
Parallel stochastic systems biology in
the cloud
Marco Aldinucci, MassimoTorquati, Concetto Spampinato, Maurizio Drocco,Claudia Misale,Cristina Calcagno
and Mario Coppo
Submitted: 15th January 2013; Received (in revised form): 19th May 2013

Abstract
The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly
popular technique in bioinformatics. The simulation-analysis workflow may result computationally expensive redu-
cing the interactivity required in the model tuning. In this work, we advocate the high-level software design as a ve-
hicle for building efficient and portable parallel simulators for the cloud. In particular, the Calculus of Wrapped
Components (CWC) simulator for systems biology, which is designed according to the FastFlow pattern-based
approach, is presented and discussed. Thanks to the FastFlow framework, the CWC simulator is designed as a
high-level workflow that can simulate CWC models, merge simulation results and statistically analyse them in a
single parallel workflow in the cloud. To improve interactivity, successive phases are pipelined in such a way that
the workflow begins to output a stream of analysis results immediately after simulation is started. Performance
and effectiveness of the CWC simulator are validated on the Amazon Elastic Compute Cloud.

Keywords: stochastic simulation; cloud; multi-core; distributed computing; parallel patterns

MarcoAldinucci is an assistant professor at Computer Science Department of the University of Torino, Italy, since 2008. Previously,

he has been researcher at University of Pisa and Italian National Research Agency. He is the author of over a hundred articles in

international journals and conference proceeding. He has been participating in >20 research projects concerning parallel computing.

He is the recipient of the HPC Advisory Council University Award 2011, and NVidia CUDA Research centre award 2013. He has

been leading the ‘Low-Level Virtualization and Platform-Specific Deployment’ workpackage within the EU-STREP FP7 ParaPhrase

project. His research is focused on parallel and distributed computing.

MassimoTorquati is a researcher at the Computer Science Department of the University of Pisa, Italy. He has >15 years experience in

software design; he participated to the design and the implementation of several compilers and frameworks for parallel programming

both in academic and industrial settings, inter-alia SkIE, ASSIST, VirtuaLinux and FastFlow. He co-authored >30 articles appeared in

proceedings of international conferences and journals. His main research area is language and algorithms for parallel computing.

ConcettoSpampinato received the PhD in Computer Engineering from University of Catania, Italy, in 2008 where he is a Research

Assistant. He has worked actively on object detection, tracking, behaviour understanding and even detection in complex and noisy

environments. He has been working to EU-STREP FP7 Fish4Knowledge project and the AQUACAM research program. He also

worked on machine-learning atlas-guided approaches for 2D medical image segmentation and knowledge discovery in biomedicine.

He has published >90 articles in international journals and refereed conference proceedings.

Maurizio Drocco is a master student and software engineer at the University of Torino, Italy. He has been participating to the

FastFlow project and BioBITs project projects. He is the main developer of the CWC simulator. He has co-authored >10 articles in

international journals and refereed conference proceedings.

Claudia Misale received her MSc degree cum laude in Computer Science at University of Calabria in 2012 and is currently a PhD

student at Computer Science Department of the University of Torino, Italy. She has been participating to the FastFlow project. Her

research is focused on high-performance tools for bioinformatics.

Cristina Calcagno received her MSc degree cum laude in Plant Biology at University of Torino, Italy, in 2007, and the PhD in

Science and High Technology–Biology and Biotechnology of fungi at the same university. From February 2011 to July 2012 she has

been postdoctoral researcher at the Department of Computer Science within the project BioBITs project. Her main research interests

are molecular biology, plant biology, systems biology, nutrigenetic and nutrigenomic.

Mario Coppo is a full professor of Computer Science at the Computer Science Department of the University of Torino, Italy, since

1987. He authored >70 articles appearing in journals and international conference proceedings. He has leading several research projects

funded by National and European institutions and has been the Director of the Computer Science Department from 2004 to 2010. His

main research topics are concurrency theory and programming language semantics.

Corresponding author. Marco Aldinucci, Computer Science Department, University of Torino, Corso Svizzera 185, 10149 Torino,

Italy. Tel.: þ39 011 6706852; Fax: þ39 011 751603; E-mail: marco.aldinucci@unito.it

BRIEFINGS IN BIOINFORMATICS. page 1 of 16 doi:10.1093/bib/bbt040

� The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

 Briefings in Bioinformatics Advance Access published June 18, 2013
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 
 by guest on Septem

ber 22, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 by guest on Septem
ber 22, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


INTRODUCTION
The stochastic simulation of biological systems is an

increasingly popular technique in bioinformatics, as

either an alternative or a complementary tool to trad-

itional differential equations (ODEs) solvers. This

trend, starting from Gillespie’s seminal work [1], has

been supported by a growing number of formalisms

aiming to describe biological systems as stochastic

models [2]. The stochastic modelling approach is com-

putationally more expensive than ODEs. Nevertheless,

it is still considered attractive for its superior ability to

describe transient behaviours of biological systems, e.g.

divergent trends and spikes that are typically hidden in

the averaged process described by ODEs. The stochas-

tic modelling typically relies on the Monte Carlo

method, which is also used in related domains of sys-

tems biology, e.g. epidemiology and phylogeny [3, 4].

The high-computational cost of stochastic simula-

tions is well known and has led, in the past 2 decades,

to a number of attempts to accelerate them up by

using several kinds of techniques, such as approxi-

mate simulation algorithms and parallel computing.

In this work, this latter approach is taken into ac-

count exploiting an Infrastructure-as-a-Service (IaaS)

in the cloud as a parallel execution environment.

Monte Carlo methods require the computation of

many independent instances either to achieve statis-

tically meaningful results or sensitivity analysis (via

parameter sweeping). In both cases, these independ-

ent instances have been traditionally exploited in an

embarrassingly parallel fashion, executing a partition

of the instances (bag of tasks) on different platforms,

and more recently on many-core GPGPU platforms

[5]. This approach has been often coupled with High

Performance Computing (HPC) infrastructures, such

as grid or clusters of multi-/many-core. However, it

suffers from some drawbacks related to design, per-

formance and usability of simulation tools.

Traditional HPC platforms are expensive to

deploy (and rent); their configuration is hardly cus-

tomisable. Moreover, HPC platforms suffer from

reduced interactivity and might induce slow time-

to-solution. Each experiment requires to enqueue

the simulations in a shared environment, deploy ini-

tial data, simulate the model, gather results from a

distributed environment, post-process them (often

sequentially) and then eventually access the results.

This process is typically repeated several times to

fine-tune simulation parameters.

A further issue that deteriorates the reactivity and

time-to-solution is the ‘sequentialization’ of

simulation and analysis phases, which slow down

the modelling-to-result process during the tuning

of the biological model. The filtering and the analysis

of raw results, which require the merging of data

obtained from different simulation instances and

their statistical analysis, is often demoted to a second-

ary aspect in the computation and treated with off-

line post-processing tools, and frequently not even

disclosed in performance results.

