
Structured Data Access Annotations

for Massively Parallel Computations�

Marco Aldinucci1, Sonia Campa2, Peter Kilpatrick3, and Massimo Torquati2

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it

2 Computer Science Department, University of Pisa, Italy
{campa,torquati}@di.unipi.it

3 Computer Science Department, Queen’s University Belfast, UK
p.kilpatrick@qub.ac.uk

Abstract. We describe an approach aimed at addressing the issue of
joint exploitation of control (stream) and data parallelism in a skele-
ton based parallel programming environment, based on annotations and
refactoring. Annotations drive efficient implementation of a parallel com-
putation. Refactoring is used to transform the associated skeleton tree
into a more efficient, functionally equivalent skeleton tree. In most cases,
cost models are used to drive the refactoring process. We show how
sample use case applications/kernels may be optimized and discuss pre-
liminary experiments with FastFlow assessing the theoretical results.

Keywords: algorithmic skeletons, parallel design patterns, refactoring,
data parallelism, cost models.

1 Introduction

The structured parallel programming approach has abstracted the concept of
control and data parallelism by means of skeletons [10], which are well known pat-
terns of control [8]. Control parallelism is conceived, designed and implemented
as a graph of nodes (a skeleton), each node representing a function. A stream of
independent tasks flows through the graph: when each node’s inputs are avail-
able it computes producing output which is sent to its connected nodes. On the
other hand, data parallel skeletons describe a pattern of computation defining
how to access data in parallel and the function which has to be applied to data
partitions to get the final result. Traditionally, orthogonality between control
parallelism and data parallelism has been dealt with using two-tier models in
which control/stream-driven approaches were enhanced with data parallel capa-
bilities, possibly with parallel data structures exposing collective operations [13]
and vice versa. However, control parallel and data parallel oriented approaches

� This work has been supported by European Union Framework 7 grant IST-2011-
288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multicore Sys-
tems”.

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 381–390, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

382 M. Aldinucci et al.

often lack the ability to describe efficiently applications in which both concerns
are exploited because of the intrinsically different means by which parallelism
is expressed and, sometimes, optimized. An efficient distribution of tasks in a
control driven environment could be invalidated by a poor data access policy,
and vice versa [14].

In this paper we sketch a new approach to confronting the control versus
data parallel dichotomy based on the idea that: i) data and control parallel
concerns needs to be independently expressed since they describe orthogonal as-
pects of parallelism, and ii) data accesses and control parallel patterns need to
be coordinated in order to efficiently support the implementation of parallel ap-
plications. While exploiting parallelism through patterns is not a new approach
[11] and coordination efforts have been made in the past in terms of languages
or frameworks[17,12], the idea proposed in this work is that such coordination
can be expressed by annotating the graph of control implicitly defined by the
skeletons with information regarding the data access. Moreover, we will show
how such annotations can be used to drive optimizations in the implementation
and execution of the graph.

2 The Skeleton Framework

The skeleton system considered includes control (i.e. stream) and data paral-
lel skeletons, modelling the more common and general parallelism exploitation
patterns. Our skeleton set is defined by the following grammar:

Skel ::= Seq(〈id〉)|Pipe(Skel, Skel)|Farm(Skel)|
Map(Skel, Splitter, Composer)|Reduce(Skel)

These skeletons represent well-known parallelism exploitation patterns[4]: Seq
wraps existing sequential code, Pipe/Farm are stream parallel skeletons pro-
cessing streams of items and Map/Reduce are data parallel skeletons processing
collections of data. In contrast with many skeleton frameworks (including SkeTo
[16], Muesli [9] and SkePU) which consider only maps over “collection” input
data, we assume the one used in P3L [7] and Skandium [15]: the responsibility for
specifying how the subtask items are build out of the input data (set) is left to
the application programmer, as is the specification of the re-construction of the
result from the collection of partial results. In P3L, the programmer is asked to
use the formal parameters of the map as actual parameters of the worker skeleton
using “star variables”–a kind of ∀i variable–to establish correspondences between
the task and the subtask data items. For example, a matrix multiplication map
could be defined as:

1 map MM in (f l oat a [N] [N] , b [N] [N]) out (f l oat c [N] [N])
2 IP in (a [∗ i] [] , b [] [∗ j]) out (c [∗ i] [∗ j])
3 end map

