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Abstract—The stochastic simulation of biological systems is
an increasingly popular technique in bioinformatics. It often is
an enlightening technique, which may however result in being
computational expensive. We discuss the main opportunities to
speed it up on multi-core platforms, which pose new challenges
for parallelisation techniques. These opportunities are developed
in two general families of solutions involving both the single sim-
ulation and a bulk of independent simulations (either replicas of
derived from parameter sweep). Proposed solutions are tested on
the parallelisation of the CWC simulator (Calculus of Wrapped
Compartments) that is carried out according to proposed solu-
tions by way of the FastFlow programming framework making
possible fast development and efficient execution on multi-cores.

Index Terms—multi-core; parallel simulation; stochastic sim-
ulation; SIMD; lock-free synchronisation;

I. INTRODUCTION

Stochastic simulations are an increasingly popular technique
to study biological systems. They – differently from other
modelling approaches such as differential equations (ODEs) –
are able to describe transient, and multi-stable behaviours of
the systems. Different formalisms, based on automata models
[1], process algebras [2], [3], or rewrite systems [4], [5] have
either been applied to, or inspired from, biological systems.
Quantitative simulations of biological models represented with
these kinds of frameworks (e.g. [2], [6], [7]) are usually
developed via a stochastic method derived by Gillespie’s
algorithm [8].

Among other formalisms, the Calculus of Wrapped Com-
partments (CWC) [9] is a recently proposed rewriting-based
language for the representation and simulation of biological
systems. It has been designed with the aim of simplifying the
development of efficient implementations, while keeping the
same expressiveness of other more complex languages.

Stochastic simulations are computationally more expensive
than ODEs numerical solution. This is particularly true for
the kind of systems that are better represented by stochastic
models since, for their uneven nature, should be simulated
at a very fine grain to spot possible spikes of the modelled
phenomena along time, or to discriminate families of possible
behaviour that are not revealed by the averaged behaviour
described by ODEs. The high computational cost of stochastic
simulation is well known and has led, in the last two decades,
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to a number of attempts to accelerate them up using several
kind of techniques, such as approximate simulation algorithms
and parallel computing [10]. In this work, this latter approach
is taken into account.

Since stochastic simulations are basically Monte Carlo
processes, many independent instances should be computed
to achieve a statistically valid solution. These independent
instances have been traditionally exploited in an embarrass-
ingly parallel fashion, executing a partition of the instances
in a different machine. This approach naturally couples with
distributed computing (i.e. cluster, grid, clouds). However, the
entire hardware industry has been moving to multi-core, which
nowadays equips the large majority of computing platforms.
These platforms, which are increasingly diffused in scientific
laboratories, typically offer moderate to high peak computa-
tional power. This potential power, however, cannot always be
turned into actual application speed. Especially for I/O- and
memory-bound applications since all the cores usually share
the same memory and I/O subsystem.

The analysis of biological systems produces a large amount
of data, often organised in streams coming from either analysis
instruments or simulators. The management of these streams
in not trivial on multi-core platforms as the memory bandwidth
cannot usually sustain a continuous flux of data coming form
all the cores at the same time. A related aspect regards
analysis of the simulation results, which requires the merging
of results from different simulation instances and possibly
their statistical filtering or mining. In distributed computing,
this phase is often demoted to a secondary aspect in the
computation and treated as with off-line post-processing tools.
However, this approach is no longer realistic because of both
1) the ever-increasing size of produced data and, 2) it insists
on the main weakness of multi-core platforms, i.e. memory
bandwidth and core synchronisations.

In this paper we propose a critical rethinking of the par-
allelisation of stochastic processes in the light of emerging
multi-core platforms and the tools that are required to derive
an efficient simulator from both performance and easy en-
gineering viewpoints. We believe that this latter aspect is of
crucial importance for next generation biological tools because
they will be largely designed by bioinformatic scientists, who
are likely to be more interested in the accurate modelling of
natural phenomena rather than on the synchronisation proto-
cols required to build efficient tools on multi-core platforms.



