
StochKit-FF: Efficient Systems Biology on
Multicore Architectures

Marco Aldinucci ?1, Andrea Bracciali ?2, Pietro Liò ?3, Anil Sorathiya3, and
Massimo Torquati4

1 Computer Science Department, University of Torino, Italy aldinuc@di.unito.it
2 ISTI - CNR, Italy braccia@di.unipi.it

3 Computer Laboratory, Cambridge University, UK {pl219, as883}@cam.ac.uk
4 Computer Science Department, University of Pisa, Italy torquati@di.unipi.it

Abstract. The stochastic modelling of biological systems is informative
and often very adequate, but it may easily be more expensive than other
modelling approaches, such as differential equations. We present Stoch-
Kit-FF, a parallel version of StochKit, a reference toolkit for stochastic
simulations. StochKit-FF is based on the FastFlow programming toolkit
for multicores and on the novel concept of selective memory. We experi-
ment StochKit-FF on a model of HIV infection dynamics, with the aim
of extracting information from efficiently run experiments, here in terms
of average and variance and, on a longer term, of more structured data.

Key words: Stochastic biological models, simulation, multicore.

1 Introduction

The immune system is an example of a complex system formed out of its in-
tercellular and intracellular components, which organise in space and time the
immune response to pathogens through a system of positive and negative regu-
latory nested feedbacks. The modelling of part of the immune response to HIV
infection is a paradigmatic scenario illustrating the challenges that computer-
based modelling and analysis present for this class of problems. The immune sys-
tem can be both modelled by deterministic differential equations (ODEs) and by
stochastic modelling approaches. ODEs are effective in characterizing the system
dynamics when the molecular copy number of each species is sufficiently large. A
stochastic model is much more accurate when the number of molecules consid-
ered is small. The numerical solvability of stochastic models is limited to pretty
small dimensions (e.g. number of species) due to their exponential complexity.
The behaviour of larger systems can be described by stochastic simulations, e.g.
those based on the Gillespie’s algorithm, which simulates the system dynamics

? MA and AB have been partially supported by the HPC-Europa 2 Transnational
Access programme, MA by the Regione Piemonte BioBITs Project AB by the CNR
project RSTL-XXL, and PL by the EC’s IST SOCIALNETS project (217141) and
the U.S. Army Research Lab. and U.K. Ministry of Defence (W911NF-06-3-0001).

2 Aldinucci et al.

step by step. These methods, although often more accurate than the determin-
istic ones, can be highly demanding in terms of computational power, e.g. when
considering many simulations for increasing the precision of the model. Stochas-
tic methods represent a challenging methodological areas of system biology and
play a growing role in modelling immune responses to pathogens.

We here illustrate the use of parallelism for supporting efficient and informa-
tive stochastic analysis of one such model. Multiple simulations exhibit a natural
independence that would allow them to be treated in an embarrassingly parallel
fashion. However, this is not possible whenever the results need to be concur-
rently combined or compared. Often, recombination is done in a post-processing
phase as a sequential process whose cost in time and space depends on the num-
ber and the size of the simulation results and can be comparable to the cost
of the simulation phase. Besides, independent simulations exhibit good parallel
scalability only if executed onto truly independent platforms (e.g., multicomput-
ers, clusters or grids), but they might exhibit serious performance degradation
if run on multicores due to the concurrent usage of underlying resources. This
effect is particularly significative for I/O-bound applications since typically I/O
and memory buses are shared among cores.

We introduce StochKit-FF, a parallel version of the popular StochKit [1],
aiming at supporting the execution of multiple simulations and at combining
their results on cache-coherent, shared memory multicores. These architectures
are currently being developed by the whole computer industry and equip many
computing platforms. StochKit-FF has been designed and developed as a low-
effort, efficient porting of StochKit by means of the FastFlow C/C++ program-
ming framework, which supports efficient applications on multicore and makes it
possible to run multiple parallel stochastic simulations and combine their results.
This relies on selective memory, a novel data structure we designed to perform
the online alignment and reduction of multiple streams of simulation results:
different data streams are aligned according to simulation time and combined
together according to a user-defined function, e.g. the average or others. By dis-
cussing the HIV case-study, we intend to show that this framework represents
an efficient way for running multiple simulations and for the development of ef-
fective modelling techniques. We focus here on producing averaged values, and
on more structured and informative data on a longer term project.