The star variables were logically interpreted as forall loop variables. In this case
the calls to the inner product worker skeleton, IP, corresponded to the pseudo-
code: ∀i ∈ [0, N − 1] ∀j ∈ [0, N − 1] call(IP,a[i][],b[][j],c[i][j]) although the

Structured Data Access Annotations for Massively Parallel Computations 383

schedule eventually produced by the P3L compiler may have been completely
different from the (sequential) schedule implicit in the nested loops. When deal-
ing with collections and complex and compositional data structures, there are
some particular data access patterns that recur which describe how each piece
of data is combined into the final result. For example, a block of contiguous
data implementing a matrix in a “row major” memory organization, could be
accessed by rows or by columns, each row could be coupled with every column,
with all the couples becoming targets of computation and the output of each
such computation representing a single position in the output matrix. Variants
of this kind of pattern include those considering each row/column coupled with
a whole matrix or with a sub-block. Another pattern of access is that describ-
ing stencil, i.e. a block of cells in a fixed or variable range around each item.
Some patterns deal with triangular matrices as, for example, the one accessing
diagonals or stencils relative to elements on the diagonal.

In our proposal, control parallelism is described by a composition of control
and data parallel skeletons (i.e. patterns of computation) but the corresponding
graph is enriched by a set of annotations exposing data access patterns. The dif-
ferent combinations of skeleton type and access patterns can fully describe how
computation evolves by guaranteeing the orthogonal management of both data
and control parallelism and, at the same time, providing a theoretical platform
on which we can built optimization strategies for better exploitation of resources,
bandwidth, service time, and other performance measures. In the following sec-
tion we will provide a language for defining data and control concerns and we will
underline how they can be orthogonally described in order to facilitate skeleton
rewriting and subsequent skeleton implementation.

3 Annotations/Metadata

Each of the skeletons introduced in Sec. 2 may be enhanced using various kinds
of annotation, represented as metadata associated with the skeleton tree. In
particular, we use annotations related to the functional (e.g. data access pat-
terns) and non-functional (e.g. performance related) aspects. Such annotations
are expressed using the following grammars:

ParDegreeAnnot ::= pardegree(〈int〉)
CodeAnnot ::= sourcecode(< string >) |library(< string >)
ArchTypeAnnot ::= GPU|CPU
DataAccessAnnot ::= AccessKind 〈id〉 by AccessType
AccessKind ::= READ|WRITE
Accesstype ::= ROW|COL|ITEM|BLOCK

The informal semantics associated with the annotations is as follows:

ParDegreeAnnot parallelism degree (if variable)
CodeAnnot associates source and library code with a sequential skeleton.
ArchTypeAnnot target architecture where the skeleton has to be (preferably)

executed (heterogeneous CPU/GPU processing element assumed)

384 M. Aldinucci et al.

SkTree
Manual optim

> SkTree

Annot ∪ SkTree

Annot

∨
Rule based optim

> Annot ∪ SkTree

Reinstantiate

∧

Fig. 1. Optimization workflow

DataAccessAnnot kind of accesses performed on the input data.

Part of these annotations are provided by the user (e.g. the CodeAnnot ones).
Others are derived directly from the skeleton source code via a compilation
step (e.g. the DataAccessAnnot ones). A third class of annotations may be
either provided by the application programmer or automatically derived by the
compiling tools (e.g. the ParDegree ones).

The focus here is on the DataAccessAnnot annotations. These are used to
optimize the execution of a skeleton program as detailed in Sec. 4 relative to
data placement in memory, to communication and synchronization management
and also to computation partitioning among the available processing elements.
The general idea is summarized in Fig. 1. The skeleton program provided by the
application programmer is given to a compiler tool (the “Annot” arrow in the
Figure) which produces an annotated skeleton tree. This compiler tool is a kind of
abstract interpreter. The annotated skeleton tree is parsed and navigated by the
optimizer which eventually produces a different skeleton tree. This new skeleton
tree may differ in both annotations (e.g. it has the same shape as the original
one but hosts different annotations) and tree shape (e.g. it hosts different, or
differently connected, nodes). The optimization phase (the “Rule based optim”
arrow at the bottom of Fig. 1) uses different heuristics stored as refactoring
rules, possibly identifying, among the possible rewritings, the one giving the
best performance figures according to a given skeleton performance model.