The same approach is used also in recent efforts

exploiting GPGPUs [6]. The ever-increasing size of

produced data makes this approach no longer viable.

As a solution, we advocate the offloading of the

whole simulation-analysis process in the cloud as a

single parallel pipeline with no storage of intermedi-

ate results on virtualized storage [7]. In this vision,

data analysis is managed as an online process working

on (high-frequency) streams of data resulting from

the on-going simulations. This approach has non-

trivial effects on tool design, as both the parallel

simulator and the parallel analysis should work on

(high-frequency) streams and require efficient data

dependencies management (both on distributed and

shared-memory systems). Although the Monte Carlo

simulation ‘in insulation’ is an embarrassingly parallel

process, the whole simulation-analysis workflow is

not [8, 9].

Cloud technology carries the potential to over-

come most of the aforementioned issues. It makes

available on-demand and on a pay-per-use basis an

elastic parallel computing platform that can be

customized with a specific set of tools such as simu-

lators for systems biology. Cloud ‘elasticity’ enables

the users to deploy the same application on a

virtualized parallel platform of configurable type,

size and computational power. The typical platform

can be abstracted as a virtual cluster of shared-

memory multi-core platforms. Once deployed, the

virtualized platform is immediately ready to compute

and can be interactively used by the end user. This

potentiality, however, can be fully exploited only if

the running software (e.g. simulation tool) exhibits a

similar flexibility and interactivity:

� The application should benefit from both levels of

parallelism available in a (virtualized) cluster of

multi-core (and many-core if available), hopefully

providing the end user with performance scalabil-

ity with respect to both levels;

� The programming model should manage parallel-

ism as a first-class concept to make the tools

page 2 of 16 Aldinucci et al.



(e.g. simulator) easy to design, develop and

extend; the programming model should be able

to capture parallelism at all levels, i.e. distributed

platforms, multi-core and many-core, and possibly

it should be able to support the seamless porting of

application across the described platforms with

performance portability.

� The software tools itself should be designed to be

reactive and interactive to be dynamically steered

by bioinformatics scientists.

This article presents the parallelization of stochastic

processes in the light of virtualized distributed cluster

of multi-core platforms and tools that are required to

derive an efficient simulator from both performance

and easy engineering viewpoints. The presented

methodology makes it possible to run the same code

from multi-core to virtualized cluster of multi-cores

(i.e. private and public clouds infrastructures). This

latter will be a key factor for the next generation of

biological tools, as bioinformatics scientists are more

interested in the accurate modelling of natural phe-

nomena rather than on the low-level protocols

required to build efficient tools on both multi-core

platforms and large distributed execution

environments.

In this work, the simulator for a stochastic calculus

for systems biology, i.e. Calculus of Wrapped

Compartments (CWC) [10], will be used as test-

bed. The CWC simulator [7, 9], previously targeting

multi-core platforms only, has been designed ex-

ploiting a high-level methodology based on parallel

patterns and considering the whole simulation work-

flow: from simulation to online data analysis

and mining. This solution can provide bioinformatic

scientists with immediate feedback on simulation

results and their main statistic estimators while the

simulation is still running, thus with an early feed-

back on simulation effectiveness. The advocated high

level allows the design of the CWC simulator as a

workflow of successive stages, where edges among

stages are data dependencies. The exploitation of

parallelism on multi-core, cluster and eventually in

the cloud is almost entirely in charge of the paral-

lel programming methodology provided by

the FastFlow parallel programming framework [11,

12].

Although the parallelization of stochastic simula-

tors has been extensively studied in the past 2 decades

[13], the main contributions of our work with

respect to the state of the art are

(1) Addressing cloud IaaS-specific parallelization

issues;

(2) Advocating a general parallelization schema

rather than a specific simulator;

(3) Addressing the online data analysis; thus, it is

designed to manage data (possibly big data) in

the cloud.

To the best of our knowledge, many related

works cover some of these aspects, but none of

them address all three aspects at the same time.

The remainder of the article is structured as fol-

lows: in ‘Background and Related Work’ section,

related works is discussed along three main direc-

tions: methods and tools for developing cloud appli-

cations (‘Developing Applications for the Cloud’

section), existing cloud-enabled bioinformatics appli-

cations (‘Bioinformatics in the Cloud’ section) and

theoretical tools for medullization in systems biology

(‘Calculi and Tools for Bioinformatics’ section). In

‘FastFlow Programming Framework’ and ‘The

CWC Multi-core Simulator’ sections the FastFlow

programming framework and the design of the

CWC simulator are presented, respectively. In

‘Experimental Evaluation’ section, tool implementa-

tion is validated against effectiveness and perform-

ance obtained on the Amazon EC2 public cloud

infrastructure. ‘Conclusions’ section concludes the

article.

BACKGROUNDANDRELATED
WORK
Developing applications for the cloud
The cloud encompasses a pay-per-use business

model. End users are not required to take care of

hardware, power consumption, reliability, robust-

ness, security and the problems related to the deploy-

ment of a physical computing infrastructure. In IaaS

cloud usage, the aggregate computing power and

storage space are provided to user applications in

an elastic fashion. In principle, they can be scaled

up and down according to user needs and billed ac-

cordingly. Applications running in an IaaS cloud are

required to be scalable and designed to efficiently

exploit a virtualized parallel platform, possibly ex-

ploiting different parallel programming models, e.g.

shared-memory and message-passing. Alternatively,

cloud technology can be exploited in the

Software-as-a-Service (SaaS) fashion by exposing ap-

plicative services (rather than platforms) to end-users.

Systems biology in the cloud page 3 of 16



In the SaaS model, cloud elasticity is typically man-

aged by domain-specific applications (or applicative

frameworks) that expose domain-specific services to

end-users. The pay-per-use business model is typic-

ally applied in term of the Quality of Service (e.g.

performance, latency and storage space) provided by

the service.

In both cases, from developer viewpoint, building

a cloud-enabled application (or a service) is not easier

than building a distributed application for cluster of

multi-core platforms, which is well known to be a

complex work.

At the present time, the aggregate computational

power of on-demand virtualized cluster did not have

reached the figures possible in massively parallel plat-

forms (As an example, in spring 2013, the Amazon

EC2 maxium core count for on-demand clusters is

160: 20 extra-large instances, each of them with

eight virtualized cores). Cloud technology cannot

being currently considered suitable to target very

high computational power needs. However, the

shift towards cloud technology has many drivers

that are likely to sustain this trend for several years

to come. This is likely to make parallel computing

methodologies increasingly accessible to a wider

range of developers. Software technology is conse-

quently changing: in the long term, writing parallel

programs that are efficient, portable and correct must

be no more onerous than writing sequential pro-

grams. Such a transition will likely entail a significant

raise of the level of abstraction of parallel program-

ming models with respect to the current state-of-

the-art to support the mainstream of software

development, where human productivity, total cost

and time to solution are equally, if not more, im-

portant than application performance.