We use the CWC calculus and its sequential simulator
(Sec. II) as paradigmatic example to discuss the key features
required to derive an easy porting on a multi-core platform
(Sec. III). In particular we will argument on the parallelisation
of a single simulation instance (Sec. III-A1), many indepen-
dent instances (Sec. III-A2), and the technical challenges they
require. Among these, parallel programming tools for multi-
core are discussed in Sec. IV, in particular we will focus on
stream oriented pattern-based parallel programming supported
by the FastFlow framework (Sec. IV-A). The key features
discussed in Sec. II are turned into a family of solutions
to speed up both the single simulation instance and many
independent instances. The former issue is approached using
SIMD hardware accelerators (Sec. V-A), the latter advocating
a novel simulation schema based on FastFlow accelerator
that guarantees both easy development and efficient execu-
tion (Sec. V-B). The proposed solutions are experimentally
evaluated.

II. THE CALCULUS OF WRAPPED COMPARTMENTS

The Calculus of labelled Wrapped Compartments (CWC)
(see [9], [11]) is based on a nested structure of ambients
delimited by membranes with specific proprieties. Biological
entities like cells, bacteria and their interactions can be easily
described in CWC.

A. CWC

Let A be a set of atomic elements (atoms for short), ranged
over by a, b, ..., and L a set of compartment types represented
as labels ranged over by `, . . .. A term of CWC is a multiset
t of simple terms where a simple term is either an atom a or
a compartment (a c t′)` consisting of a wrap (represented by
the multiset of atoms a), a content (represented by the term
t′) and a type (represented by the label `).

An example of term is a b (c d c e f)` representing
a multiset (multisets are denoted by listing the elements
separated by a space) consisting of two atoms a and b (e.g. two
molecules) and an `-type compartment (c d c e f)` which, in
turn, consists of a wrap (a membrane) with two atoms c and
d (e.g. two proteins) on its surface, and containing the atoms
e (e.g. a molecule) and f (e.g. a DNA strand).

System transformations are defined by rewriting rules. A
rewriting rule is defined as a pair of terms (on an extended
set of atomic elements which includes variables), which rep-
resent the patterns, ranged over by P, O, together with a
label ` representing the compartment type to which the rule
can be applied. Rules are represented as expression of the
form ` : P 7→ O. A simple example of a rewrite rule is
` : a b X 7→ c X meaning that in all compartments of type
` an occurrence of a, b (X can match with all the remaining
part of the compartment content) can be replaced by c. The
application of a rule ` : P 7→ O to a term t is performed
in the following way: 1) find (if it exists) the content (or the
wrap) u of a compartment of type ` in t and an substitution
σ of variables by terms such that u = σ(P ). 2) replace in t

the subterm u with σ(O). We write t 7→ t′ if t′ is obtained by
applying a rewrite rule to t.

B. Stochastic Simulation
A stochastic simulation model for biological systems can

be defined by incorporating a collision-based stochastic frame-
work along the line of the one presented by Gillespie in [8],
which is, de facto, the standard way to model quantitative
aspects of biological systems. The idea of Gillespie’s algorithm
is that a rate constant is associated with each considered
chemical reaction. Such a constant is obtained by multiplying
the kinetic constant of the reaction by the number of possible
combinations of reactants that may occur in the system (thus
modelling the law of mass action, but more flexible approaches
are also considered in the literature [9]). The resulting rate
is then used as the parameter of an exponential distribution
modelling the time spent between two occurrences of the
considered chemical reaction.

Each reduction rule is enriched by the kinetic constant k
of the reaction that it represents (notation ` : P k7−→ O). The
number of reactants in a reaction represented by a rewrite rule
is evaluated considering the number of distinct occurrences, in
the same context, of sub-terms matching with the considered
rule. For instance in evaluating the application rate of the
stochastic rewrite rule R = ` : a b X

k7−→ c X to the term
t = a a b b in a compartment of type ` we must consider
the number of the possible combinations of reactants of the
form a b in t. Since each occurrence of a can react with each
occurrence of b, this number is 4. So the application rate of R
is k · 4. This number can be evaluated by specific algorithms
(we refer to [9] for a more detailed account). The stochastic
simulation algorithm is essentially a Continuous Time Markov
Chain (CTMC). Given a term t, a set R of reduction rules, a
global time δ and all the reductions e1, . . . , eM applicable to
t, with rates r1, . . . , rM , Gillespie’s “direct method” allows to
determine:
• The exponential probability distribution (with parameter
r =

∑M
i=1 ri) of the time interval τ after which the next

reaction will occur;
• The probability ri/r that the reaction occurring at time
δ + τ will be ei.

