
LIBERO: a framework for autonomic management
of multiple non-functional concerns

M. Aldinucci◦, M. Danelutto?, P. Kilpatrick†, V. Xhagjika?

◦ University of Torino – ? University of Pisa – † Queen’s University Belfast

Abstract. We describe a lightweight prototype framework (LIBERO)
designed for experimentation with behavioural skeletons—components
implementing a well-known parallelism exploitation pattern and a rule-
based autonomic manager taking care of some non-functional feature
related to pattern computation. LIBERO supports multiple autonomic
managers within the same behavioural skeleton, each taking care of a
different non-functional concern. We introduce LIBERO–built on plain
Java and JBoss–and discuss how multiple managers may be coordinated
to achieve a common goal using a two-phase coordination protocol devel-
oped in earlier work. We present experimental results that demonstrate
how the prototype may be used to investigate autonomic management
of multiple, independent concerns.

Keywords: structured parallel/distributed programming, behavioural skeletons,
non-functional concerns, performance, security, autonomic management.

1 Introduction

A behavioural skeleton (BS) is the result of the co-design of a well-known, effi-
cient parallelism exploitation pattern and of a rule-based control loop implement-
ing an autonomic manager of (one or more) non-functional properties related to
the pattern [1,2]. The concept was introduced to tackle the problem of efficient,
autonomic management of non-functional features of parallel/distributed com-
putations, such as performance, security, fault tolerance, power management,
etc. The BS parallel pattern makes use of well-understood techniques to imple-
ment that particular pattern on target architectures. The BS autonomic manager
executes a classical Monitor, Analyse, Plan, Execute (MAPE) control loop to
monitor and adjust the system to modify some non-functional characteristics.

Behavioural skeletons were originally designed in the framework of GCM, the
Grid Component Model [8] developed within CoreGRID [7] and subsequently
implemented in the GCM reference implementation built on top of ProActive
[14] in GridCOMP [11]. GridCOMP produced a GCM BS prototype support-
ing common stream parallel patterns–pipelines and farms–with managers taking
care of performance issues. Those BS were demonstrated to be effective in man-
aging (best-effort) user-supplied performance contracts. In [2] it was shown how
contracts requiring a given throughput can be guaranteed when a single BS

Algorithmic skeleton

Autonomic controller

Autonomic
manager
NF concern C1

Autonomic
manager
NF concern C2

monitor & actuate

(1) analyze status & plan corrective action

(2) broadcast action to other AM

(5) collect answers

(6) all ACK → commit, ∃ NACK → ABORT

(3) analyse received request

(4) send ACK/NACK/Provide(PropX)

Fig. 1. Coordinating activities of distinct autonomic managers in a BS

models the entire application. In [3] we introduced techniques that support the
coordination of the different managers in a BS hierarchy.

In the general case, however, multiple non-functional concerns have to be
addressed within the same computation. The BS concept can be easily extended
in such a way that multiple managers are associated with the same parallel
pattern, each taking care of a different concern. In [4] we identified the need
for such managers to interact to achieve consensus before effecting changes to
the managed system. We also identified protocols for achieving such consensus.
However, no actual implementation was presented. In this paper we introduce
LIBERO (LIightweight BEhaviouRal skeletOn framework), which is a lightweight
prototype implementing several BS–including pipes and farms–and supporting
multiple autonomic managers within a single BS.

2 Autonomic manager coordination

Problems may arise when independent autonomic managers are run within the
same behavioural skeleton. In a scenario such as that depicted in Fig. 1, multiple
managers are associated with the same algorithmic skeleton in a single BS. The
algorithmic skeleton implements a well-know parallelism exploitation pattern.
Through its autonomic controller (AC) it provides i) methods to access its in-
ternal state (to support monitoring) and ii) methods to operate on its internal
state (to modify its behavior). Each associated autonomic manager takes care
of a distinct non-functional concern.