2 A stochastic model of the immune response to HIV

ODEs based models have long been used for immune system and viral infection
modeling [2, 3]. They focus on the average behavior of large populations of iden-
tical objects and need often to be solved numerically. When considering a small
number of molecules, which is highly probable if we consider immune cell in-
teractions in a small volume, or when considering randomness and irregularities
found at all levels of life, then a stochastic model is much more accurate on a
mesoscale. Stochastic methods are based on the Gillespie’s algorithm, which sim-
ulates the reactions step by step [4]. Such stochastic methods are more effective

StochKit-FF: Efficient Systems Biology on Multicore Architectures 3

Fig. 1. a) The “noisy” immune cell dynamics over 4000 days: mutation around day 1000
and then T (mid-curve) degrades. b) A log-scale view: the high peak perturbation of
V 4 + V 5 during mutation and the dynamics for the small amounts of degrading cells.

than the deterministic ones to describe the above mentioned irregularities and
crucial chemical reactions. They observe emerging properties of the behaviour
of a system composed of a large number of simple agents (viruses and cells),
following local rules [5].

Briefly, agent behaviour consists of actions, e.g. cellular interactions, that
cause a state transition of the modelled system, e.g. a variation in the amount
of agents. Actions are stochastic, as their occurrence in time has an associated
probability distribution, which is generally memoryless, typically negative ex-
ponential distributions with the rate as parameter. Hence the overall system
behaviour can be interpreted as a Continuous Time Markov Chain (CTMC).
Systemic emergent properties can be sensitive to the local presence of mini-
mal (integer) quantities of agents/molecules/cells [6]. The combined behavior
of these agents is observed in a discrete-time stochastic simulation, from given
initial conditions: a single transition amongst the possible ones in the current
state is selected, and the state updated accordingly. The Gillespie’s algorithm [4]
determines the next transition and the time at which it occurs, exactly according
to the given probability distributions. Each such possible evolution of the system
is called a trajectory. Large computing resources may be required to correctly
determine fluctuations and averages from the system simulated trajectories.

HIV and the immune response. We recapitulate here our model here, see [2,
7] for details. During the HIV infection multiple strains of the virus arise, we
consider two phenotype classes, V 5 and V 4, which invade cells through different
membrane receptors. The mutation from V 5, initially prevailing, to the more
aggressive V 4 has been correlated to the progression to the AIDS phase. The
immune response is based on the action of several cells (T , Z5 and Z4), some
of which strain specific, which can also be infected by the viruses. The Tumor
Necrosis Factor F induces bystander death of several cells. Infection is charac-
terised by the progressive loss of (infected) T , Z5 and Z4 cells. Mature T cells
and Z4 and Z5 cells are produced at a constant rate (i.e. the parameter of the
associated probability distribution). All cells are typically also cleared out at a

4 Aldinucci et al.

given rate, some of them, e.g. T , are also cleared out by the interaction with
F (Tumor Necrosis Factor). V 5 and V 4 produce the infected cells I5 and I4,
which then produce a large number of V 5 and V 4. The accumulation of F is
proportional to the amount of V 4. Z4 and Z5 proliferate due to infection and
sustain the production of T (some of these represented dynamics are abstractions
of more complex interactions). V 5 strains mutates into V 4 strains as the effect
of a stochastic triggering event expected to occur around a desired time. The pa-
rameters used have been referred from literature, e.g. [2, 3] and sometimes tuned
against the known behaviour of the system. Simulations start from given initial
conditions, e.g. T = 1000, Z5 = 250 and V 5 = 100. See Fig. 1 for a trajectory of
the modelled infection dynamics.