C. The CWC simulator
The CWC simulator is a tool strictly based on Gillespie’s

direct method algorithm [8]. Starting from an initial term it
iterates the following three logical steps:

1) Match: it searches all the occurrences of the rules
matching in some compartment or wrap of the term.
Then it associates a stochastic rate to each match. This
step results into a weighted matchset.

2) Resolve (Monte Carlo): it stochastically decides the time
offset at which the next reaction will occur and the rule
that will activate it.

3) Update: if effectively applied the selected reaction,
affecting both the system and the clock, moving forward
the simulation process.
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Fig. 1. Output of the CWC simulator for gene regulation in E. Coli
model: average of 100 independent instances with variance (90% confidence)
computed a fixed simulation time steps.

III. EXPLOITING PARALLELISM IN SIMULATIONS

Gillespie algorithm realises a Monte Carlo type simulation
method, thus it relies on repeated random sampling to compute
the result. An individual simulation, which tracks the state of
the system at each time-step, is called a trajectory. Many thou-
sands of trajectories might be needed to get a representative
picture of how the system behaves on the whole. A typical
output of the CWC simulator for gene regulation in E. Coli is
reported in Fig. 1, where each curve is obtained by averaging
100 trajectories (90% confidence intervals are also indicated).

For this, stochastic simulations are computationally more
expensive than ODEs numerical unfolding. This balance is
well-known and it motivated many attempts to speed up their
execution time along last two decades [10]. They can be
roughly categorised in attempts that tackle the speeding up of a
single simulation and a bulk of independent simulations. In the
following these (not mutually exclusive) approaches are dis-
cussed under the viewpoint of parallel computing techniques
and their exploitation on commodity multi-core platforms.
This discussion is not intended to be an encyclopaedic review
of other techniques that can be used to achieve the same aim,
such as ones related to the approximation of the simulation
results, such as τ -leaping and hybrid techniques [1].

A. What can speeded up? Where parallelism can be found?

1) Speeding up a single simulation: Parallelising a single
Gillespie-like stochastic simulation, i.e. the derivation of a
simulation trajectory, is intrinsically hard. Unless introducing
algorithmic relaxations – which correctness should be proved
and typically lead to approximate simulation results – two
successive Monte Carlo steps of the same simulation instance
cannot be concurrently executed since there exists a strict
data dependency between the two steps. Also, at the single
step grain, speculative execution is unfeasible because of the
excessive branching of possible future execution paths. As
result, the only viable option to exploit parallel computing
within a single simulation consists in parallelising the single

Monte Carlo step. Here, the available concurrency could be
determined via data dependency analysis that can be made
for any given specific simulator code (see Sec. V). Typically,
parallelism exploited at this level is extremely fine-grained
since the longest concurrent execution path may at most count
few machine instructions.

In this range, currently, no software mechanisms can support
an effective inter-core or multi-processor parallelisation: the
overhead will easily overcome any benefit; the only viable
option is hardware parallelism within a single core. Since,
typically, instruction stream parallelism is already exploited
by superscalar processor architecture, the only additional par-
allelisation opportunity has to be searched in data parallelism
to be exploited via a hardware accelerator, such as internal
SSE/MMX or external GPGPU accelerators (General-Purpose
GPU). In both cases, the simulator code should be deeply re-
designed in a contiguous sequence of SIMD instructions. As
we shall see in Sec. V, this generally may lead to very modest
advantages with respect to the required effort.

2) Speeding up independent simulation instances: The in-
trinsic complexity in the parallelisation of the single step
has traditionally led to the exploitation of parallelism in the
computation of independent instances of the same simula-
tion, which should anyway be computed to achieve statis-
tical convergence of simulated trajectories (as in all Monte
Carlo methods). The problem is well understood; it has been
exploited in the last two decades in many different flavours
and distributed computing environments, from clusters to grid
to clouds. Notwithstanding that the problem has been often
approached in a simplified form, often assuming that output
data has a negligible size, as it happens in Monte Carlo Pi
computation; this is not likely to happen in this and next
generation biological simulations.