Pragmatically, designing an application for the

cloud requires dealing with the heterogeneous

nature of the virtualized platforms in term of pro-

gramming models needed to effectively exploit par-

allelism among virtualized cores of the same virtual

machine and different virtual machines (and possibly

different cloud deployments). Virtualized or not,

shared memory multi-cores and clusters require dif-

ferent techniques and tools to support efficient par-

allelism exploitation. The de facto standard tools in

these cases are OpenMP [14] and MPI [15], respect-

ively. OpenMP can be considered a high level of

abstraction programming framework (at least for

data parallelism) but targets only shared-memory

platforms. MPI, which is mainly exploited in

distributed platforms, exhibits a rather low level of

abstraction because it exposes to developers the

full complexity of a message-passing programming

model. Applications developed with MPI often re-

quire being entirely re-designed to accommodate

communication primitives that require being fully

interweaved with business code. OpenMP and

MPI can be used conjunction to target clusters of

shared-memory platforms; the integration of two

programming models is fully in charge of the appli-

cation developers.

Algorithmic skeletons approach (a.k.a. pattern-

based approach) aims at reducing the development

complexity of parallel software design by providing

developers with a higher level of abstraction aiming

to move most of the complexity because of commu-

nication/synchronization management from devel-

opers to the programming framework [16, 17].

The algorithmic skeleton community has proposed

various programming frameworks, aimed to provide

the application programmer with high-level abstrac-

tions encapsulating parallelism exploitation patterns

[18]. Some of them provide programmers with a

higher level of abstraction but are oriented to

coarse grain computations (e.g. ASSIST [19],

StreamIt [20] and Brook [21]); some others target

shared-memory platforms only (e.g. IntelTBB [22]).

Not many of them provide single-programming

models targeting heterogeneous environments such

as clusters of multi-core platforms, which are the

kind of platforms typically offered by IaaS cloud

technology. One of them is the FastFlow frame-

work, which will be presented in ‘The FastFlow

Programming Framework’ section.

A popular specialization of the pattern-based ap-

proach is represented by the MapReduce program-

ming model [23], in which a single powerful

pattern composed by the pipelining of map and re-

duce patterns is offered to the programmers (often

also at level of cloud programming API). Being de-

signed by Google for distributed computing to pro-

cess data on a distributed file system on clusters, it

might be not general enough to naturally cover all

application needs (e.g. streaming, processing in

memory, recursive computations) and deployment

scenarios (e.g. virtualized multi-core).

The high-level parallel programming approach,

based on algorithmic skeletons, has been already ex-

ploited in computational biology for distributed en-

vironments and grids. As an example, the MACACO

simulator is realised as a pipeline of simulation and

page 4 of 16 Aldinucci et al.



post-processing, where the simulation phase is rea-

lised in parallel by farming out the parameter sweep-

ing of the stochastic simulation of calcium currents

[24]. An orthogonal approach aimed to raise the level

of abstraction of computation in bioinformatics is via

Problem Solving Environments (PSE) and Domain-

Specific Languages (DSL). As an example, in [25], a

framework for morphogenesis simulation is

presented.

Bioinformatics in the cloud
The cloud has the potentiality to become an

enabling technology for bioinformatics and compu-

tational biology. It can seamlessly provide applica-

tions and their users with large amount of

computing power and storage in an elastic and on-

demand fashion. This naturally meets the need of

simple availability of processing large amount of het-

erogeneous data, of storing massive amount of data

and of using the existing tools in different fields of

bioinformatics. The ability of managing the whole

data set in the cloud, as we advocate in this work, has

been widely recognized as necessary for next gener-

ation bioinformatics [26]. As an example, the typical

workflow of DNA sequencing [27] foresees that

biologists design the experiments and send samples

to sequencing centres, which make available raw data

(through specific services, such as FTP, HTTP) to

biologists, who have to download and use terabytes

of data. At the same time, biologists copy the data

into local machines for being used by bioinformatics

scientists for the subsequent data analysis. This typical

workflow implies that large (possibly big) amount

data are moved several times from sites to sites,

thus slowing down the analysis and the interpretation

of the results. These multiple data movements can be

partially or entirely avoided by moving the whole

workflow in the cloud.

DNA sequencing and sequence alignment are

classic examples of computational biology applica-

tion in which having computing power as more as

possible is never enough [28]. Examples of these ap-

plications are Crossbow [29], a software pipeline for

genome re-sequencing analysis which runs in the

cloud (according to a MapReduce paradigm [30])

on top of Hadoop [31]; CloudBurst [32], which accom-

plishes mapping of next-generation sequence data to

the human genome for a variety of biological experi-

ments (e.g. SNP discovery and genotyping) achiev-

ing a significant speed-up with respect to sequential

execution, and Myrna [33], a differential gene

expression calculation tool in large RNA-Seq data-

sets that integrates all the RNA sequencing steps

(read alignment, normalization, aggregation and stat-

istical modelling) in a single cloud-based computa-

tional pipeline.

DNA sequencing is not the only bioinformatics

application field for which the cloud has been

adopted. Another example is in silico organ model-

ling, which is a relatively new method for studying

the development and functionality of human, and

not only, body parts with computers. In [34], for

example, a model of the human liver is emulated

in a cloud-based system where each liver lobule is

represented by Monte Carlo samples. By using this

architecture, the authors demonstrate that the parallel

computing paradigm permits to develop systems

emulating organs with functionalities equivalent to

those of an in vitro specimen. A multi-scale model for

the progression of pancreatic cancer that can be exe-

cuted on a cloud platform is presented in a previously

published article [35]. This platform is designed for

the needs of life science and pharmaceutical research

allowing the integration of physiologically based and

classical approaches to model drug pharmacokinetics

and pharmacodynamics as well as metabolic and

signalling networks.

Protein folding simulation is another notable ex-

ample of calculation intensive process. In particular,

it is the process that converts a 2D unfolded poly-

peptide in a 3D structure. Folding@home initiative

[36] attempted to attack the problem via opportun-

istic computing, distributing tasks to Internet users.

Although Folding@home can be executed on a multi-

tude of hardware platforms, given the unreliability of

internet computer clients, the performance of the

project is hindered by errors in the local network

or the computers themselves wasting, otherwise

useful, computer resources. The Microsoft@home
project permits the execution of generic scien-

tific computer-intensive applications, including

Folding@home, in the cloud.

Simulation modelling of biological processes is the

backbone of systems biology, and discrete stochastic

models are particularly effective for describing

molecular interaction at different levels [37].

Nevertheless, it is common knowledge that these

types of stochastic simulations, as for instance the

Monte Carlo ones, are computationally intensive,

and among the bioinformatics applications, they are

the ones that could benefit from distributed imple-

mentations on the cloud.

Systems biology in the cloud page 5 of 16



Despite the evident advantages of carrying

out simulations on the cloud, at the moment,

cloud-based simulators occur at a slow pace, and

the scientific community is not fully exploiting the

opportunity to grasp the potential of the cloud para-

digm. Although implementations and services for

Monte Carlo simulations on the cloud [35, 38–41]

are few, the convenience of having virtually unlim-

ited resources will make the cloud platform the per-

fect candidate for calculation-intensive applications.

