
High-level lock-less
programming for
multi-core
Fabio Tordini∗, Marco Aldinucci∗1,
Massimo Torquati†2

∗ University of Torino, corso Svizzera 185, 10124 Torino, Italy
† University of Pisa, largo Pontecorvo 3, 56127 Pisa, Italy

ABSTRACT

Modern computers are built upon multi-core architectures. Achieving peak performance on these
architectures is hard and may require a substantial programming effort. The synchronisation of
many processes racing to access a common resource (the shared memory) has been a fundamen-
tal problem on parallel computing for years, and many solutions have been proposed to address
this issue. Non-blocking synchronisation and transactional primitives have been envisioned as
a way to reduce memory wall problem. Despite sometimes effective (and exhibiting a great mo-
mentum in the research community), they are only one facet of the problem, as their exploitation
still requires non-trivial programming skills.

With non-blocking philosophy in mind, we propose high-level programming patterns that
will relieve the programmer from worrying about low-level details such as synchronisation of
racing processes as well as those fine tunings needed to improve the overall performance, like
proper (distributed) dynamic memory allocation and effective exploitation of the memory hierar-
chy.

KEYWORDS: Concurrency; multiprocessors; non-blocking synchronisation; skeleton programming

1 Introduction

The whole hardware industry has been moving to multi-cores, which nowadays equip the
large majority of the computing platforms. The rapid shift toward multi-core technology
has many drivers that are likely to sustain this trend for several years now. Software tech-
nology is moving under this pressure [ABD+09]. Certainly, in the long term writing parallel
programs ought to be as efficient, portable, and correct as it has been to write programs for
sequential computers. To date, however, the parallel programming drill does not embrace
much more than low-level communication and synchronisation libraries. In the hierarchy
of abstractions, it is only slightly above toggling absolute binary into the front panel of the
machine. We believe that, among many, one of the reasons of such failure is due to the fact

1E-mail: {tordini, aldinuc}@di.unito.it
2E-mail: torquati@di.unipi.it



that programming multi-core is still perceived as a branch of high-performance computing
and the consequent exclusive focus on absolute performance measures. By definition, the
raison d’être for high-performance computing is high performance, but MIPS, FLOPS and
speed-up need not be the only measure. Human productivity, total cost and time to solu-
tion are equally, if not more important [Ree09]. While a big methodological change will be
required to design applications that are likely to be designed as parallel programs, this shift
is needed to be graceful in the short term: existing applications should be ported to multi-
cores with moderate effort (despite they could be redesigned with a larger effort and larger
performance gain).

Current commodity multi-core and many-core platforms exhibit a cache-coherent shared
memory, which can effectively reduce the programming complexity of parallel programs
(whereas different architectures, such as IBM Cell, have exhibited their major limits in pro-
gramming complexity). Cache coherency is not for free, however. It largely affects synchro-
nisation costs (e.g. mutual exclusion) and may require expensive performance tuning. The
scenario is even more convoluted considering that almost the totality of commodity multi-
core architectures exhibits a cache-coherent non-uniform memory access (cc-NUMA) and weak
memory consistency models (e.g. Total Store Ordering and Weak Ordering) [AG95].

In cc-NUMA systems, both the non-optimized access (e.g. randomized) to memory space
and cache re-conciliation protocols can be a real issue, especially in fine-grain parallelism ex-
ploitation. The former issue is still partially unaddressed and it is one of the topics this pro-
posal is focusing on. In respect of the latter issue, optimistic concurrency control approaches,
inter-alia, non-blocking (lock-free) algorithms equipped with concurrent data structures,
transactional primitives (both hardware and software) are promising (yet well-known) tech-
nologies to ameliorate cache re-conciliation costs by way of mutual exclusion avoidance.

Unfortunately, non-blocking synchronisation algorithms exhibit a natural complexity
and a delicate implementation under the weak memory consistency models adopted by al-
most all multi-core CPUs. As an example, concurrent containers with lock-free methods can
be hardly composed and proved correct, and eventually, their usage requires particularly
skilled programmers.

This is both an opportunity and a challenge for parallel programming framework de-
signers, since a properly designed framework should support the application with easy ex-
ploitation of parallelism (either design from scratch or porting from sequential code) and
high-performance. In this respect, while the direct usage of nonblocking algorithms are not
likely to be considered a viable for mass software production, they still represent a viable
solution to build higher level coding abstraction, e.g. algorithmic skeletons and parallel pat-
terns [Col89, GVL10, EK10, ADKT12, ABD+09].

As an example, starting from lock-free CAS-free FIFO queues, FastFlow implements a set
of C++ parallel programming patterns providing the programmer with efficient, high-level
and easy to use programming abstractions. Building on this experience, we aim to extend
both FastFlow design and implementation.

2 The FastFlow parallel programming framework

FastFlow is a programming environment specifically targeting cache-coherent shared-memory
multi-cores. FastFlow is implemented as a C++ template library built on top of a lock-free
synchronisation mechanism. Conceptually, it is a stack of layers that progressively abstract



the shared memory parallelism at the level of cores up to the definition of useful program-
ming constructs and patterns [fas09, ADKT12].