In particular, simulation distribution, result gathering, trajec-
tory data assembling and analysis phases are neither consid-
ered as a part of the problems to be accelerated nor considered
in the performance evaluation. As matter of a fact, parallel
simulations is often considered an “embarrassingly parallel”
problem, whereas it is – if and only if – data distribution,
gathering, filtering, and analysis are not considered as part of
the whole process. Unfortunately, it happens that they may
result as expensive as the simulation itself. As an example,
a simulation of the HIV diffusion problem (computed using
the StochKit toolkit for 4 years of simulation time) produces
about 5 GBytes of data per instance [12]. As clear, the data
size is n-folded when n instances are considered. During
post-processing phase, this data should be gathered and often
reduced to a single trajectory via statistical methods.

These potential performance flaws are further exacerbated
in multi-core and many-core platforms. These platforms do
not exhibit the same degree of replication of hardware re-
sources that can be found in distributed environments, and
even independent processes actually compete for the same
hardware resources within the single platform, such main and
secondary memory, which performances represent the real
challenge of forthcoming parallel programming models (a.k.a.



memory wall problem). While simulation is substantially a
CPU-bound problem on distributed platform, it may become
prevalently an I/O-bound problem on a multi-core platform
due to the need to store and post-process many trajectories. In
particular, multi-stable simulations may require very fine grain
resolution to discriminate trajectory state changes, and as it is
clear, the finer the observed simulation time-step the strongest
the computational problem is characterised as I/O-bound.

B. How to parallelise? A list of guidelines

In the previous section we discussed where parallelism
can be found in Gillespie-like algorithms; the question that
naturally follows is how this parallelism can be effectively
exploited. We advocate here a number of parallelisation issues
that, we believe, can be used as pragmatic “guidelines” for the
efficient parallelisation of this kind of algorithms on multi-
core. Observe that, in principle, they are quite independent of
the source of parallelism; however, they focus on inter-core
parallelism, thus cannot be expected to be applied to other
kinds of parallelism (e.g. SIMD parallelism). They will be then
used along Sec. V as “instruments” to evaluate the quality
of the parallelisation work for the execution of independent
instances of the CWC simulator.

1) Data stream as a first-class concept: The in silico (as
well as in vitro) analysis of biological systems produces a huge
amount of data. Often, they can be conveniently represented
as data streams since they sequentially flows out from one or
more hardware or software devices (e.g. simulators); often the
cost of full storage of these streams overcomes their utility,
as in many cases only a statistical filtering of the data is
needed. These data streams can be conveniently represented
as first-class concept; their management should be performed
on-line by exploiting the potentiality of underlying multi-core
platforms via a suitable high-level programming tools.

2) Effective, high-level programming tools: To date, paral-
lel programming has not embraced much more than low-level
communication and synchronisation libraries. In the hierarchy
of abstractions, it is only slightly above toggling absolute
binary in the front panel of the machine. We believe that,
among many, one of the reasons for such failure is the fact that
programming multi-core is still perceived as a branch of high-
performance computing with the consequent excessive focus
on absolute performance measures. By definition, the raison
d’être for high-performance computing is high performance,
but MIPS, FLOPS and speedup need not be the only measure.
Human productivity, total cost and time to solution are equally,
if not more, important. The shift to multi-core is required
to be graceful in the short term: existing applications should
be ported to multi-core systems with moderate effort. This is
particularly important when parallel computing serves as tools
for other sciences since non expert designer should be able to
experiment different algorithmic solutions for both simulations
and data analysis. This latter point, in particular, may require
data synchronisation and could represent a very critical design
point for both correctness and performance.

3) Cache-friendly synchronisation for data streams: Cur-
rent commodity multi-core and many-core platforms exhibit a
cache-coherent shared memory since it makes it can effec-
tively reduce the programming complexity of parallel pro-
grams (whereas different architectures, such as IBM Cell,
have exhibited their major limits in programming complexity).
Cache coherency is not for free, however. It largely affects
synchronisations cost and may require expensive performance
tuning. This is both an opportunity and a challenge for parallel
programming framework designers since a properly designed
framework should support the application with easy exploita-
tion of parallelism (either design from scratch or porting from
sequential code) and high-performance.

4) Load balancing of irregular workloads: Stochastic pro-
cesses exhibit an irregular behaviour in space and time by
their very nature since different simulations may cover the
same simulation timespan following many different, randomly
chosen, paths and number of iterations. Therefore, parallelisa-
tion tools should support the dynamic and active balancing of
workload across the involved cores.