When different AMs associated with the same BS independently decide to
take some action those actions must be coordinated as they may produce effects
that are mutually incompatible. In [4] we introduced a two-phase approach to
coordinate different manager activities. In this approach each action planned by
an AM is validated by the other AMs in the BS before being executed. The
manager taking care of non-functional concern X (e.g. performance), analyzes
system behaviour and decides to take some action (À in Fig. 1). It informs the
other managers of the decision Á. These managers evaluate Â the decision with

respect to any consequences for their non-functional concern. Eventually they
return Ã one of three answers: ACK, meaning the decision can be safely taken by
the first manager, NACK, meaning the decision is in conflict with the managed
non-functional concern and therefore should be aborted, or provide(property),
meaning the decision may be actuated provided property is ensured (e.g. se-
curing of connections). The manager initiating the process gets answers from
the other managers Ä and either actuates its decision (the original plan or a
modified one to accomplish property) or aborts it Å.

This two-phase protocol has not previously been experimented with, due
mainly to the difficulty of embedding a complex management structure in the
reference implementation of BS in ProActive/GCM. We implemented LIBERO
to allow assessment of the feasibility of this protocol as well as to experiment
with other protocols regulating autonomic management.

3 LIBERO

LIBERO is a prototype supporting BS with multiple autonomic managers imple-
mented using lightweight components. Each component implementing a parallel
computation has a managing entity–the AM–that deals with the non-functional
aspects of the parallel computation in a local and autonomic way. The AM man-
agement functions operate through the operations provided by the component
Autonomic Controller [8]–the AC–which exports its internal computation state
and provides a set of operations to modify component state and functioning.

LIBERO implements the BS previously investigated in GridCOMP, namely
those modelling the usual stream parallel patterns, such as task farms and
pipelines [6], and equipped with a single autonomic manager taking care of a
single non-functional concern. In addition, LIBERO supports Multiple Concern
Management, implementing the coordination algorithm outlined in Sec. 2. All
LIBERO components are native Java objects. This simplifies investigation of
multi-concern management as compared with the ProActive/GCM BS proto-
type. The ProActive/GCM prototype requires a more complex runtime and does
not support multiple AMs in a single BS. LIBERO, like the ProActive/GCM BS
implementation, uses the DROOLS [10] library middleware to implement auto-
nomic managers’ control cycles.

3.1 LIBERO base mechanisms

LIBERO implements component deployment on remote nodes using a small Java
RMI-based runtime.This runtime allows deployment of LIBERO components and
management of their life cycle. Management activities access the runtime to
check machine dependent parameters peculiar to the node where the runtime
is running, and may also access parameters associated with other nodes of the
system, if needed.

The functional interfaces of LIBERO components are implemented using per-
manent Java TCP socket connections (either normal or SSL connections, de-
pending on security requirements), with the use of serialisation for input/output

BS name Features
Sequential models sequential code, no actuator supported in AC, provides service time and executed

task number through monitoring AC interface
Farm models embarrassingly parallel stream parallel computations, constructor parameter used

to pass the worker component class, AC supports increase/decrease parallelism degree
actuators, provides service time, total task number and number of workers through the
AC monitoring interface

Pipeline models computations organized in stages, constructor parameters used to pass stage com-
ponent classes, no actuator supported in AC, provides service time and total task number
through monitoring AC interface

Fig. 2. LIBERO Behavioural Skeletons

object delivery between BS components. These permanent TCP connections im-
ply the use of a discovery mechanism to locate the distributed components. Im-
plementation of this mechanism assumes a global naming scheme for the compo-
nents. A centralized multicast discovery component is used as a Nameserver.This
component allows registration, removal and lookup requests using the specified
component IDs. Non-functional interfaces (those related to BS managers) need
stronger expressiveness and ease of use, and thus are implemented using RMI.