Table 1 compares the features of some computa-

tional biology and bioinformatics tools freely avail-

able on the web.

From a more general perspective, given that many

existing bioinformatics tools and simulators rely on

web services, their transition to a cloud-based infra-

structure will be natural, and we expect, in the near

future, that cloud-based bioinformatics applications

and services will be created at accelerating pace.

Examples of such a transition, which have been

already put in place, are CloudBurst [32], which (as

described earlier in the text) maps next-generation

sequencing data [42] and CloudBlast, a ‘clouded’ im-

plementation of NCBI BLAST [43], which basically

have kept the same web service-based architecture

but changed the underlying hardware infrastructure

to a cloud-based one.

Cloud computing, however, poses a few ‘still un-

solved’ problems both for developers and users of

cloud-based software, ranging from data transfers

over low-bandwidth networks to privacy and secur-

ity issues. These aspects lead to inefficiency for some

types of problems and future solutions should address

such issues [27].

Calculi and tools for bioinformatics
In the field of biological modelling, tools such as

SPiM [44], Dizzy [45], and Bio-PEPA Workbench
[46] have been used to capture first order approxi-

mations to system dynamics using a combination of

stochastic simulation and ODE approximation.

These tools mainly target single processor boxes

and, to the best of our knowledge, do not target

distributed systems and cloud.

The Swarm algorithm [47], which is well suited

for biochemical pathway optimization, has been used

in a distributed environment, e.g. in Grid Cellware
[48], a grid-based modelling and simulation tool.

DiVinE is a general distributed verification environ-

ment meant to support the development of distrib-

uted enumerative model checking algorithms,

including probabilistic analysis features used for bio-

logical systems analysis [49].

StochKit [50] is a Cþþ stochastic simulation frame-

work implementing the Gillespie algorithm that tar-

gets multi-core platforms in its second version. It does

not implement on-line trajectory reduction but it is

performed in a post-processing phase. A first form of

online reduction of simulation trajectories has been

experimented within StochKit-FF [8], which is an

extension of StochKit using the FastFlow runtime.

In [51], a parallel computing platform has been

used to simulate a large biochemical network using

the Gillespie algorithm on multiple processors. The

analysis of the simulation results to characterize the

intrinsic noise of the network is done as a post-

processing step.

Hy3S software package [52], which includes

hybrid stochastic simulation algorithms, and SRSim
[53], which performs rule-based spatial modelling,

are both embarrassingly parallelized by way of the

MPI library. StochSimGPU [54] exploits GPGPU

for parallel stochastic simulations of biological sys-

tems. The tool allows computing averages and histo-

grams of the molecular populations across the

sampled realizations on the GPGPU. The tool is

built on top of a GPGPU-accelerated version of

the MATLAB framework.

A schematic comparison of the main features of

the biological simulation tools cited earlier in the text

is reported in Table 2.

THE FASTFLOW PROGRAMMING
FRAMEWORK
FastFlow [55] is a structured parallel programming

framework originally designed for shared-memory

multi-core/many-core platforms. It has been recently

extended to support distributed systems and cloud [12].

FastFlow provides programmers with pre-defined and

customisable parallel design patterns (a.k.a. algorithmic

skeletons) [16, 18]. They include stream-oriented pat-

terns (farm, farm-with-feedback and pipeline) and

data-parallel patterns (map, reduce). Patterns can be

arbitrarily composed to express higher-level patterns,

e.g.MapReduce, Divide&Conquer [11].

FastFlow design is layered (Figure 1); each layer is

implemented on to of the next layer down. From

top to bottom:

� Parallel patterns are in the top layer. It provides to

the application programmers patterns abstractions

page 6 of 16 Aldinucci et al.



that can be used on all platform families: multi-

cores, many-cores, distributed systems and clouds.

Once applications have been developed using

patterns, it can be seamlessly ported across differ-

ent platform families without re-designing or

re-coding the application.

� Arbitrary streaming networks layer provides basic ab-

stractions to implement each pattern as a data-

flow graph [56], i.e. nodes and channels. A node

(so-called ff_node) implements the basic unit of

parallelism and can be used to encapsulate a se-

quential computation or a channel mediator,

which are used either to build collective commu-

nications possibly with user-defined semantics,

both in the shared-memory or message-passing

programming models.

� Simple streaming networks layer provide low-latency

zero-copy single-consumer-single-producer chan-

nels for both shared-memory and message-passing

programming models. The shared-memory chan-

nel is implemented via FIFO wait-free queues

(FF-SPSC) [57]; the message passing support is

built on top of ZeroMQ channels [58].

Overall, the FastFlow run-time support is realized

as a header-only Cþþ template library, and it is

based on streaming of pointers, which are used as

synchronization tokens. This abstraction is kept also

in the distributed version (i.e. across network chan-

nels) where data are transferred across network links

by way of zero-copy channels. We refer back to [55]

for further details.

Table 1: Comparison of some cloud-based computational biology and bioinformatics tools available on the web

System Description Used resources Cloud How to use Reference

CloudBurst System to map sequence
data to a reference
genome

Apache Hadoop Amazon EC2
homepage

Source code to be
compiled and exe-
cuted on a Hadoop
cluster

[37]

Computational
Systems Biology
Software Suite
Bayer

Platform for computational
biology by integrating body
physiology,
disease biology and
molecular reaction
networks

Apache Hadoop PK-
Sim, MoBi R and
MATLAB

D-Grid
GmbH
homepage

Executable to be
installed

[40]

Crossbow Software pipeline for
genome re-sequencing
analysis

Bowtie SoapSNP Amazon EC2
homepage

Crossbow web
application

[36]

Folding@home Protein folding simulation ^ Windows
Azure
homepage

Folding@home
website

[41]

Myrna Calculate differential gene
expression in RNA-seq
data sets

Bowtie R/Bioconductor
Apache Hadoop

Amazon EC2
homepage

MyrnaWeb
Application

[38]

Table 2: Schematic comparison of the main features of several biological simulation tools

Tool Calculus Simulation schema Parallelism Data analysis Reference

SCWC CWC Gillespie FastFlow Online statistics [31]
SPiM p-calculus Gillespie None none [19]
Dizzy Reaction Model Gillespie, Tau-Leap, ODE None none [20]
BioPEPA Process Algebra ODE,Gillespie None none [21]
Cellware Reaction Model Gillespie, Gibson-Bruck, ODE None none [23]
DiVinE Model Checker ODE MPI none [24]
StochKit Reaction Model Gillespie, Tau-leaping MPI post-processing [25]
StochKit2 Reaction Model Gillespie, Tau-leaping POSIX threads post-processing [25]
StochKit-FF Reaction Model Gillespie, Tau-leaping FastFlow online statistics [5]
Hy3S Reaction Model Gibson-Bruck, Hybrid MPI post-processing [27]
StochSimGPU Reaction Model Gillespie, Gibson-Bruck, Li NVidia CUDA post-processing [29]