3 Parallel Stochastic Simulations

In stochastic simulations, many trajectories might be needed to get a representa-
tive picture of how the system behaves on the whole. Processing and combining
many trajectories may lead to very high compulsory cache miss-rate and thus
become a memory-bound (and I/O-bound) problem. This in turn may require a
huge amount of storage space (linear in the number of simulations and the ob-
servation size of the average trajectory) and an expensive post-processing phase,
since data should be retrieved from permanent storage and processed. Even-
tually, the computational problem hardly benefits from the latest commodity
multi-core architectures. These architectures are able to exhibit an almost per-
fect speedup with independent CPU-bound computations, but hardly replicate
such a performance for memory-bound and I/O-bound computations, since the
memory is still the real bottleneck of this kind of architectures. Tackling these is-
sues at the low-level is often unfeasible because of the complexity of the code and
of the need to keep the application code distinct from platform-specific perfor-
mance tricks. Typically, low-level approaches only provide the programmers with
primitives for flow-of-control management, synchronisation and data sharing.

Designing suitable high-level abstractions for parallel programming is a long
standing problem [8]. Recently, high-level parallel programming methodologies
are receiving a renewed interest, especially in the form of pattern-based pro-
gramming [9, 10]. FastFlow belongs to this class of programming environments.

The FastFlow Parallel Programming Environment. FastFlow is a paral-
lel programming framework aiming at simplifying the development of efficient
applications for multicore platforms, being these applications either brand new
or ports of existing legacy codes. The key vision underneath FastFlow is that
effortless development and efficiency can both be achieved by raising the level
of abstraction in application design, thus providing designers with a suitable set
of parallel programming patterns that can be compiled onto efficient networks
of parallel activities on the target platforms. The FastFlow run-time support is
completely based on lock-free and memory fence-free synchronizations. This ap-
proach significantly reduces cache reconciliation overhead, which is the primary

StochKit-FF: Efficient Systems Biology on Multicore Architectures 5

source of inefficiency in cache-coherent multicore platforms. We refer to [12, 11]
for any further details. FastFlow is open source available at [11] under LGPL3.

3.1 Parallel StochKit: StochKit-FF

StochKit [1] is an extensible stochastic simulation framework developed in the
C++ language. It implements the popular Gillespie algorithm, explicit and im-
plicit tau-leaping, and trapezoidal tau-leaping methods.

StochKit-FF extends StochKit (version 1) with two main features: The sup-
port for the parallel run of multiple simulations on multicores, and the support
for the online (parallel) reduction of simulation results, which can be performed
according to one or more user-defined associative and commutative functions.
StochKit v1 is coded as a sequential C++ application exhibiting several non-
reentrant functions, including the random number generation. Consequently,
StochKit-FF represents a significative test bed for the FastFlow ability to sup-
port parallelisation of existing complex codes. The parallelisation is supported by
means of high-level parallel patterns, which could also be exploited as parametric
code factories to parallelise existing, possibly complex C/C++ codes [11].

In particular, StochKit-FF exploits the FastFlow farm pattern, which imple-
ments the functional replication paradigm: a stream of independent data items
are dispatched by an Emitter thread to a set of independent Worker threads.
Each worker produces a stream of results that is gathered by a Collector thread
into a single output stream [12].

In StochKit, a simulation is invoked by way of the StochRxn(), which re-
alises the main simulation loop; the propensity function and initial conditions are
among its parameters. StochKit-FF provides programmers with StochRxn ff()

function, which has a similar list of parameters, but invokes a parametric sim-
ulation modelling either a number of copies of the same simulation or a set of
parameter-sweeped simulations. StochRxn ff() embodies a farm: the emitter
unrolls the parametric simulation into a stream of standard simulations (repre-
sented as C++ objects) that are dispatched to workers. Each worker receives a
set of simulations, which are sequentially run by way of the StochRxn(), which
is basically unchanged with respect to the original StochKit. Each simulation
produces a stream of results, which are locally reduced within each worker into
a single stream [13]. The collector gathers all worker streams and reduces them
again into a single output stream. Overall, the parallel reduction happens in a
systolic (tree) fashion via the so-called selective memory data structure.

