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Targeting heterogeneous architectures via macro data flow
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ABSTRACT

We propose a data flow based run time system as an efficient tool for supporting execution
of parallel code on heterogeneous architectures hosting both multicore CPUs and GPUs.

We discuss how the proposed run time system may be the target of both structured

parallel applications developed using algorithmic skeletons/parallel design patterns and
also more “domain specific” programming models. Experimental results demonstrating

the feasibility of the approach are presented.

Keywords: data flow, structured parallelism, algorithmic skeletons, parallel design pat-
terns, heterogeneous architectures.

1. Introduction

Several technological developments have directed computer manufacturers–

previously seeking ever more powerful single core CPUs–toward the development

of increasing numbers of parallel processing elements. As a consequence, heteroge-

neous systems composed of one or more processing nodes, each hosting one or more

This work has been supported by European Union Framework 7 grant IST-2011-288570 “Para-
Phrase: Parallel Patterns for Adaptive Heterogeneous Multicore Systems”.
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Fig. 1. Macro Data Flow program/graph (left) and snapshots of its execution (center and right,

fireable instructions outlined)

multicore CPUs and one or more GPUs are becoming a de facto standard in a wide

range of systems, from mobile phones and tablets to workstations, and on to high

end parallel computer systems.

Such heterogeneous systems raise new challenges for programming models. While

multicore programming may make better use of multi-threading technology and

GPUs may be mastered with relatively low level tools such as OpenCL or equiv-

alent proprietary frameworks such as Nvidia’s CUDA, no uniform, high level pro-

gramming model exists suitable for exploiting both components of these common

heterogeneous systems. As a result, programmers writing applications for heteroge-

neous systems must be able to master radically different programming techniques

to develop efficient parallel computations on both parts of these systems: CPUs and

GPUs.

The main reason for the lack of uniformity lies in the fundamentally differ-

ent nature of the two components of these systems: CPUs are general purpose

devices, capable of supporting with equal efficiency both data parallel and stream/-

control parallel computations, while GPUs provide efficient support for only data

parallel computations. Also, while relatively high level parallel programming models

and tools exist for CPUs, the programming models provided by GPU vendors and

those developed for platform independent GPU general purpose computing notably

present a lower level of abstraction. In particular, memory allocation and manage-

ment lies completely in the hands of the GPU application programmer and quite

profound knowledge of the hardware features of the GPU (e.g. number of cores per

controller, dimensions of the different kinds of memory present, etc.) is needed in

order to design and implement efficient GPU programs.

In this work, we propose a different approach to the development of efficient

applications for heterogeneous systems. The approach is hierarchical. At the lowest

level, we virtualize the peculiarities of the different heterogeneous components by

developing suitable “task executor” run times on both GPUs and CPUs. While
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Fig. 2. Compiling skeletons to MDF: pipe(f1, f2, f3) (left), map(f) (mid) and reduce(⊕) (right)

CPU executors support efficient execution of any kind of task, including sequential

tasks, the GPU executors will support only efficient execution of data parallel tasks.

At the higher level, we propose ways of compiling design pattern [1] (algorithmic

skeleton [2, 3]) based parallel applications as well as more domain specific kinds

of application–such as those typical of the numerical mathematical community–to

macro data flow graphs. These graphs are subsequently processed by a macro data

flow interpreter scheduling tasks to the run time executors running on the available

cores and GPUs.

This two step process presents several advantages: i) it raises the level of abstrac-

tion presented to the application programmer by the programming framework ii) it

provides suitable points at which to implement well-known optimization techniques

both at compile time (macro data flow graph compiler) and at run time (macro data

flow interpreter/task scheduler) iii) it seamlessly integrates CPUs and GPUs within

the same programming model; and iv) it relieves the application programmer of the

need to deal with hardware related features when programming GPUs.

The remainder of the paper is structured as follows: Sec. 2 introduces the macro

data flow model. Secs. 3 and 4 explain how macro data flow is compiled from

high level languages and efficiently executed on heterogeneous architectures. Sec. 5

discusses the results of our experimental validation of the proposed approach. Sec. 6

discusses related work and Sec. 7 concludes the paper.

2. Macro data flow

Data flow is a well-know computing [4] model where the “control flow” of a program

is determined only by the data precedences among functions transforming input

into output. In the past, ad hoc architectures have been designed to implement

in hardware the data flow model [5, 6]. Mainly as a result of the typical grain of

computation executed in parallel on these architectures–more or less the equivalent

of a single (or of a few) assembler instruction(s)–and of the technology used, they

have never succeeded in replacing classical Von Neumann architectures.