Systems biology in the cloud page 7 of 16



THE CWCMULTI-CORE
SIMULATOR
The calculus of wrapped compartments
In this work, the simulator for the Calculus of

Wrapped Compartments (CWC) will be used as

test-bed. CWC [10, 59] is a recently proposed for-

malism, based on term rewriting, for the representa-

tion of biological systems. CWC extends the usual

representation of biochemical systems with reaction

rules by adding a nested structure of labelled com-

partments delimited by membranes. However, to

better focus on the proposed methodology and

make the article self-contained, we will write all ex-

amples of the article in the basic subset of CWC, in

which biochemical reactions are denoted in a stand-

ard, self-explanatory way. We only remark that in

CWC, a reaction is associated with a rate function

depending on the overall content of the ambient in

which the reaction takes place. This allows tailoring

the reaction rates on the specific characteristics of the

system, as for instance when representing non-linear

reactions as Michaelis–Menten kinetics. This func-

tion is simply represented by the kinetic constant

for reaction whose rate is determined by the usual

mass action law. We refer to [10, 59] for a complete

presentation of CWC.

The CWC simulator
The CWC simulator [60] is an open source tool that

implements Gillespie’s algorithm on CWC terms. It

handles CWC models with different rating semantics

(law of mass action, Michaelis–Menten kinetics, Hill

equation), and it can run independent stochastic

simulations. The CWC simulator was designed

using the FastFlow high-level methodology and tar-

gets multi-core platforms. It exploits both parallel

simulation and data analysis in a single workflow.

To make it possible, all the logical phases of the

process (i.e. data distribution, parallel simulations,

result gathering, parallel trajectory, data assembling

and analysis) must be effectively pipelined. This

implies that all phases work on a data streams.

The simulation workflow is composed of a three-

stage pipeline: simulation, analysis and display of re-

sults. The former two stages are in turn pipelines,

whereas the display of results is realised by way of

a Graphical User Interface (GUI).

The simulation pipeline
The simulation pipeline is composed of three main

parts: a generation of simulation tasks stage, a farm of

simulation engines stage and an alignment of trajec-

tories stage [9].

The input of the simulation pipeline (either from

GUI or from file) contains the model to be simulated

and the parameters of the simulation. The output is a

stream of arrays of simulation results. Each of these

arrays holds a point for each of the trajectories of all

(independent) simulations, aligned at a given simu-

lation time. Actually, each array represents a snapshot

(called ‘cut’) at a given simulation time of the whole

dataset of results. This not necessarily represents the

current status (at a given point in wall-clock time) of

all running simulations. Stochastic processes exhibit

an irregular behaviour in space and time according to

Figure 1: Layered architecture of the FastFlow programming framework.

page 8 of 16 Aldinucci et al.



their nature, as different simulations may cover the

same simulation timespan, following many different

(randomly-chosen) paths, in a different number of

iterations. Therefore, parallelization tools should

support the dynamic and active balancing of work-

load across the involved cores. This mainly motivates

the structure of the simulation pipeline. The first

stage generates a number of independent simulation

tasks, each of them wrapped in a Cþþ object.

These objects are passed to the farm of simulation

engines, which dispatch them (on-demand) to a

number of simulation engines (sim eng). Each simu-

lation engine brings forward a simulation that lasts a

precise simulation time (simulation quantum). Then

it reschedules back the operation along the feedback

channel. Simulation results produced in this quan-

tum are streamed towards the next stage, which sorts

out all received results and aligns them according to

the simulation time. Once all simulation tasks over-

come a given simulation time, an array of results is

produced and streamed to the analysis pipeline.

In this process, the farm scheduler prioritizes ‘slow’

simulation tasks, in such a way that the front-line task

proceeds as much aligned as possible to simulation

time. This solves both the load-balancing problem

by keeping all simulation engines always busy and re-

duces to the minimum the transient storage of incom-

plete results, thus reducing the shared-memory traffic.

The analysis pipeline
By design, each cut of simulation trajectories (i.e. an

array of simulation results) can be analysed immedi-

ately and independently (thus concurrently) from

each other. For example, the mean and variance (as

well as other statistical estimators) can be immediately

computed and streamed out to the display stage. More

complex analysis, i.e. ones aimed to understand

system dynamics, has further requirements. In the

most general case, they require the access to the

whole data set. Unfortunately, this can be hardly

done with a fully online process. In many cases, it is

possible to derive reasonable approximation of these

analyses from a sliding window of the whole data set.

For this reason, stream incoming in the analysis pipe-

line is passed through a stage that creates a stream of

(partially overlapping) sliding windows of trajectories

cuts. Each sliding window is processed in parallel and,

therefore, is dispatched to a farm of statistic engines.

Results are collected and re-ordered (i.e. gathered)

and streamed towards user interface and permanent

storage [7].

The graphical user interface
The CWC simulation-analysis pipeline is wrapped in

a back-end tool that can be steered either via com-

mand line tools or a graphical user interface, which

makes it possible to design the biological model, run

simulations and analysis and to view partial results

during the run. Also, the front-end allows controlling

the simulation workflow from a remote machine.

The overall architecture of the CWC distributed

simulator is shown in Figure 2. The first stage of the

pipeline (simulation pipeline) has been implemented

using a task-farm parallel paradigm where each simu-

lation pipeline can be run on a different node in a

cluster or cloud environment. It receives simulation

parameters from the generation of simulation tasks

node and feeds the alignment of trajectories node

with a stream of results.

Figure 3 is presented as a screenshot of the graph-

ical user interface, in which the user has the possi-

bility apply different kind of statistical analysis to data

resulting from simulation.

EXPERIMENTALEVALUATION
The evaluation of the CWC simulator takes into

account the performance on both a single multi-

core virtual machine and a small cluster of multi-core

virtual machines running in the cloud. The ability of

the CWC formalism to describe simple but signifi-

cant biological systems, together with the effective-

ness of the proposed online analysis to capture the

behaviour of the system has been discussed in previ-

ous works [7, 10]. A simple yet significant example is

reported in the following.

Simulation and analysis of an oscillatory
system
As an example, consider the theoretical model for

circadian oscillations based on transcriptional regula-

tion of the frequency (frq) gene in the fungus

Neurospora [61]. In this system, the only specific fea-

ture of CWC used is the possibility of evaluate re-

action rates introducing functions depending on time

as well on the overall state of the system. For the sake

of simplicity, we represent the model using a stand-

ard syntax for biochemical reactions [1]: when a re-

action is decorated with a number it is understood

that its rate is determined by the mass action law and

then the number decorating it represents the kinetic

constant of the reaction.

Systems biology in the cloud page 9 of 16



The model relies on the feedback exerted on the

expression of the frq gene by its protein product

FRQ. In this model, sustained rhythmic variations

in protein and mRNA (Mcyto) levels occur, in the

form of limit cycle oscillations [61]. The CWC

rules modelling this case are

Mcyto!
0:5

McytoFRQcito FRQnucleus !
fFRQðtÞ

FRQnucleusMcyto

Mcyto!
fM
� FRQcyto!

fd
�

FRQcyto!
0:5

FRQnucleus FRQnucleus!
0:6

FRQcyto

where the nucleus and cyto subscripts identify the

elements in the nucleus and the cytosol, respectively.