As illustrative example, we will show how our abstract syntax and annotation
system can be used to write both pure control/stream-parallel applications and
data parallel ones, highlighting the syntax usage, the expressive power and how
annotation and parameters can support reasoning about skeleton trees. In Sec-
tion 4 we will go a step further, using annotations in applications exposing both
stream and data parallel concerns.

Control Parallelism. A pure control parallel skeleton employs stream parallel
skeletons only, for example, Pipe(Seq(f), Farm(Seq(g), Seq(h)). Fig. 2 shows
a possible instantiation of the corresponding syntax tree. The Seq skeleton is
annotated with a path reference to the code for the sequential function. The
Farm skeleton is provided with two parameters (the number N of workers
and the skeleton implementing each replica) and will be annotated with the
actual parallelism degree. Pipe is defined in terms of its stages as parameters.

Structured Data Access Annotations for Massively Parallel Computations 385

Param: N, Seq(g)
Annot : pardegree (m), CPU

Farm
Annot: path_to_g

Seq

Param:
 Seq(f),
 Farm(Seq(g)),
 Seq(h)

Pipe

Param: Seq(g)
Annot : GPU, ...

Farm
Annot: path_to_h

Seq

Annot: path_to_g
Seq

Annot: path_to_f
Seq

Param:
 Seq(f), Farm(Seq(g)),
 Seq(h)

Pipe

Annot: path_to_h
Seq

Annot: path_to_f
Seq

Fig. 2. The syntax tree of Pipe(Seq, Farm(Seq), Seq)

In heterogenous architectures (for instance, those provided with CPUs and GPUs)
the farm tree could further be annotated with the available alternatives.

Data Parallelism. Matrix multiplication is a traditional example of data par-
allelism since it can be written as a map whose function is represented by the
sequential inner product applied in parallel to each row of the input matrix A
coupled with each column of the input matrixB and getting a single item of a ma-
trix C as result1. From the expression Map(Seq(IP), in A[∗i][], B[][∗j], out C[i][j]),
the annotated tree in Fig. 3-left can be derived. Note that the expression A[∗i][]

Fig. 3. Left: the syntax tree of Map(Seq(IP)); Right: a more complex syntax tree

denotes a matrix A accessed by rows and, as a consequence, it defines a set of
blocks, each represented by one of those rows. For example, considering a matrix
A with elements aij then A[∗i][] = {[a11, a12, a13], [a21, a22, a23], [a31, a32, a33]}.
In the case of the expression A[][∗i]–denoting access by columns–the set will
change accordingly in A[][∗i] = {[a11, a21, a31], [a12, a22, a32], [a13, a23, a33]}. We
will employ set operators, where needed. So, for example, we may write that
A′ ⊂ A[∗i][] if and only if A′ is a subset of A[∗][i]. Moreover, in the following
section, when the structure of such a set is not relevant, we will simply denote it
as a result of the splitting or combining function inside a map definition. Thus,
we can write Map(f, sp, out A[i][j]) for some sp, to denote any kind of reading
access.

1 In our syntax, in and out are keywords introducing the map parameters, that is
defining the split and compose map policies.

386 M. Aldinucci et al.

4 From Metadata to Optimization

We now show by examples how the abstract syntax may be used to write applica-
tions incorporating both control and data parallelism by coordinating orthogonal
concerns and to drive skeleton rewriting in such a way that optimizations are
achieved.

Access Driven Optimization. Suppose to have the following abstract description:

Pipe(Map(Seq(s1), in A[∗i][], out A[∗i][]), Map(Seq(s2), in B[][∗j] A[∗i][], out B[][∗j])

for source code s1 and s2 and N ×N matrices, A and B. The definition allows
us to annotate the skeleton tree with the information related to the two maps
as depicted in Fig. 3, right.