3.2 LIBERO BS

The LIBERO BS framework is provided as a set of classes [15]. A Behavioural-

Skeleton class provides the common mechanisms (such as those needed for regis-
tration/removal of sub-components) and interfaces of BS and can be extended to
implement new BS. Table 2 summarizes the main features provided by LIBERO.

Multiple managers, specialized by their contracts, can be declared using the
appropriate LIBERO classes and associated with the same LIBERO BS. The ac-
tions of these cooperating AM are coordinated by means of the two-phase pro-
tocol proposed in [4]. The AM behaviour (that is, its contract) is expressed in
terms of JBoss rules. The DROOLS rule pre-conditions are evaluated using the
parameters monitored through the BS AC interface. Actions of the rules eventu-
ally fired by the DROOLS rule engine are executed using the BS AC interface.

The consensus protocol is implemented using JBoss rules and allows use of
runtime values as contract parameters. As a consequence, the protocol is not
embedded in the manager code but rather in the rule language. Fig. 3 (right)
shows a sample JBoss rule. This is the rule fired when a new worker is added to a
farm due to a breach of contract (fewer than 8 workers in the farm). The action
part of the rule consists in setting up and broadcasting the consensus request.

Autonomic controllers provide mechanisms to monitor BS behaviour and to
actuate manager decisions on the embedded skeleton. In particular, each AC
implements the executeOperation and getMeasure methodsto change/export
the internal execution state. The AC also implements methods for accessing
machine dependent parameters, fetched from the runtime support of the node.

Machine dependent properties are made accessible through the runtime sup-
port; these properties are described in an XML file parsed at startup by the
runtime. The configuration file may host metadata relative to properties of the
machines used for program execution.

rule "FarmPerformanceManagerRuleToAskForConsensus"
 when
 $farm: AutonomicControllerInterface()
 $manager: AutonomicManagerInterface()
 $sample: String() from
 $farm.getMeasure(Measures.NEXT_AVAILABLE_MACHINE)
 $sample_numworker: Integer() from
 $farm.getMeasure(Measures.TOTALWORKERS)

 not(exists(ContractParamValue(name ==
 MulticoncernBroadcastCodes.BCAST_REQUEST_WAIT_ACK)))
 not(exists(ContractParamValue(name ==
 MulticoncernBroadcastCodes.PREPARE_BCAST_COMMAND)))

 eval(((Integer) $sample_numworker) < 8)
then
 $manager.setContractParam(
 MulticoncernBcastCodes.PREPARE_BCAST_COMMAND, "");
 $manager.setContractParam(
 MulticoncernBcastCodes.BCAST_PARAM,
 CommandCode.INCREASE_PARALLELISM);
 $manager.setContractParam(
 MulticoncernBcastCodes.BCAST_SECOND_PARAM,
 $sample);
 end

coop protocol

Pipeline Behavioural Skeleton

Farm Behavioural Skeleton

AC

ACPipeline

Seq

Farm

Seq

SeqSeqSeq

Performance
AM

Security
AM

monitor
actuate

monitor
actuate

Fig. 3. Sample use case application (left) and Sample JBoss rule (right)

4 Experimental results

A set of experiments to assess LIBERO functionality and efficiency has been per-
formed on an Intel/Linux cluster, with Java (version 1.5 or higher) and JBoss
DROOLS (version 5.0). The nodes in the cluster were interconnected by FastEth-
ernet and NFS was used. Here we report on one experiment illustrating multiple
non-functional concern management in LIBERO.

This experiment uses a synthetic application structured as a three stage
Pipeline component, as depicted in Fig. 3 (left): the first and the third stages
are Sequential components, while the second stage is a Farm component. Each
component is placed on a different node in the cluster and 3 machines, each
running the LIBERO runtime are assigned as resources for the Farm workers.