The model is based on the negative feedback

exerted by the protein FRQ on the transcription

of the frq gene; the rate of gene expression is

enhanced by light. The FRQ protein is represented

by FRQcytoin its cytosolic form and FRQnucleusin its

nuclear form.

The model includes gene transcription in the nu-

cleus, accumulation of the corresponding mRNA in

the cytosol with the associated protein synthesis, pro-

tein transport into and out of the nucleus and regu-

lation of gene expression by the nuclear form of the

FRQ protein. The function fFRQ tð Þ denoting the rate

of frq transcription is defined by

fFRQðtÞ ¼ vsðtÞ
Kn

I

FRQnucleus ¼ Kn
I

where

vsðtÞ ¼
200 when 2iT�t<ð2iT¼1ÞT
160 when ð2iþ1ÞT�t<ð2iþ2ÞT

n
ði � 0Þ

andT represents the period of the dark-light phases.

Figure 2: Architecture of the CWC parallel simulator with online parallel analysis.The FastFlow framework auto-
matically generates the implementation of patterns connecting ff_nodes and ff_dnodes with streams, which are imple-
mented either in the shared-memory model within the single virtual machine or in the message-passing model
across virtual machines.

page 10 of 16 Aldinucci et al.



The parameter vs tð Þ defined by increases in light

conditions of the current time of the simulation,

where T represents the period of the dark-light

phases. The constant KI is related to the threshold

beyond which nuclear FRQ represses frq transcrip-

tion; the Hill coefficient n, characterizes the degree

of cooperatively of the repression process. In the

functions, the name of an atom indicates its multi-

plicity. The mRNA degradation is given by the

Michaelis rate function.

fM ¼ vm
Mcyto

KM þMcyto

The FRQ degradation is given by the Michaelis

rate function

fd ¼ vd
FQRcyto

Kd þ FQRcyto

where vs is the maximum rate of FRQ degradation

and the Michaelis constant related to this process is Kd.

As in [61], we modelled the oscillations under two

different conditions: (i) constant dark condition and

(ii) alternate light and dark phases. Following [61], the

values of the parameters are set as vm¼ 50.5, vd¼ 140,

Ks¼ 0.5, K1¼ 0.5, K2¼ 0.6, Km¼ 50, K1¼ 100,

Kd¼ 13 and n¼ 4. Concentrations have been made

discrete by scaling 1 nM to 100 atomic elements. In

the constant dark condition, parameter vs is equal to

160, in the alternate condition; vs is equal to 160

during the dark phase and to 200 during the light

phase. Figure 4 shows an extract of a single stochastic

simulation of the circadian oscillations in the dark/

light alternate condition, plotting the number of

FRQ proteins within the nucleus (FRQnucleus), the

total number of FRQ proteins in the cell and the

number of mRNA molecules leading the synthesis

of FRQ. Figure 5 shows the outcome of the peak

detection tool, which is able to summarize the fre-

quency of the peak events over time. The plot results

after capturing the peaks in the curve of the cytosolic

mRNA for the FRQ protein synthesis. Measuring the

distance between two consecutive peaks, we compute

the period of each oscillation and then plot the

moving average, >200 simulations, of the local peri-

ods. In the constant dark condition, the circadian

period is close to 21 and half hours, but increases;

producing damping oscillations with a period of

�24 h, in the dark/light alternate condition.

Performance evaluation
The performance of the simulator was tested on the

Neurospora model, described in the ‘Simulation and

Figure 3: Screenshot of the simulation tool interface: output analysis plotting. The interface enables the usage of
the application in a SaaS fashion.

Systems biology in the cloud page 11 of 16



Analysis of an Oscillatory System’ section. We ran

two set of experiments: the first one considering

eight virtual machines (VMs) each having four

cores Intel E-2670 2.6 GHz with 20 MB of L3

cache running in the Amazon Elastic Compute

Cloud (Amazon EC2) [62]; the second set consider-

ing an heterogeneous environment of virtual and

physical machines which allowed to scale the core

count up to 96. The heterogeneous environment,

which can be considered a private cloud including

a public cloud comprises: eight EC2 virtual machines

with four virtualized cores, two workstations at

University of Pisa each having 16 cores Intel Sandy

Bridge @2 GH.z with 20 MB of L3 shared cache,

and one workstation, at University of Torino, having

32 cores Intel Nehalem @2.0 GHz with 18 MB of

L3 shared cache. Virtual and physical machines run

Linux x86_64.

In the first test, we measured the speed-up and the

execution time of the simulator when running 96

days of simulation time on a single quad-core VM.

The results obtained are shown in Figure 6. In this

case, the maximum speed-up using all available cores

is 3.15 of 4 so that the execution time decreases from

�224 min of the sequential run down to �71 min.

Observe that in this case, the speed-up is not ideal

because of the additional work needed for online

alignment of trajectories at the simulation time. In

this regard, it is worth to recap that simulation time

advances along random walks; thus, different simu-

lations instances proceed at different speed with re-

spect to simulation time. In traditional approaches,

this cost is typically paid during post-processing

phase.

Next, we executed the same test using eight quad-

core VMs. Figure 7 reports the speed-up for the

same simulation time varying the number of virtual

cores used. The trend is almost ideal. With 32 virtual

cores, we obtained a completion time of 10.5 min,

with a gain of �21� with respect to the sequential

execution time of the simulator on a single-core VM

of the same clock frequency and a gain of �7� with

Figure 4: An extract (72h of simulated time) of a
single stochastic simulation of the circadian oscillations
in the dark/light alternate condition (Vs), plotting the
number of FRQ proteins within the nucleus (Fn),
the total number of FRQ proteins in the cell (Ft) and
the number of mRNA molecules leading the synthesis
of FRQ (M).

Figure 5: Output of the simulation-analysis workflow
with peak detection analysis module applied to FRQ(M)
for both alternate dark/light and dark conditions. The
frequency of the peak events over time is shown along
evolution of 10 days of simulated time.

Figure 6: Performance of the simulator for the
Neurospora model in a single quad-core VM in the
Amazon EC2 cloud: speed-up and execution time vary-
ing the number of virtualized cores.

page 12 of 16 Aldinucci et al.



respect to the execution time obtained on the single

quad-core VM.

In the second set of experiments, we executed the

simulation using different platforms. Initially, we ran

the simulator on the 32 cores Nehalem workstation

using the shared memory implementation of the

simulator. The minimum execution time obtained

on that machine using all cores available is 67.3

min (i.e. almost the same time) obtained using the

eight Amazon VMs (having an overall number of 32

virtualized cores). This result confirms the quality of

the distributed implementation of the simulator.