“Macro” data flow (MDF, [7, 8, 9, 10]) builds on the plain data flow model

by augmenting the grain of the computations scheduled for execution according to

their data dependencies. Full portions of sequential code are considered as macro
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data flow “instructions”, provided they implement pure functions mapping input to

output data. A MDF program is therefore represented as a MDF graph whose nodes

represent functions implemented by means of sequential portions of code wrapped

in functions/procedures/methods while arcs represent data flow dependencies.

The execution of a MDF program starts with the assignment of the input data

(“tokens” in data flow jargon) to the input arcs of the first instruction in the MDF

graph and proceeds with a loop. The loop body looks for “fireable” instructions

in the MDF graph–instructions with all the input data available (all input arcs

with a token present)–and executes these instructions, possibly in parallel. The

results of the fireable instructions executed are then directed to the destination

MDF instructions identified by the output arcs of the instruction, and the loop is

restarted. The program terminates when there are no more fireable instructions or

data tokens on arcs directed to other instructions. Fig. 1 shows a typical MDF graph

(left) and two different configurations of the same graph during its execution.

Stream parallelism and data parallelism are modeled using MDF in different

ways. Stream parallelism is managed by creating, for each item appearing on the

input stream, a new “fresh” copy of the MDF graph and passing the item as the

input token of the graph. Therefore stream parallelism derives from the execution

of fireable instructions from different graph instances. This, of course, requires la-

beling of the graph instructions with an additional graph tag. Data parallelism is

managed by inserting into the graph instructions which “decompose” their input

data structure(s) into multiple data sets and direct these data sets to a number

of independent instructions computing partial results which are eventually directed

to another instruction “rebuilding” the final result out of the multitude of partial

results (see Fig. 2).

3. Compiling HLL to MDF

We consider two classes of high level programming frameworks: one based on parallel

design patterns/algorithmic skeletons and another based on high level numerical

algorithms.

Algorithmic skeletons We consider a classic skeleton framework providing

stream parallel skeletons (pipeline, farm) and data parallel skeletons (map, reduce,

stencil) supporting a two-tier nesting model such as that introduced by P3L [11, 12]

and adopted by Muesli [13]: data parallel skeletons should have either data parallel

or sequential nested skeletons; stream parallel skeletons may have stream parallel,

data parallel or sequential nested skeletons. Fig. 2 shows the compilation schemes

for pipeline and data parallel skeletons. Farm is eliminated (substituted by stream

parallelism implemented with multiple instances of the MDF graph). Nesting is

naturally handled by composing MDF graphs under the assumption that graphs

derived from compilation of a single skeleton always have a unique input arc and

output arc. Referring to Fig. 2, nesting is implemented by allowing the different
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FOR k = 0..TILES-1

FOR n = 0..k-1

A[k][k] := DSYRK(A[k][n], A[k][k])

A[k][k] := DPOTRF(A[k][k])

FOR m = k+1..TILES-1

FOR n = 0..k-1

A[m][k] :=

DGEMM(A[k][n], A[m][n], A[m][k])

A[m][k] := DTRSM(A[k][k], A[m][k])

DPOTRF

DTRSM DTRSM

DSYRK DGEMM DSYRK

DPOTRF DTRSM DSYRK DPOTRF

Fig. 3. Cholesky factorization: high level code and MDF graph (3 × 3 tiles)

pipeline stage instructions or map/reduce workers to be substituted by entire MDF

sub-graphs derived from the compilation of the inner parameter skeletons.

High level numerical algorithms We consider applications computing high level

numerical algorithms (HLNA) expressed as sequences and/or nestings of loops with

calls to functions of numerical libraries (e.g. BLAS)a. In this case the MDF graph

is derived by using the same algorithms used to implement data flow analysis in se-

quential compilers. The kind of graphs derived from high level numerical algorithms

are those discussed in [14]. Fig. 3 shows the graph derived from classic Cholesky

factorization.

A more detailed description of how MDF graphs are generated from HLL and/or

libraries may be found in [15].

4. Targeting heterogeneous architectures

In order to target heterogeneous architectures, we designed a distributed MDF

interpreter as follows (see Fig. 4):

• a logically centralized task pool hosts all the instances of the MDF graph

submitted for execution. One instance of the compiled MDF graph is in-

serted in the task pool by the Input Manager upon the availability of an

input data set (input token). The task pool is logically centralized. How-

ever, on highly parallel machines, it will be implemented in a distributed

way to avoid bottlenecks. We have preliminary experiments demonstrating

the feasibility of the implementation of the task pool as a distributed task

pool tree, with leaves distributed on the nodes of the NUMA architecture

serving the local cores/GP-GPUs and inner nodes contributing to ensure

aWe assume to have programs written in C/C++ code in this case, although our methodology

does not actually rely upon a particular sequential host language.
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Fig. 4. HLL to MDF workflow

load balancing (e.g. implementing fireable instruction stealing). The pre-

liminary results show that the performance penalty is negligible and that

removal of the bottleneck implied by the logical centralized task pool may

be achieved.