In the example, a pipe is composed by two maps m1 and m2. Both access the
same dataset A (a matrix) and apply a function on its rows in sequential stages;
m2 takes also the data set B as input. From [6,2,3] the following rule holds

Pipe(Map(f1, sp1, cm1),Map(f2, sp2, cm2)) ≡ Farm(Map(Comp(f1, f2), sp
′, cm′))

where the Comp skeleton computes in sequence the two functions. However, from
the annotation provided by the data access we can argue that i) m2 is functionally
dependent on m1 since it accesses matrix A, written by m1; i) m2 accesses A by the
same policy used by m1 to write it, i.e. they access the matrix by row and extend
the input data space by accessing matrix B, too. Both conditions can be formally
defined by the inclusion sp2 ⊃ cm1, since the set of annotations defined by sp2 in
reading mode includes those defined by cm1 for writing mode. As a consequence,
we could merge the two maps in order to save read and write memory accesses
and to have a single map i) whose computing elements take as input the whole
input data (the union of both map input data); ii) their computation function is
the composite of the previous one, as the rewriting rule suggests. The rewriting
process leads to the configuration of a new instance of annotated skeleton tree.
Such example gives a first idea of a transformational rule that may expressed as
follows

sp2 ⊃ cm1

Pipe(Map(f1, sp1, cm1),Map(f2, sp2, cm2)) ≡ Farm(Map(Comp(f1, f2), sp1, cm2))

In other words this rule introduces some access contraints to the applicability
of the well-known transformation rule.

Architecture Driven Optimization. As already suggested in [1] the skeleton tree
could be annoted also with information related to the target architecture at
hand in order to optimize mappings and/or distribution of data. As an exam-
ple, let us consider a system S provided with n CPUs and r GPUs defined as
S = {cpu1, . . . , cpun, gpu1, . . . , gpur} and the following skeleton definition, for
some source code f . As already seen in Fig. 3, the abstract syntax tree of such
definition could of a map whose computing elements are located each on a sepa-
rate CPU, thus involving a huge amount of data transfer, since the matrix is not

Structured Data Access Annotations for Massively Parallel Computations 387

shared and parallelism is exploited in terms of every single item of the matrix.
As an alternative to this schema, taking advantage of the GPU subsystem, the
skeleton could be rewritten as a map of two maps (i.e. how many the number
of GPUs), each computing on a block of data as defined by the language. Thus,
the preceding portion of code is represented by

MapCPU (MapGPU (s, inA
′[∗i][], outA′[∗i][]), inA[∗r][], outA[∗r][])

where ∗r specifies the distribution of r partitions of A’s rows. In other words,
MapCPU distributes A by r partitions (blocks) of rows; each partition is taken
as input by MapGPU which applies its own policy (distribution by rows) on its
block. The syntax tree is represented in Fig. 4, Left which is a map of r Maps

Param: Seq(f), A' ∈ rxN, ...
Annot : READ A' by ROW
 WRITE A' by ROW,
 GPU, pardegree(m), ...

Map

Annot: path_to_f

Seq

Param: Map(Seq(f)), A∈NxN, r
Annot : READ A by BLOCK r
 WRITE A by BLOCK r
 CPU, pardegree(m), ...

Map

Param:
Map(Seq(s1),A,B),
Map(Seq(s2), B, C)

Pipe

Annot: path_to_s1

Seq

Param: Seq(s1), A, B ∈ NxN, ...
Annot : READ A by ROW
 WRITE B by ROW
 pardegree(m),...

Map

Annot: path_to_s2

Seq

Param: Seq(s2), B,C ∈ NxN, ...
Annot : READ B by ROW
 WRITE C by ITEM
 pardegree(m), ...

Map

Fig. 4. Map of map on GPU (left); Pipe of two Map (right)

(r being a parameter of MapCPU), each computing a block of data as defined
by the language, on a GPU each. Assuming the availability of a cost model
C(Mapcpu(Mapgpu(s))) able to qualify the performance of both skeleton trees,
our system can be enriched by the following transformation for some skeleton s

C(Mapcpu(s, sp1, cm1)) > C(Mapcpu(Mapgpu(s, sp2, cm2), , sp
′
1, cm

′
1))

Mapcpu(s, sp1, cm1) → Mapcpu(Mapgpu(s, sp2, cm2), sp′1, cm
′
1)

asserting that the benefit of moving the execution from CPUs to GPUs depends
on provisional costs sustained in the two access policies.

Operator Driven Optimization. With this example we will highlight that our
system of rules could be enriched by operators able to manipulate data in order
to drive optimizations at an abstract level, thus hiding implementation details.