Next, to further decrease the simulation time, we

used together the Nehalem workstation, the

Amazon VMs and the two 16 cores Sandy Bridge

workstations. In this case, as the machines were not

homogeneous in terms of number of cores and com-

putational power, we used a weighted dispatching

policy for the distribution of the simulations, where

the weights used are the number of virtualized or

physical cores of the target platform. The results ob-

tained for the execution time and the speed-up (the

speed-up is computed w.r.t. the execution time ob-

tained on single-core Amazon VM), are shown in

Figure 8. For this test, the analysis pipeline was

mapped on the 32 cores Nehalem workstation.

The minimum execution time obtained using 96

cores (32 cores in the eight quad-core VMs, 32

cores in the Nehalem workstation and 2� 16 cores

in the two Sandy Bridge workstations) is 69.3 s car-

rying a gain of �62� in the execution time, which a

remarkable result considering the low computation

granularity (�20 ms) of the single worker thread and

the high frequency of communication (30–80 ms) for

collecting results computed by remote machines

running the simulation pipeline. As a general rule,

the lower the communication/computation ratio,

the higher the speed-up obtained. The test con-

sidered, has a no optimal communication/computa-

tion ratio, and for this reason, we were not able to

obtain a performance improvement with >64 cores.

CONCLUSIONS
We presented the design and the implementation of

the CWC simulator for the cloud, which is obtained

with low engineering and coding efforts from the

previous multi-core version [7, 9]. As the CWC

simulator implements a Monte Carlo algorithm for

systems biology, the issues for its portable and effi-

cient design for the cloud are paradigmatic for a

broad class of algorithms for Bioinformatics. We be-

lieve that its design and implementation are also

paradigmatic for the implementation of other

Monte Carlo algorithms. Experimentation on both

physical and virtualized execution environments

(such as Amazon EC2 cloud) demonstrate that its

high-level design via the FastFlow framework pro-

vides the application designer with easy engineering,

seamless portability on distributed and multi-core

platforms physical or virtualized and automatic load

balancing. The possibility to execute the whole

simulation-analysis pipeline in the cloud makes it

Figure 8: Performance of the simulator for the
Neurospora model on an heterogeneous environment
of virtualized and physical machines (eight quad-core
Amazon EC2 VMs, 1 32-core Nehalem workstation and
2 16-core Sandy Bridge workstations): speed-up and
execution time varying the number of cores.

Figure 7: Performance of the simulator for the
Neurospora model on a virtual cluster of eight quad-
core VMs in the Amazon EC2 cloud: speed-up varying
the number of virtualized cores.

Systems biology in the cloud page 13 of 16



possible to greatly reduce the data transfer from user

desktop to the cloud and to deploy the tool in the

cloud in a SaaS fashion. The stream-oriented design

of the simulation-analysis pipeline makes it possible

to perform the statistical analysis and data mining of

simulation results as an online process starting to-

gether with simulation e immediately starting to pro-

vide the user with a stream of final results, thus

enforcing a fast feedback to the bioinformatics scien-

tists. Experimental evaluations show that the design

is flexible and robust with respect to target platform,

and it is able to provide performance scalability also

for fine-grained problems.

A recent extension of FastFlow framework sup-

porting many-core GPGPUs via OpenCL [63], will

make it possible to transparently target clusters of

GPGPUs [64]. We believe that the design has the

potentiality to survive in the hostile environment

populated by platform heterogeneity, coding com-

plexity and the need of performance portability.

Key Points

� Amethodological studyon the design of a parallel, cloud-enabled
simulator-analysis pipeline for systems biology, which is paradig-
matic example of a broad class of algorithms for bioinformatics.

� Portability and performance portability, frommulti-core to the
cloud, of parallel applications via high-level design and pattern-
based development framework.

� An extensive survey of the methods and the tools for bioinfor-
matics on the cloud and the methodologies for their develop-
ment with a specific focus on high-level approaches supporting
easy engineering, performance and portability.

FUNDING
This work has been partially supported by the EC-

FP7 STREP project ‘Paraphrase’ (n. 288570), the

Fondazione San Paolo IMPACT project (ID.

ORTO11TPXK) and the BioBITs project

(Converging technologies 2007, Biotechnology-

ICT)—Regione Piemonte—Italy.

References
1. Gillespie D. Exact stochastic simulation of coupled chemical

reactions. J Phys Chem 1977;81:2340–61.

2. Alur R, Belta C, Ivancic F. Hybrid modeling and simula-
tion of biomolecular networks. Proceeding. of the 4th
International Workshop on Hybrid Systems: Computation and
Control (HSCC), Rome, Italy 2001, pp. 19–32. ser. Lecture
Notes in Computer Science, vol. 2034. Springer.

3. Milanesi L, Romano P, Castellani G, etal. Trends in modeling
biomedical complex systems. BMCBioinformatics 2009;10:l1.

4. Rambaut A, Grass N. Seq-Gen: an application for the
Monte Carlo simulation of DNA sequence evolu-
tion along phylogenetic trees. Comput Appl Biosci 1997;13:
235–8.

5. Da Silva F, Senger H. Improving scalability of Bag-of-Tasks
applications running on master–slave platforms. Parallel
Comput 2009;35:57–71.

6. Hong L, Petzold L. Efficient parallelization of the stochastic
simulation algorithm for chemically reacting systems on the
graphics processing unit. IntJHighPerformComputAppl 2010;
24(2):107–16.

7. Aldinucci M, Coppo M, Damiani F, et al. On parallelizing
on-line statistics for stochastic biological simulations. In:
Euro-Par 2011 Workshops, Proceeding. of the 2nd Workshop on
High Performance Bioinformatics and Biomedicine (HiBB), ser.
LNCS, Springer 2012;7155:3–12.

8. Aldinucci M, Bracciali A, Liò P, et al. StochKit-FF: efficient
systems biology on multicore architectures. In:Euro-Par 2010
Workshops, Proceeding. of the 1stWorkshop on High Performance
Bioinformatics and Biomedicine (HiBB), ser. LNCS, Springer
2011;6586:167–75.

9. Aldinucci M, Coppo M, Damiani F, et al. On designing
multicore-aware simulators for biological systems. In:
Proceeding. of Intl. Euromicro PDP 2011: Parallel Distributed and
network-based Processing, 2011. Ayia Napa, Cyprus, IEEE,
pp. 318–25.

10. Coppo M, Damiani F, Drocco M, et al. Simulation tech-
niques for the calculus of wrapped compartments. Theor
Comput Sci 2012;431:75–95.

11. Aldinucci M, Danelutto M, Kilpatrick P, et al. Fastflow:
high-level and efficient streaming on multi-core. In:
Programming Multi-core and Many-core Computing Systems, ser.
Parallel and Distributed Computing. Wiley, 2013, ch. 13.

12. Aldinucci M, Campa S, Danelutto M, et al. Targeting dis-
tributed systems in fastflow. In: Euro-Par 2012 Workshops,
Proceeding. of the CoreGridWorkshop on Grids, Clouds and P2P
Computing, 2013. ser. LNCS, Springer, 7640:47–56.