Selective Memory. Together with StochKit-FF, we introduce the selective
memory concept, i.e. a data structure supporting the on-line reduction of time-
aligned trajectory data by way of user-defined associative functions. Selective
memory distinguishes from standard reduce operation [13] because it works on
unbound streams, and aligns simulation points (i.e. stream items) according to
simulation time before reducing them: since each simulation proceed at a variable
time step, simulation points coming from different simulations cannot simply be
reduced as soon as they are produced. Selective memory behaves as a sliding

6 Aldinucci et al.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Am
ou

nt
 (u

ni
ts

)

Time

Sim1
Sim2
Sim3

Avg-Y

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Am
ou

nt
 (u

ni
ts

)

Time

Sim1
Sim2
Sim3

Avg-Y
Avg-XY

Fig. 2. Selective Memory with average. Left: a) Curve Avg-Y is derived via oversam-
pling and time-aligned reduction (average along Y axis) of k independent simulations
(arrows highlight oversampling). Right: b) Avg-XY is derived by the reduction (average
along X axis) of k successive points of Avg-Y (grey boxes highlight averaging zone).

window in a buffer that follows the wavefront of generated simulation points. It
keeps the bare minium amount of data from different simulations to produce a
slice of simulation points that are aligned to simulation time.

The behaviour of selective memory is shown in Fig. 2 using average as com-
bining function. Simulation points from different simulations are first averaged at
aligned simulation time points: such computed average results oversampled with
respect to single simulations (Fig. 2 a). This oversampling is possibly reduced by
applying the same technique along time axis (Fig. 2 b). Overall, selective memory
produces a combined simulation that has been adaptively sampled: time inter-
vals exhibiting a higher variability across different simulations exhibit an higher
sampling rate. Selective memory effectively mitigates the memory pressure of
result logging when many simulations are run on a multicore, as it substantially
reduces the output size, and thus capacity misses and the memory bus pressure.

4 Experiments and Discussion

Figure 3 a) is a focus on the immune response averaged over 16 simulations, per-
formed on the ness.epcc.ed.ac.uk platform (Sun X4600 SMP - 8 x Dual-Core
AMD Opteron 1218, 32 Gb memory) hosted at EPCC, University of Edinburgh.
The averaged amounts and the variance of Z4, Z5, their sum Z, and T are re-
ported. The variance of Z4 and Z5 is large till 2500 days, showing tight coupling
i.e. interdependence. Then, the variance of T decreases continuously, while the
one of Z5 decreases with the amount of Z5: it is not much involved in dynamics
after the mutation to V 4. Figures 3 b)-d) describe a sensitivity analysis for δt,
which has resulted in being very influential by a large analysis of the model: it
strongly impacts on the diffusion of V5,4. In b) V is immediately (in the interval
[0,100]) cleared out, T rapidly increases, and the system is very stable, with a
low variance. In c) the immune response still prevails, but the system appears
much perturbed. In d), well below the standard value of δt, the virus clearly
prevails. Variance is initially high, then it stabilises towards a steady state.

StochKit-FF: Efficient Systems Biology on Multicore Architectures 7

0

200

400

600

800

1K

 0 500 1000 1500 2000 2500 3000 3500 4000

Am
ou

nt
 (u

ni
ts

)

Time (days)

T(A)
Z4(A)
Z5(A)

Z(A)

0

2K

4K

6K

8K

10K

 0 20 40 60 80 100

Am
ou

nt
 (u

ni
ts

)

Time (days)

T(A)
Z4(A)
Z5(A)

Z(A)
V(A)

0

5K

10K

15K

20K

25K

 0 500 1000 1500 2000 2500 3000 3500 4000

Am
ou

nt
 (u

ni
ts

)

Time (days)

T(A)
Z4(A)
Z5(A)

Z(A)
V(A)

0

20K

40K

60K

80K

100K

120K

140K

 0 500 1000 1500 2000 2500 3000 3500 4000

Am
ou

nt
 (u

ni
ts

)

Time (days)

T(A)
Z4(A)
Z5(A)

Z(A)
V(A)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

Sp
ee

du
p

(a
ga

in
st

 S
to

ch
Ki

t)