FastFlow provides mechanisms to define simple streaming networks whose run-time sup-
port is implemented through efficient lock-free Single-Producer/Single-Consumer (SPSC)
queues. These queues constitute a solid ground for a low-latency synchronisation mecha-
nism for multi-core (e.g. 10 nS latency core-to-core on Intel E7@2Ghz). SPSC queues, whether
composed with mediator threads, can be used to build memory fence-free Multiple-Produc-
er/Multiple-Consumer (MPMC) queues. These queues, or alternatively with CAS-based im-
plementations of MPMC queues, make it possible to build arbitrary networks of activities
behaving as streaming networks [Kah74].

On the top of streaming networks, FastFlow provides a programming framework based
on parallelism exploitation patterns (a.k.a. skeletons) [Col89]. They capture common parallel
programming paradigms (e.g. MapReduce, ForAll, Divide&Conquer, etc.) and make them
available to the programmer as high-level programming constructs equipped with well-
defined functional and extra-functional semantics.

Parallel patterns are usually categorized in three main classes: Task, Data, and Stream
Parallelism. FastFlow specifically focuses on Stream Parallelism, and in particular provides:
farm, farm-with-feedback (i.e. Divide&Conquer), pipeline, and their arbitrary nesting and com-
position. The set of skeletons provided by FastFlow could be further extended by building
new C++ templates or even further abstracted to derive problem specific skeletons.

FastFlow has been used in a number of applications; they typically exhibit a better or
similar performance compared with their counterparts developed using state-of-the-art pro-
gramming frameworks (e.g. Intel TBB, Cilk, OpenMP) [AMT10, fas09].

3 Future Work

Within the framework of the ParaPhrase FP7 EC-STREP project, we aim to explore the usage
of parallel patterns as a main vehicle to provide the programmer with portable and efficient
programming abstractions. As mentioned, the work will focus mostly on data movement
and so-called memory affinity, which — we believe — represent two of the cornerstones of
efficiency and programmability in the code production for multi-cores. In particular, the
work will unroll along two main directions:

Memory affinity. Memory affinity addresses both performance and performance porta-
bility of programming frameworks. The idea underpinning memory affinity is similar (in
spirit) to parallel patterns but it applies to data structures and their allocation: under cc-
NUMA assumption, the data structures allocation in memory (and their mapping onto
physical memory) depends on their usage, i.e. on how they are placed and moved across the
system. This task is typically too complex to be studied in the most general case, as it de-
pends on many parameters, such as memory access patterns, memory allocation strategies,
thread-to-core pinning, etc. We believe that the problem becomes tractable in a pattern-based
system, as the data-paths are really implicit in the patterns themselves. We aim at describing
a number of data structures that can be effectively coupled with parallel patterns. In order
to accomplish this task, the full control of allocation strategy will be possible by way of the
lock-free memory allocator already implemented in the FastFlow framework.



Extended lock-free run-time support. Memory affinity described in a high-level program-
ming model (e.g. concurrent data structures), should be supported by an extend set of syn-
chronisation mechanisms at the run-time level. On the ground of existing work, they will be
of two main classes: queues of various kind (single and multiple producer-consumer) sup-
porting producer-consumer data movement, and transactional primitives mainly aiming to
support (optimistic) true concurrency on data.

References

[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer,
John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John
Wawrzynek, David Wessel, and Katherine Yelick. A view of the parallel com-
puting landscape. Communications of the ACM, 52(10):56–67, 2009.

[ADKT12] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati.
Fastflow: high-level and efficient streaming on multi-core. In Programming
Multi-core and Many-core Computing Systems, Parallel and Distributed Comput-
ing, chapter 13. Wiley, 2012.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29:66–76, 1995.

[AMT10] Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati. Efficient
Smith-Waterman on multi-core with fastflow. In Marco Danelutto, Tom Gross,
and Julien Bourgeois, editors, Proc. of Intl. Euromicro PDP 2010: Parallel Distributed
and network-based Processing, pages 195–199, Pisa, Italy, February 2010. IEEE.

[Col89] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tions. Research Monographs in Par. and Distrib. Computing. Pitman, 1989.

[EK10] Johan Enmyren and Christoph W. Kessler. SkePU: a multi-backend skeleton pro-
gramming library for multi-GPU systems. In Proc. of the 4th Intl. workshop on
High-level parallel programming and applications (HLPP), pages 5–14, New York,
NY, USA, 2010. ACM.

[fas09] FastFlow website, 2009. http://mc-fastflow.sourceforge.net/.

[GVL10] Horacio González-Vélez and Mario Leyton. A survey of algorithmic skeleton
frameworks: High-level structured parallel programming enablers. Software:
Practice and Experience, 40(12):1135–1160, 2010.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In
J. L. Rosenfeld, editor, Information processing, pages 471–475, Stockholm, Sweden,
1974. North Holland, Amsterdam.

[Ree09] Daniel Reed. High-Performance Computing: Where’d The Abstractions Go?
BLOG@CACM, May 2009.

http://mc-fastflow.sourceforge.net/

	Introduction
	The FastFlow parallel programming framework
	Future Work