• each (CPU-)core in the architecture runs an interpreter instance (mdfi)

performing as the interpreter loop described in Sec. 2: fetch a fireable MDF

instruction, execute, store back results.

• for each GP-GPU, a further thread is run, performing a slightly different

interpreter loop: the loop begins by looking for data parallel only fireable

instructions in the task pool, and then continues by off-loading to the as-

sociated GPU the execution of these data parallel MDF instructions. All

the details relative to data movement to and from GPU as well as to mem-

ory allocation and to thread scheduling on the GPU are managed by this

modified interpreter loop. It is worth pointing out that the thread man-

aging the GP-GPU has full control over the computations (and associated

data) scheduled to the GP-GPU. Therefore, efficient caching policies may

be implemented to avoid unnecessary traffic on the PCIe bus moving data

to and from GPU memory. In particular, all those data potentially reused

during different phases (MDF instruction execution) of the computation

may be kept on the GP-GPU memory up to the point when memory is
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needed for other data structures. If the thread managing the GP-GPU re-

alizes that (part of) the data needed to schedule the next data parallel

MDF instruction to the GP-GPU are already on the GP-GPU memory, it

will simply schedule the MDF data parallel instruction without re-sending

data through the PCIe bus.

The key point here is the scheduling of “data parallel only” instructions to the GPU

nodes. We consider two kinds of data parallel instruction: i) single MDF instruc-

tions for which a GPU implementation exists (this is the case for BLAS routines, for

example), or ii) MDF subgraphs derived from the compilation of map-like patterns

(map, reduce, stencil, ...), i.e. those subgraphs made of a decompose instruction, a

recompose instruction and of n “worker” instructions. In the latter case we imple-

ment the full decomp/compute/recomp subgraph on the GPU–possibly scheduling

computation of different partitions of workers in kernels of a GPU stream, thus

overlapping (part of) the data transfer cost.

Compile options are provided to choose between CPU-only, GPU-only or mixed

CPU-GPU execution of data parallel MDF sub-graphs. The code used to feed GP-

GPUs is ideally derived from the high level source code provided by the user without

actually requiring the application programmer to write any specific GP-GPU (e.g.

CUDA or OpenCL) code. This is possible because the high level code exposes all

the functional parameters needed to generate efficient GP-GPU code at compile

time. Furthermore, we are currently refining several autonomic strategies to de-

vise on-the-fly the most suitable execution strategy (CPU, GPU or mixed) without

programmer intervention. These strategies schedule different partitions of the data

parallel sub-graphs on both CPU and GPU, monitor execution times and even-

tually decide where subsequent partitions are scheduled for execution. Monitoring

continues during the full data parallel computation with minimal overhead to en-

sure decisions taken in the initial phase are verified and possibly changed if need

be.

5. Experiments

We performed some preliminary experiments to validate the effectiveness of the

MDF approach to target heterogeneous architectures. The experiments have been

run on a single heterogeneous machine with two AMD Magny cours Opteron 12 core

CPUs and a single C2050 Nvidia GPU. In all the experiments we used a synthetic

skeleton application whose parallel structure is basically a map skeleton, that is with

the same parallel structure as that appearing in a matrix multiplication algorithm,

when using the naive algorithm

forall i do Ci = Ai ×B

First we verified that when enabled to target both CPU and GPU, the MDF in-

terpreter succeeds in exploiting both kinds of core. Fig. 5 shows the average number

of tasks computed by CPU core(s) and by the GPU. The “non-optimized” version
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unoptimized GPU copies optimized GPU copies
#cores Avg task/core GPU tasks GPU % Avg task/core GPU tasks GPU %

1 53 459 89% 43 469 91%

2 53 406 79% 37 438 85%

4 49 317 61% 34 377 73%
8 40 193 37% 30 272 53%

16 30 42 8% 23 141 27%

Fig. 5. CPU/GPU task distribution

implements the naive algorithm: for each MDF instruction ×(Ai, B), parameters

are copied to and from the GPU. That is, each ×(Ai, B) instruction involves the

copying of both row Ai and matrix B to the GPU and of the result Ci row from

the GPU. The “optimized” version, recognizes that B is a common parameter and

thus implements the execution of all the instructions ×(Ai, B) as follows: the first

instruction copies B to GPU memory. All the others assume that B is already on

the GPU and therefore copies only Ai to, and Ci from, the GPU. As expected, the

number of tasks executed on the GPU becomes smaller and smaller as more and

more CPU cores are used. Initially, the GPU executes about 90% of the tasks, but

when a larger number of cores is used, a smaller percentage of tasks are executed on

the GPU. Moreover, when GPU copies are optimized, and thus the GPU execution

of the MDF instructions becomes faster than the execution of the same instructions

on the CPU cores, the GPU succeeds in executing more tasks.

