Fast Ethernet.

Fig. 3 shows results achieved running nmcmuskel on a single M2C system. In this
case, the user program, the Manager and the distributed macro data flow interpreter
instances all run on a single SMP target machine. The left part of this Figure shows the
results achieved when executing a synthetic floating point benchmark on different kinds
of single M2C configurations: a dual Xeon machine, a dual dual core and a dual quad
core machine, all running Linux (kernel 2.6). As expected, the dual (single core) Xeon
stops scaling at 2, while keeping efficiency higher than 80% up to 4 threads, the dual dual
core scales up to 4 and the dual quad core scales up to 8. The right part of the same Figure
shows completion times and efficiency in relation to average computational grain in the
macro data flow instructions derived from the skeleton code according to the muskel
semantics. Larger grain values present better efficiency than computations whose grain
is smaller. These results have been accomplished on a single dual quad core Linux 2.6
system.

Fig. 4 shows the results achieved using nmcmuskel targeting a cluster of multicore
machines interconnected by a Fast Ethernet and running either Linux (kernel 2.6, dif-
ferent distributions) or Mac OS X (10.5.7). All the machines used were running Java
1.6. The left part of the Figure plots completion time and efficiency relative to synthetic
applications with quite coarse grain macro data flow instructions. Each macro data flow
instruction executed to compute the program took around 0.8 secs to execute on the dif-
ferent machines, after receiving a small number of bytes representing the input data (less
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Figure 4. nmcmuskel: efficiency (left) and effect of computational grain (right) relative to the execution of
skeleton programs on a cluster of multi core machines (1 dual quad core (Xeon E5420, 2.5GHz, Linux RedHat,
kernel 2.6, n p = 1), 1 dual dual core (Xeon E5150, 2.66GHz, Linux Debian, kernel 2.6, n p = 1.1), 1 dual
core hyperthreading (Xeon, 2.80GHz, Linux RedHat, kernel 2.6, n p = 0.48), 1 dual core (Core 2 duo 2.0GHz,
Mac OS 10.5.7, n p = 0.85))

that the Fast Ethernet MTU) and delivering a comparable sized result. Both ideal curve
and efficiency consider normalized weight for the different cores in the systems used.
The numbers shown as n p in the Figure caption represent the relative speed of the pro-
cessors, taking into account both the processor speed and the time spend to “ping” the
machine, as a raw measure of its “network speed”. The right part of the Figure shows
effects of computational grain on efficiency. Here we used a synthetic program gener-
ating smaller grain macro data flow instructions and we varied the amount of data con-
sumed (input token(s)) and produced (output token(s)) by the instructions. It is clear that
as soon as the computational grain decreases, the efficiency also decreases consistently.
We should point out that the decrease in efficiency is partially due to the high serializa-
tion penalty incurred when sending input tokens (retrieving output tokens) to (from) the
remote interpreters with standard Java RMI.

Last but not least, we compared the execution times achieved using nmcmuskel with
the times achieved using a dedicated, hand coded implementation programmed using
plain TCP/IP sockets. For the synthetic benchmarks used in the experiments relative to
Fig. 3 and 4 we measured a constant initialization overhead of about 2 seconds, but then
the time spent executing the application with nmcmuskel does not exceed the time of the
hand coded implementation by more than 8%.

4. Conclusions

We discussed how a macro data flow based skeleton framework conceived to target work-
station clusters can be transformed in such a way that multi/many core clusters may be



efficiently targeted. The proposed implementation uses only standard Java mechanisms
and, this notwithstanding, achieves respectable performance in medium to coarse grain
skeleton programs. This is due to the structure of the distributed macro data flow used to
implement skeleton programs in muskel.

We did not consider targeting heterogeneous multi/many-core systems at the mo-
ment, such as those including GPUs or FPGAs. GPUs, in particular, are efficient in ex-
ecuting data parallel (structured) code and we are investigating how to accelerate data
parallel skeleton execution when GPUs are available. This research area is being inves-
tigated using muskel-like C-based prototypes and we will soon have results to present
in this area.
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