The scenario under test is the following. Both a performance contract and
a security contract have been supplied by the user. The performance contract
requires that a given number of workers (8) be employed and that that level
be maintained. It can be ensured by recruiting increasing numbers of resources
to the point where the required number is operating. New resources may also
be dynamically recruited for the computation in the event that existing ones
become less effective due to temporary overloads or faults. The security contract
demands that, where nodes are recruited from external, possibly unreliable do-
mains, such nodes must be suitably secured by, for example, encrypting data
and code communications; nodes internal to the user domain may be considered
secure. Thus, if the performance manager identifies failure of the performance
contract it will prompt the recruitment of further resources. If some of these are
in an external domain the security manager may in turn demand the securing
of communications with such potentially unsafe resources.

To implement this scenario, two autonomic managers are associated to the
Farm component, one handling security and the other performance. The run time
nodes host metadata classifying each node that may be recruited as secure or

Security AM
Performance AM

sendAckErr
sendAckNoSec

sendAckSec
workerUp

endAckOkSec
endAckOkNoSec

recErrAck
sendBroadReq
prepBroadReq

00:00 00:20 00:40 01:00

To
p

M
an

ag
er

s
Lo

gi
cs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

00:00 00:20 00:40 01:00

Fa
rm

 W
or

ke
rs

Add secure worker

Add non secure worker

Fig. 4. Event distribution over time (secs from system startup). W.r.t. Fig. 1: prep-
BroadReq corresponds to À, SendBroadReq to Á, SendAckSec/SendAckNoSec to Â/Ã,
workerUp to Ä/Å and endAckOkNoSec/endAckOkSec to end of Å.

insecure.We used both secure and insecure nodes in the experiment to check both
types of answers from the consensus phase: simple ACK (i.e. accept recruitment
of a new node to host a Farm worker implemented using plain TCP sockets) and
conditional ACK (i.e. accept recruitment of the node provided SSL sockets are
used for communications).

The life cycle of the managers (the period used to run the DROOLS engine)
is set to 500ms so that the plot of the runtime is sufficiently discrete to allow
observation of the events, but smaller life cycles are possible down to 100ms.

In the use case we start the Farm component with two workers. The per-
formance manager immediately detects a contract violation and asks the other
managers for permission to add another worker. If other violations are encoun-
tered then the same set of operations is applied repeatedly, until no further
violation is encountered.

The plot in Fig. 4 is automatically generated (but for arrows and ovals, added
for clarification) from the application log files and shows evolution of the Farm
component and the distribution of manager events over the same period of time.
As can be seen, consensus is sought and achieved according to the two phase
protocol. In some cases workers are added using plain TCP connections (workers
that happen to be placed on “secure” nodes – see on the right of Fig. 4). In other
cases, the security manager detects that resources identified to host new workers
are not secure and so it requests property(Security) in the ACK message. At
this point the performance manager changes the plan used to add the worker

from that employing plain TCP to one incorporating secure SSL connection, and
eventually recruits the new worker using this modified action plan.

Overall, the consensus protocol takes an overhead of at most 4 manager
life-cycles plus the execution time of the rules, which depends only on the com-
munication overhead between managers. This gives a total overhead time of
Toverhead = 4 ∗ (TLyfeCycle + TCom), where TCom is the average number of RMI
calls * average RMI latency. In this simple case the entire reconfiguration of the
system takes 45s, and reconfiguration time for worker allocation on average (in-
cluding decision making and synchronization) is about 5 secs (including about
2 secs of idle time spent waiting 4 times for the next iteration of the control
loop). These times are of the same order of magnitude as the times spent in the
ProActive/GCM BS prototype to achieve an unmediated reconfiguration (i.e.
a reconfiguration decided autonomically by a single, uncoordinated manager),
which underlines the “lightweight” nature of LIBERO.

5 Related work

The IBM blueprint paper on autonomic computing has already established, in a
slightly different context, the need to orchestrate independent autonomic man-
agers [12]. In [9] strategies to handle performance and power management is-
sues by autonomic managers are discussed. However the approach is much more
oriented to the generic combination of target functions relating to the two non-
functional concerns considered, rather than to the constructive coordination of
the actions planned by the two managers.