It is worth pointing out that, also in the case when only CPU cores are used,

other strategies applying similar kinds of optimization may be implemented. Fig. 6

shows the completion times and speedups achieved when executing a map(map(f))

application on CPU cores only. The “Fine grain” execution, refers to the plain

execution of all the inner map “worker” MDF instructions as they are generated

by the compiler. The “Coarse grain” execution, instead, refers to execution of the

map(seqmap(f)) version of the same application, obtained by applying the skeleton

rewrite rule

map(map(f)) ≡ map(seq(∀ i (f)))

The “MDF graph optimized” execution refers to the execution of the original

map(map(f)) application where the derived macro data flow graph is optimized

“on-the-fly” to group the worker MDF instructions relating to the same map skele-

ton. This optimization is completely general, may be applied in all cases where a

map skeleton with a (too) large number of worker MDF instructions is present in

the compiled MDF graph, and achieves performances comparable to those achieved

by the source-rewritten application code.

Finally, Fig. 7 shows the differences in the completion times measured with

GPU optimized vs. non-optimized execution of the same synthetic map application.

In this case, the optimization of the unnecessary B matrix copies introduces an
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Fig. 6. Grouping map “worker” MDF instructions on CPU cores

improvement in completion time in the [20%, 30%] range.

6. Related work

Heterogeneous architectures hosting multicores and GPUs are currently pro-

grammed using a mix of multi-threading and CUDA/OpenCL techniques. In this

case, all the burden of heterogeneous device exploitation is the responsibility of the

application programmer. Researchers active in the algorithmic skeleton area have

designed and implemented skeleton frameworks exploiting CPU and GP-GPUs in

the execution of skeleton code. Notable examples are the SkePU framework [16],

Muesli [17] and SkeCL [18]. Despite the fact that some of these frameworks appear

more mature than ours (they can already be downloaded from the group web pages),

none of them uses macro data flow, and most of the compilation techniques used

are static. In addition, while SkePU and Muesli target both components of hetero-

geneous architectures (i.e. CPU and GP-GPU cores), SkeCL uses only GP-GPU

cores.

Programming frameworks based on algorithmic skeletons have been recently

introduced to alleviate the task of the application programmer when targeting data

parallel computations to GPUs. Muesli [17] supports GPU targeting for data parallel
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Fig. 7. Percentage difference in completion times of execution of the application with and without
copy optimization

computations under programmer responsibility (the programmer must explicitly

indicate whether GPUs are to be used for data parallel skeletons). SkePU [19]

provides programmers with GPU implementations of map and reduce skeletons

and relies (in the latest versions) on StarPU for the execution of stream parallel

skeletons (pipe and farm). Both environments adopt a template based approach

rather than a macro data flow based implementation for skeletons.

The OpenMP task concept [20] has also been extended to deal with data depen-

dencies in StarSS [21]. This led to the possibility to define de facto MDF graphs by

suitably annotating sections of code in the source C/C++ application. The main

difference with our approach consists in the “declarative” (annotation style) ap-

proach followed, which requires considerable application programmer intervention,

as the programmer must fully understand the business logic of the application in

order to write effective and efficient annotations. A number of different projects

aim at extending the “task” concept to support automatic and efficient scheduling

of tasks on multicore heterogeneous machines [22, 14]. However, the responsibility

for identifying the tasks and the related dependencies is left to the application pro-

grammer. On the one hand, this allows a higher degree of freedom in the definition
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of the parallel computation for the application programmer. On the other hand, the

level of abstraction presented to the application programmer by the programming

framework is much lower than in our approach.

7. Conclusions

We briefly introduced a two-phase process targeting heterogeneous architectures

comprising multi-cores and GPUs. The first step is aimed at translating high level

languages into macro data flow graphs. These graphs are then executed by means of

a parallel macro data flow interpreter specialized to run data parallel computations

on GPUs without programmer intervention. Preliminary experimental results show

that the approach is feasible and efficiently implements different kinds of applica-

tions on a heterogeneous, single node architecture.

A number of different optimizations may be used when targeting heterogenous

architectures by MDF, making the best (and correct) usage of the information com-

ing either from the high level skeletons or from the structure of the MDF graphs.

We are currently investigating the possibilities offered by several techniques, in-

cluding the possibility to monitor execution of data parallel instructions on CPU

cores/GPUs and to autonomically decide to schedule them on either GPU or CPU

cores using Behavioural skeleton technology [23] and the possibility to use affinity

scheduling and job stealing techniques to improve the memory usage in NUMA

heterogeneous architectures.
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