IV. PATTERN-BASED HIGH-LEVEL STREAM PARALLELISM

Stream parallelism is a programming paradigm supporting
the parallel execution of a stream of tasks by using a series
of sequential or parallel stages. A stream program can be
naturally represented as a graph of independent stages (kernels
or filters) that communicate over data channels. Conceptually,
a streaming computation represents a sequence of transforma-
tions on the data streams in the program. Each stage of the
graph reads one or more tasks from the input stream, applies
some computation, and writes one or more output tasks to the
output stream. Parallelism is achieved by running each stage
of the graph simultaneously on subsequent or independent
data elements. As with all kinds of parallel program, stream
programs can be expressed as a graph of concurrent activities,
and directly programmed using a low-level shared memory
or message passing programming framework. Although this
is still a common approach, writing a correct, efficient and
portable program in this way is a non-trivial activity. Attempts
to reduce the programming effort by raising the level of
abstraction through the provision of parallel programming
frameworks date back at least three decades and have resulted
in a number of significant contributions. Notable among these
is the skeletal approach [13] (a.k.a. pattern-based parallel
programming), which appears to be becoming increasingly
popular after being revamped by several successful parallel
programming frameworks [14], [15], [16].

Skeletons (a.k.a. patterns) capture common parallel pro-
gramming paradigms (e.g. MapReduce, ForAll, Divide &
Conquer, etc.) and make them available to the programmer as
high-level programming constructs equipped with well-defined
functional and extra-functional semantics [17].

The pipeline skeleton is one of the most widely-known, al-
though sometimes it is underestimated. Parallelism is achieved
by running each stage simultaneously on subsequent data



elements, with the pipeline’s throughput being limited by the
throughput of the slowest stage.

The farm skeleton models functional replication and con-
sists in running multiple independent stages in parallel, each
operating on different tasks of the input stream. The farm
skeleton is typically used to improve the throughput of slow
stages of a pipeline. It can be better understood as a three
stage – emitter, workers, collector – pipeline. The emitter dis-
patches stream items to a set of workers, which independently
elaborate different items. The output of the workers is then
gathered by the collector into a single stream. These logical
stages are considered by a consolidated literature as the basic
building blocks of stream programming.

The loop skeleton (also known as feedback), provides a way
to generate cycles in a stream graph. This skeleton is typically
used together with the farm skeleton to model recursive and
Divide&Conquer computations.

The FastFlow implementation of the loop and farm patterns
will be exploited in Sec. V to parallelise the CWC simulator.

A. The FastFlow skeleton-based programming framework

FastFlow is a C++ parallel programming framework aimed
at simplifying the development of applications for multi-
core platforms. The key vision of FastFlow is that ease-of-
development and runtime efficiency can both be achieved by
raising the abstraction level of the design phase, thus providing
developers with a set of parallel programming patterns [18].

FastFlow is conceptually designed as a stack of layers that
progressively abstract the shared memory parallelism at the
level of cores up to the definition of useful programming con-
structs supporting structured parallel programming on cache-
coherent shared memory multi- and many-core architectures
(see Fig. 2), including commodity, multi-core systems such as
Intel core and AMD K10. FastFlow natively supports stream
parallelism since it implements parallelism patterns as data-
flow graphs – so-called linear streaming networks. The core
of the FastFlow framework (i.e. run-time support tier) pro-
vides an efficient implementation of Single-Producer-Single-
Consumer (SPSC) FIFO queues. FastFlow SPSC queues are
lock-free, wait-free, and do not use interlocked operations
[19]. The SPSC queue is primarily used as synchronisation
mechanism for memory pointers in a consumer-producer fash-
ion. The next tier up extends one-to-one queues (SPSC) to
one-to-many (SPMC), many-to-one (MPSC) synchronisations
and data flows, which are implemented using only SPSC
queues and arbiter threads, thus providing lock-free and wait-
free arbitrary data-flow graphs (arbitrary streaming networks)
that requires few or no memory barriers, and thus few cache
invalidations. The upper layer, i.e. high-level programming,
provides a programming framework based on parallel patterns.
In particular, FastFlow provides farm, farm-with-feedback (i.e.
Divide&Conquer) and pipeline patterns, and supports their
arbitrary nesting and composition. The FastFlow pattern set
can be further extended by building new C++ templates.