Let us consider the transposition operator which, given a matrix A, defines a
new matrix AT such that ∀i, j.AT [i, j] = A[j, i] and (AT)T = A. Let us suppose
that we have the following skeleton definition

Pipe(Map(s1, in A[∗i][], out B[∗i][]), Map(s2, in B[][∗j], out C[i][j]))

for some skeleton s1, s2 and annotated as depicted in Fig. 4, Right. In this
example, we meet a pattern in which one stage writes a matrix and the following
stage reads its transposition. A possible optimization involves the first stage
placing data into memory and/or computation elements in order to better exploit
locality effects. However, this is a valuable strategy only if the block of data on

388 M. Aldinucci et al.

which the transposition operator has to be applied is small enough to be hosted
at cache level; on the contrary, if memory accesses are required to solve cache
misses in the reading phase, locality exploitation can raise the cost of referencing
data. Both cases can be evaluated by some provisional, qualitative analysis that
a cost model monitoring the execution could perform, on the basis of the target
architecture and the actual instances of data and skeletons. For simplicity, we
will denote using C a boolean function evaluating to true if such consideration is
worthwhile in the context of the actual skeleton instance. Thus, the refactoring
rule becomes

P2=PT
1 ∧C(PT

1)→true

Pipe(Map(f1, sp1, out P1),Map(f2, in P2, cm2)) →
Pipe(Map(f1, sp1, out P

T
1),Map(f2, in P T

1 , cm2))

where P1 and P2 represent blocks of data,PT
1 represents the transpose of P1 and

sp1, cm2 define generic splitting and combining policies not influencing P1.

5 Experimental Results

We describe some experimental results aimed at validating the refactorings dis-
cussed in Sec. 4. The results discussed here have been achieved using FastFlow,
our experimental skeleton framework targeting multicore architectures [5].

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25

C
om

pl
et

io
n

tim
s

(m
se

cs
)

Parallelism degree

Pipe(Map(f),Map(g))
Map(Comp(f,g))

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25

C
om

pl
et

io
n

tim
s

(m
se

cs
)

Parallelism degree

Pipe(Map(f),Map(g))
Map(Comp(f,g))

Fig. 5. Effect of map fusion refactoring: small grain (left) and large grain (right)

Access Driven Optimization. We implemented in FastFlow two versions of a
program corresponding to the original Pipe(Map(f),Map(g)) structuring and
to the structuring resulting from fusion, that is Map(f, g), and we measured
the performances on a 24 core Magny Cours (Opteron 6174) architecture2. The
results are shown in Fig. 5. When the amount of time spent scattering and
gathering data to/from the map workers is large enough with respect to the
time spent in computing the single map worker (fine grain, left plot) map fusion
clearly outperforms the original program. When the time spent in computing

2 FastFlow currently does not support a primitive Map skeleton. We used a prototype
implementation that will be available with the next FastFlow release.

Structured Data Access Annotations for Massively Parallel Computations 389

map workers is considerably larger than the time needed to scatter and gather
data to and from the workers, the fused version of the programs performs more
or less like the original program. It is worth pointing out that as the parallelism
degree increases (and therefore the computation grain decreases), the fused ver-
sion becomes competitive with respect to the original program version.

Architecture Driven Optimization. The feasibility of refactoring code in such a
way that a map originally targeting CPU cores only is transformed into a map
targeting CPU cores and GPUs has already been demonstrated in [1]. There
we have shown not only that using both CPU cores and GPUs improves the
performance of programs with respect to the performances achieved when using
only CPU cores, but also that an automatic scheduling procedure may be set up
which dynamically uses GPUs and CPU cores to achieve optimal load balancing
and, therefore, performances.

Operator Driven Optimization. We took into account the operator driven refac-
toring discussed at the end of Sec. 4. We implemented a two stage pipeline in
FastFlow with both stages computing a function from bi-dimensional float ar-
rays to bi-dimensional float arrays. The functions computed by the stages were
very light. We measured the performances of the program run on three differ-
ent architectures, namely an Intel Xeon Nehalem, an Intel i3 and AMD Magny
Cours architecture. We developed two versions of the program: in the first ver-
sion the first pipeline stage produces a matrix in “WRITE BY ROW” fashion
and the second stage reads that matrix “READ BY COLUMN”, while in the
second version the first stage produces the transposed matrix and therefore the
second stage processes it “READ BY ROW”. The following table summarizes
the resulting average computation times, in milliseconds.