N. of workers

ideal
32 runs
64 runs

128 runs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

Sc
al

ab
ilit

y
(a

ga
in

st
 S

to
ch

Ki
t-F

F)

N. of workers

ideal
32 runs
64 runs

128 runs

Fig. 3. Experimental results. Left to right: a) A focus on the immune response, and
b) c) d) Sensitivity analysis for δt = 5.0, 3.0 and 0.5 (average and variance for multiple
trajectories (16x)). e) Speedup of StochKit-FF against StochKit. f) Scalability of Stoch-
Kit-FF(n) against StochKit-FF(1), where with n is the number of worker threads.

The performances of StochKit-FF have been evaluated on multiple runs of the
HIV case-study. A single run of the simulation with StochKit produces ∼ 150M
simulation points for 4000 days of simulated time (sampled from ∼ 6 GBytes of
raw data); multiple runs of the same simulation will need a linearly greater time
and space. These simulations can be naively parallelised on a multicore plat-
form by running several independent instances, which however, will compete for
memory and disk accesses, thus lead to suboptimal performances. An additional
linear time (at least) in the number and the size of outputs should be spent in
the postprocessing phase for the recombination of results.

8 Aldinucci et al.

StochKit-FF mainly attacks these latter costs by online reducing the outputs
of simulations, which are run in parallel. As shown in Fig. 3 e), where average
and variance are used as combining functions, StochKit-FF exhibits a superlinear
speedup with respect to StochKit in all tested cases. This superlinear speedup is
mainly due to the fact that StochKit-FF is about two times faster than StochKit
even when running with just one thread. They are mainly due to FastFlow
memory allocator that is faster than standard memory allocator on the testing
platform. As shown in Fig. 3 f), StochKit-FF exhibits a good scalability also
when compared with the sequential (one-thread) version of StochKit-FF.

5 Concluding remarks

StochKit-FF we presented has been realised as a minimal-modification porting
of a complex application supported by the FastFlow framework. StochKit-FF
suitably recombines the results of efficiently run multiple stochastic simulations
by exploiting the idea of selective memory. We have presented experiments,
highlighting both the aspects of the emerging behaviour of a realistic model of
the HIV infection and efficient performances.

References

1. Petzold, L.: StochKit web page. http://engineering.ucsb.edu/~cse/StochKit
2. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics

in vivo: Virion clearance rate, infected cell life-span, and viral generation time.
Science 271 (1996) 1582–1586

3. Sguanci, L., Bagnoli, F., Liò, P.: Modeling HIV quasispecies evolutionary dynamics.
BMC Evolutionary Biology 7(2) (2007) S5

4. Gillespie, D.: Exact stochastic simulation of Coupled Chemical Reactions. The
Journal of Physical Chemistry 81(25) (1977) 2340–2361

5. Chao, L., Davenport, M., Forrest, S., Perelson, A.: A stochastic model of cytotoxic
t cell responses. Journal Theoretical Biology 228 (2004) 227–240

6. Wilkinson, D.: A stochastic model of cytotoxic T cell responses. CRC press (2006)
7. Sorathiya, A., Liò, P., Bracciali, A.: Formal reasoning on qualitative models of

coinfection of HIV and Tuberculosis and HAART therapy. BMC Bioinformatics
11(1) (2010) Asia Pacific Bioinformatics Conference

8. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computa-
tions. Research Monographs in Parallel and Distributed Computing. Pitman (1989)

9. Intel Threading Building Blocks. http://software.intel.com/en-us/intel-tbb
10. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,

Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. CACM 52(10) (2009) 56–67

11. Fastflow project: website. (2009) http://mc-fastflow.sourceforge.net
12. Aldinucci, M., Meneghin, M., Torquati, M.: Efficient smith-waterman on multi-

core with FastFlow. In Proc. of Intl. Euromicro PDP 2010: Parallel Distributed
and network-based Processing, Pisa, Italy, IEEE (February 2010) 195–199

13. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel program-
ming by transformation: The FAN skeleton framework. Parallel Algorithms and
Applications 16(2–3) (March 2001) 87–121