FastFlow is available as an open source software under
LGPLv3 [18]. A performance comparison against other pro-
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Fig. 2. FastFlow layered architecture with abstraction examples at the
different layers of the stack.

Simulation Step {
// 1. Match

foreach r ∈ ruleset {
Match(r, T, TOP LEVEL); // [non−SIMD parallelism]

// 2. Resolve (Monte Carlo)
( tau , mu) = Gillespie (matchset) ;
context = stochastic choice on matchset[mu];

// 3. Update
(P,O) = left and right side (mu);
delete P sigma from T at context; // SIMD
put deleted elements in sigma;
add O sigma to T at context; // SIMD
simclock += tau;

}

Fig. 3. CWC simulator pseudo-code (see also Sec. II-C) with possible sources
of fine-grain parallelism.

gramming tools such as POSIX, Cilk, OpenMP, and Intel TBB
has been reported in [18], [20].

V. THE CWC SIMULATOR TESTBED

The proposed guidelines are validated using the CWC
simulator as running example. It has been developed as a plain
C++ sequential code (exploiting the C++ boost library), then
it has been parallelised for multi-core. In order to evaluate the
effectiveness of the methodology also in term of development
effort. In the parallelisation two main frameworks have been
used: the GCC compiler SSE intrinsics [21] to speed up
a single simulation, and the FastFlow parallel programming
framework [18] to speed up independent simulation instances,
which provides the basic facilities described in Sec. III-A2 and
that is briefly recapped in Sec. IV-A.

All reported experiments have been executed on an Intel
workstation with 2 quad-core Xeon E5520 Nehalem (16 Hy-
perThreads) @2.26GHz with 8MB L3 cache and 24 GBytes
of main memory with Linux x86 64. The Nehalem processor
uses Simultaneous MultiThreading (SMT, a.k.a. HyperThread-
ing) with 2 contexts per core that share execution units. Each
core is equipped with a SSE4.2 SIMD engine.

A. Speeding up a single simulation

As discussed in Sec. III-A1, the parallelisation of the single
CWC simulation step is theoretically feasible via the SSE
accelerator. The pseudo-code of the simulation step is sketched
in Fig. 3. In the figure, the phases of the code that can be



# of species Sequential (S) SIMD (S) Speedup Ideal speedup

2 5.021 5.071 0.99 4
4 19.076 18.887 1.01 4
8 70.743 70.043 1.01 4

16 284.276 278.701 1.02 4
32 1121.231 1099.245 1.02 4

Fig. 4. Execution time (S) and speedup of the SIMD CWC simulator against
the sequential version on the n-species Lotka-Volterra.

parallelised in SIMD fashion with moderate effort are marked
with the “SIMD” label. The exploited parallelism degree is
4 since 4x32-bit operation has been used; Fig. 4 reports
the achieved speedup on a single core for n-species of the
Lotka-Volterra models (the 2-species case is the standard prey-
predator model). Despite SSE exhibits very low overhead, the
achieved speedup is almost negligible because only a fraction
of the whole simulation step has been actually parallelised
(Amdahl’s law’s applies [22]). Similar parallelisation efforts
conducted on GPGPU accelerators, which exploit a much
larger potential SIMD parallelism, do not actually result in
satisfactory results. As an example, see the parallelisation of
Gillespies first reaction method on NVIDIA CUDA [23].

Unfortunately, the extension of the SIMD parallelism to
larger fractions of the code may require a very high coding
effort since the redesign of the original code is required.
As an example recursive patterns (used for tree-matching,
marked with “non-SIMD” parallelism in Fig. 3) are not easily
manageable using SIMD parallelism and should be differently
coded before being parallelised. Observe that these recursive
kernels cannot either be parallelised across cores because they
are excessively fine-grained; as an example the parallelisation
via POSIX threads (tested with FastFlow and Intel TBB) is, in
our the reference platform, from 10 to 100 times slower with
respect to sequential version due to synchronisation overheads
(i.e. cache coherence, cache misses, etc.).