A framework that can be used to reason on multiple concerns was intro-
duced in [13]. Based on the concepts of state and action (i.e. state transition)
adopted from the field of artificial intelligence, this framework maps three types
of agenthood concepts (action, goal, utility-function) into autonomic computing
policies. Action policies may produce and consume resources, which are used
by a resource arbiter (i.e. a super manager) to harmonize conflicting concerns.
The framework does not, however, provide specific support for policy design and
distributed management overlay.

A similar approach was followed in [5], which also exploits the same policies
(action, goal, utility-function) defined on the state and configuration space of
the system. These policies are extended with resource-definition policies, which
specify how the autonomic manager exposes the system to its environment;
this makes it possible to dynamically extend manager knowledge with other
resources/parameters, possibly coming from other managers, thus supporting
management overlay.

6 Conclusion

LIBERO supports the implementation of behavioural skeletons with multiple au-
tonomic managers, each managing a different non-functional concern, and runs

on any distributed architecture supporting Java. The prototype allows inves-
tigation of coordination aspects of autonomic management of non-functional
concerns. The lightweight implementation of LIBERO, and in particular of the
monitoring and actuator mechanisms implemented in the autonomic controllers,
allows us to experiment with various consensus building strategies without being
burdened by the complexities of fully-fledged distributed/parallel implementa-
tions, such as that provided by the ProActive/GCM BS implementation.

References

1. M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and
N. Tonellotto. Behavioural skeletons for component autonomic management on
grids. CoreGRID Workshop on Grid Prog. Model, Grid and P2P Systems Archi-
tecture, Grid Systems, Tools and Environments, Heraklion, Greece, June 2007.

2. M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza,
N. Tonellotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic man-
agement of grid components. Proc. Intl. Euromicro PDP 2008: Parallel Distributed
and network-based Processing, p.p. 54–63, Toulouse, France, Feb. 2008. IEEE.

3. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic management of non-
functional concerns in distributed and parallel application programming. Proc.
Intl. Parallel & Distributed Processing Symp. (IPDPS), Rome, Italy, May 2009.

4. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic managenemt of mul-
tiple non-functional concerns in behavioural skeletons. In Proc. of the CoreGRID
Symposium 2009, CoreGRID, Delft, The Netherlands, Aug. 2009. Springer.

5. R. Calinescu. Resource-definition policies for autonomic computing. In Proc. of
the 5th Intl. Conference on Autonomic and Autonomous Systems (ICAS), pages
111–116. IEEE, Apr. 2009.

6. M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing, 30(3):389–406, 2004.

7. The CoreGRID home page. http://www.coregrid.net, 2007.
8. CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable

D.PM.04 – Basic Features of the Grid Component Model (assessed), Feb. 2007.
9. R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and H. Chan.

Autonomic multi-agent management of power and performance in data centers.
Proc. 7th Intl. Conf. on Autonomic Agents and Multiagent Systems, May 2008.

10. Drools 5 - The Business Logic integration Platform, 2010.
11. GridCOMP Project. Grid Programming with Components, An Advanced Compo-

nent Platform for an Effective Invisible Grid, 2008. http://gridcomp.ercim.org.
12. IBM Corp. An Architectural Blueprint for Autonomic Computing, 2005. http:

//www-01.ibm.com/software/tivoli/autonomic/.
13. J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on autonomic

computing policies. In Proc. of the 5th Intl. Workshop on Policies for Distributed
Systems and Networks (POLICY’04). IEEE, 2004.

14. ProActive home page, 2009. http://www-sop.inria.fr/oasis/proactive/.
15. V. Xhagjika. Implementation of a prototype for experimenting with autonomic

hierarchical managers in JAVA. Dept. of Computer Science, Univ. of Pisa, Italy
(Thesis, In Italian), December 2009.

0 This work has been partially supported by ERCIM/CoreGRID