1st (ByRow → ByCol) 2nd (ByRowT → ByRow) % improvement

i3 8786.52 6303.34 28.26
Nehalem 7971.74 5886.94 26.15
Magny Cours 12918.99 11287.23 12.63

The times are for computation of a stream of 100 tasks, each relative to a
1024× 1024 floating point matrix. The computation performed on each matrix
is negligible–more or less of the “size” of an assignment–for both first and sec-
ond stage. The refactored version clearly outperforms the original. The smallest
performance improvement is on the Magny Cours architecture, which notably
sports the smaller memory bandwidth among the three architectures considered
here.

6 Conclusions

We outlined a skeleton framework with annotations supporting performance
driven refactoring relying on the existence of both suitable skeleton performance

390 M. Aldinucci et al.

models and the capability to automatically refactor code via rewriting rules. We
presented experimental results assessing the approach, which will be used within
ParaPhrase WP2 (“Algorithmic skeleton”) activities.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting heterogeneous
architectures via macro data flow. PPL 22(2) (2012)

2. Aldinucci, M.: Automatic program transformation: The Meta tool for skeleton-
based languages. In: Gorlatch, S., Lengauer, C. (eds.) Constructive Methods for
Parallel Programming. Advances in Computation: Theory and Practice, ch. 5, pp.
59–78. Nova Science Publishers, NY (2002)

3. Aldinucci, M., Danelutto, M.: An operational semantic for skeletons. Technical
Report TR-02-13, University of Pisa, Dip. Informatica, Italy (July 2002)

4. Aldinucci, M., Danelutto, M.: Skeleton based parallel programming: functional
and parallel semantic in a single shot. Computer Languages, Systems and Struc-
tures 33(3-4), 179–192 (2007)

5. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating Code on Multi-cores with FastFlow. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 170–181. Springer, Heidelberg
(2011)

6. Aldinucci, M., Gorlatch, S., Pelagatti, S., Lengauer, C.: Towards parallel program-
ming by transformation: The fan skeleton framework. Par. Algorithms and Appli-
cations (2001)

7. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P 3L: A struc-
tured high-level parallel language, and its structured support. Concurrency - Prac-
tice and Experience 7(3), 225–255 (1995)

8. Bromling, S., MacDonald, S., Anvik, J., Schaeffer, J., Szafron, D., Tan, K.: Pattern-
based parallel programming. In: Proc. of Int. Conf. on Par. Processing. IEEE
Comp. Society, Washington, DC (2002)

9. Ciechanowicz, P., Poldner, M., Kuchen, H.: The muenster skeleton library muesli
- a comprehensive overview (07) (2009)

10. Cole, M.: Algorithmic skeletons: structured management of parallel computation.
MIT Press, Cambridge (1991)

11. Dı́az, M., Rubio, B., Soler, E., Troya, J.M.: Integrating Task and Data Paral-
lelism by Means of Coordination Patterns. In: Müller, F. (ed.) HIPS 2001. LNCS,
vol. 2026, pp. 16–27. Springer, Heidelberg (2001)

12. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

13. Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

14. Kuchen, H., Cole, M.: The Integration of Task and Data Parallel Skeletons. PPL 12,
141–155 (2002)

15. Leyton, M., Piquer, J.M.: Skandium: Multi-core programming with algorithmic
skeletons. In: Proc. of PDP, pp. 289–296. IEEE Comp. Society (2010)

16. Matsuzaki, K., Iwasaki, H.: A library of constructive skeletons for sequential style
of parallel programming. In: InfoScale 2006, p. 13. ACM Press (2006)

17. Rauber, T., Rünger, G.: A coordination language for mixed task and and data
parallel programs. In: Proc. of the 1999 ACM Symposium on Applied Computing,
SAC 1999, pp. 146–155. ACM, New York (1999)

	Structured Data Access Annotations for Massively Parallel Computations
	Introduction
	The Skeleton Framework
	Annotations/Metadata
	From Metadata to Optimization
	Experimental Results
	Conclusions
	References