All in all, intra-core SIMD parallelism appears the only
viable way to this kind of parallelisation. Observe however
that if it might require, for this class of algorithms, a coding
effort that easily overcomes the potential benefits.

B. Speeding up independent simulation instances

Starting from the CWC sequential simulator code, we here
advocate a parallelisation schema supporting the parallel exe-
cution of many self-balancing simulation instances on multi-
core. Its design aims to address all the issues discussed
in Sec. III-A2: it is realised by means of the FastFlow
framework (see Sec. IV-A) that natively supports high-level
parallel programming patterns working on data streams and
it exhibits an efficient lock-free run-time support that can be
integrated with SIMD code. It therefore makes it possible the
easy porting of the sequential CWC code on multi-core for
the execution of multiple simulation instances (either replicas
or the parameter sweeping of a simulation), and the on-line
synthesis of their trajectories, which can be made according
to one or more associative reduction functions, e.g. average,
variance, confidence.
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Fig. 5. Three alternative parallelisation schemas exemplified on 6 simulation
instances and 3 processors. i) Round-robin execution of simulations followed
by a reduction phase. ii) Auto-balancing schema with time-slicing at constant
simulation time (variable wall-clock time) followed by a reduction phase. iii)
Previous schema with on-line pipelined reduction.

The schema supports three main behaviours, which are
exemplified in Fig. 5:

i) The different simulation instances (called a,b,c,d,e,f) are
dispatched for the execution on different workers threads of
a FastFlow farm, which run on different cores; a worker se-
quentially runs all the simulations it received. The dispatching
of instances to workers could be either performed before the
execution according to some static policy (e.g. Round-Robin)
or via an on-line scheduling policy (e.g. on-demand). Workers
stream out the trajectories, which are sampled at fixed time
steps along simulation time. Streams are buffered in the farm
collector and then reduced in a single stream according to one
or more functions (e.g. F). Observe that the constant sampling
assumption simplify the reduction process even if it is not
strictly required since data could be on-line re-aligned during
the buffering [12]. Also notice that since simulation time
advances according to a random variable, different instances
advance at different wall-clock time rates. The phenomenon
is highlighted in Fig. 5-i splitting each instance in four equal
fractions of the simulation time (e.g. 〈a1, a2, a3, a4〉, 〈b1,
b2, b3, b4〉, which exhibit different wall-clock time to be
computed (segment length). This may induce even a significant
load unbalance that could be only partially addressed using
on-line scheduling policies.

ii) A possible solution to improve load balancing of the
schema consists in coupling the on-line scheduling policy
with the reduction of execution time-slice that is subject to
the scheduling policy. At this end, each simulation instance
can be represented as an object that incorporate its current
progress and provide the scheduler with the possibility of
stopping and restarting an instance. In this way, as it hap-
pens in a time-sharing operating system, (fixed or variable
length) slices of an instance can be scheduled on different
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Fig. 6. Architecture of the FastFlow-based CWC parallel simulator.

workers provided slices of the same instances are sequenced
(possibly on different workers). Thanks to cache-coherent
shared memory the scheduling can be efficiently realised via
pointer management. The idea is exemplified in Fig. 5-ii. Also,
scheduling and dispatching to workers can be equipped with
predictive heuristics based on instance history in order to
characterise the relative speed of the simulation instances.

iii) The previous schema can be further improved by
pipelining the reduction phase that is performed on-line. Since
instance time-slicing can make all the instances to progress, a
running window of all the trajectories can be reduced while
they are still being produced. The reduction process, which
is logically made within a separate thread (i.e. the farm
collector), can be either run on an additional processor or
interleaved with the execution of simulation instances (see
Fig. 5-iii. The solution also significantly reduces the amount of
data to be kept in memory because: 1) thanks to interleaving
all the trajectories advances almost aligned with respect to
simulation time; 2) the already reduced parts of the trajectories
can be deleted from main memory (and stored in secondary
memory if needed).

The three schemas can be effectively implemented using
FastFlow as sketched in Fig. 6. In particular, the FastFlow farm
accelerator feature [18] fits well the previous design since it
makes possible to offload a stream of object pointers onto a
farm of workers, each of them running a CWC simulator, and
to implement user-defined dispatching and reduction functions
via standard Object Oriented subclassing. As discussed in
Sec. IV-A, FastFlow natively provides the programmer with
streams, a configurable farm pattern, and an efficient run-
time support based on lock-free synchronisations. All these
features effectively made it possible to port the CWC sequen-
tial simulator to multi-core with moderate effort. In addition,
the complexity of the achieved solution can be gracefully
improved by successive refinements in order to test different
scheduling policies or variants to the basic schema. In this
regard the accelerator feature represents a key issue since it
enables the programmer to make very local changes to the
original code that in first approximation consists in changing
a method call into the offload of the same method.

Figure 7 reports the achieved speedup for schema iii),
evaluated on multiple instances of simulation over the Lotka-
Volterra model. In the speedup plot, both the parallel and
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Fig. 7. Speedup of the parallel CWC simulator, see Sec. V-B iii).

the sequential versions of the code include the time spent
for reducing multiple trajectories with mean, variance and
their confidence intervals. Observe that, the usage of multiple
contexts via HyperThreading not only does not bring any addi-
tional benefit, as it can expected in CPU-intensive workloads,
but it worsens the execution time due to the increased memory
and cache invalidation traffic, as it can be expected in memory-
bound workloads.

VI. RELATED WORKS

The parallelisation of stochastic simulators has been exten-
sively studied in the last two decades. Many of these efforts
focus on distributed architecture and specific simulators. Our
work differs from these efforts in three main aspects: 1) it
mainly address multicore-specific parallelisation issues; 2) it
advocates a general parallelisation schema rather than a spe-
cific simulator, 3) it specifically address the on-line reduction
of simulation trajectories, thus it is designed to manage large
streams of data. To the best of our knowledge, many related
works covers some of these aspects, but very few of them (if
any) address all three aspects. Among related works, some are
worth to be explicitly mentioned.

The Swarm algorithm [24], which is well suited for bio-
chemical pathway optimisation has been used in a distributed
environment, e.g., in Grid Cellware [25], a grid-based mod-
elling and simulation tool for the analysis of biological
pathways that offers an integrated environment for several
mathematical representations ranging from stochastic to de-
terministic algorithms.

Parameter Sweep Applications (PSAs) exploit that aim must
involve making the problem very time consuming. However,
since the instances of a PSA are independent, the distributed
computing paradigm to to sample a large space of independent
instances. In [26], a grid-based version of a multi-volume
stochastic simulator is presented.

DiVinE is a general distributed verification environment
meant to support the development of distributed enumerative
model checking algorithms. It includes probabilistic analysis



features and it has been extensively used for the analysis of
biological systems [27].

StochKit [28] is an extensible stochastic simulation frame-
work developed in the C++ language. Among other methods, it
implements the Gillespie algorithm and in its second version
it targets multi-core platforms, it is therefore similar to our
work. It does not implement any kind of SIMD parallelism
nor on-line trajectory reduction that is performed in a post-
processing phase. A first form of on-line reduction of simula-
tion trajectories has been experimented within the StochKit-FF
framework [12], which is an extension of StochKit using the
FastFlow runtime.

VII. CONCLUDING REMARKS

Starting from the Calculus of Wrapped Compartments we
have discussed the main parallelisation issues for its simulator,
and in general for the stochastic simulation of biological
systems, on commodity multi-core platforms. In particular, we
distinguished two different approaches to parallelisation, i.e.
the parallelisation of the single simulation instance and many
simulation instances. For each class we have defined a number
of design guidelines, which may support the easy and efficient
porting of this class of algorithms on multi-cores. These
guidelines include both the programming language abstrac-
tions (streams and high-level programming patterns), the run-
time mechanisms (SIMD parallelism, lock-free cache-friendly
inter-core synchronisations here provided by the FastFlow
framework), and basic simulator architectural schema (sim-
ulation “objectification”, interleaved execution and pipelined
reduction), which can be gracefully optimised with limited
effort to experiment different parallel execution behaviours.

The presented guidelines have been used to develop a
multicore-aware porting of the CWC simulator, which have
been experimented over classic simulation problems. The
experimental evidence obtained in the design and utilisation
of the parallel simulator are convincing both in term of the
achieved performance and the moderate porting effort for
the parallelisation of multiple instances whereas it appears
disappointing for the parallelisation of the single instance.

Both the FastFlow framework and the CWC simulator are
open source software under LGPL licence [18], [29].
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