13. Ferscha A. Performance Models for Discrete Event Systems
with Synchronisations: Formalisms and Analysis
Techniques’’, ser. MATCH Advanced Schools, Jaca,
Spain, Sep. 1998, vol. 2, ch. VII–Simulation.

14. Park I, Voss MJ, Kim SW, et al. Parallel programming
environment for OpenMP. Scientific Programming 2001;9:
143–61.

15. Pacheco PS. Parallel programming with MPI. San Francisco,
CA: Morgan Kaufmann Publishers Inc., 1996.

16. Cole M. Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming. Parallel Comput
2004;30(3):389–406.

17. Asanovic K, Bodik R, Demmel J, etal. A view of the parallel
computing landscape. CommunACM 2009;52:56–67.

18. González-Vélez H, Leyton M. A survey of algorithmic
skeleton frameworks: High-level structured parallel
programming enablers. Softw Pract Exp 2010;40(12):
1135–60.

19. Vanneschi M. The programming model of ASSIST, an en-
vironment for parallel and distributed portable applications.
Parallel Comput 2002;28(12):1709–32.

20. Thies W, Karczmarek M, Amarasinghe SP. StreamIt: a
language for streaming applications. In: Proceeding of the 11th
International Conference on Compiler Construction (CC) 2002.
Springer-Verlag London, UK, pp. 179–96.

page 14 of 16 Aldinucci et al.



21. Buck I, Foley T, Horn D, et al. Brook for GPUs: stream
computing on graphics hardware. In:ACMSIGGRAPH’04
Papers. New York, NY: ACM Press, 2004;777–86.

22. Intel Corp. Threading Building Blocks. http://www.threading
buildingblocks.org/ (14 January 2013, date last accessed).

23. Dean J, Ghemawat S. MapReduce: simplified data process-
ing on large clusters. In: Usenix OSDI’04. New York, NY:
ACM, 2004;137–50.

24. González-Vélez V, González-Vélez H. Parallel stochastic
simulation of macroscopic calcium currents. J Bioinform
Comput Biol 2007;5(3):755–72.

25. Cickovski T, Aras K, Swat M, etal. From genes to organisms
via the cell: a problem-solving environment for multicellu-
lar development. Comput Sci Eng 2007;9(4):50–60.

26. Stein LD. The case for cloud computing in genome inform-
atics. Genome Biol 2010;11(5):207.

27. Schatz M, Langmead B, Salzberg S. Cloud computing and
the DNA data race. Nat Biotechnol 2010;28(7):691.

28. Li H, Homer N. A survey of sequence alignment algorithms
for next-generation sequencing. Brief Bioinform 2010;11(5):
473–83.

29. Langmead B, Schatz M, Lin J, et al. Searching for snps with
cloud computing. Genome Biol 2009;10(11):R134.

30. Zou Q, Li XB, Jiang WR, et al. Survey of MapReduce
frame operation in bioinformatics. Brief Bioinform 2013.
doi:10.1093/bib/bbs088.(Epub ahead of print).

31. Apache Software Foundation. Hadoop 2013. http://hadoop.
apache.org (14 January 2013, date last accessed).

32. Schatz M. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics 2009;25(11):1363–9.

33. Langmead B, Hansen K, Leek J. Cloud-scale RNA-
sequencing differential expression analysis with myrna.
Genome Biol 2010;11(8):83.

34. Ropella G., Hunt C. Cloud computing and validation of
expandable in silico livers. BMCSyst Biol 2010;4(1):168.

35. Eissing T, Kuepfer L, Becker C, et al. A computational sys-
tems biology software platform for multiscale modeling and
simulation: integrating whole-body physiology, disease
biology, and molecular reaction networks. Front Physiol
2011;2:4.

36. Folding@home. http://folding.stanford.edu/English/Home
Page (10 June 2013, date last accessed).

37. Chen Y, Lawless C, Gillespie CS, et al. CaliBayes and
BASIS: integrated tools for the calibration, simulation and
storage of biological simulation models. Brief Bioinform
2010;11(3):278–89.

38. Sevior M, Fifield T, Katayama N. Belle monte-carlo pro-
duction on the amazon EC2 cloud. J Phys 2010;219.
doi:10.1088/1742-6596/219/1/012003.

39. Drawert B, Engblom S, Hellander A. URDME: a modu-
lar framework for stochastic simulation of reaction-
transport processes in complex geometries. BMC Syst Biol
2012;6:76.

40. StochSS. Stochastic Simulation Service A Cloud Computing
Framework for Modeling and Simulation of Stochastic Biochemical
Systems. http://iguana.cs.ucsb.edu/wordpress/ (14 January
2013, date last accessed).

41. Miras H, Jimenez R, Minas C, et al. CloudMC: a cloud
computing application for Monte Carlo simulation. Phys
Med Biol 2013;58:125–33.

42. Shendure J, Ji H. Next-generation DNA sequencing. Nat
Biotechnol 2008;26(10):1135–45.

43. Matsunaga A, Tsugawa M, Fortes J. Cloudblast: combining
MapReduce and virtualization on distributed resources for
bioinformatics applications. In: Proceeding of the 4th IEEE
International Conference on eScience, 2008;222–9. IEEE.

44. Phillips A, Cardelli L. Efficient, correct simulation of bio-
logical processes in the stochastic pi-calculus. In: InProceeding
of International Conference on Computational Methods in Systems
Biology (CMSB) 2007. Edinburgh, Scotland, ser. LNCS,
Vol. 4695. Springer, 184–99.

45. Ramsey S, Orrell D, Bolouri H. Dizzy: stochastic simulation
of large-scale genetic regulatory networks (supplementary
material). J Bioinform Comput Biol 2005;3(2):437–54.

46. Ciocchetta F, Hillston J. Bio-PEPA: an extension of the pro-
cess algebra PEPA for biochemical networks. In:Proceeding. of
1stWorkshop ‘‘FromBiologyToConcurrencyand back (FBTC), 2008.
Lisbon, Portugal, ser. ENTCS, Vol. 194, Elsevier, 103–17.

47. Ray T, Saini S. Engineering design optimization using a
swarm with an intelligent information sharing among indi-
viduals. Eng Opt 2001;33:735–48.

48. Dhar PK, Meng TC, Somani S, et al. Grid cellware: the first
grid-enabled tool for modelling and simulating cellular pro-
cesses. Bioinformatics 2005;7:1284–7.

49. Barnat J, Brim L, Safránek D. High-performance analysis of
biological systems dynamics with the divine model checker.
Brief Bioinform 2010;11(3):301–12.

50. Petzold L. StochKit: stochastic simulation kit web page. [Online]
http://www.engineering.ucsb.edu/�cse/StochKit/index.
html (14 January 2013, date last accessed).

51. Intosalmi J, Manninen T, Ruohonen K, et al.
Computational study of noise in a large signal transduction
network. BMCBioinformatics 2011;12:252.

52. Salis H, Sotiropoulos V, Kaznessis Y. Multiscale hy3s:
hybrid stochastic simulation for supercomputers. BMC
Bioinformatics 2006;7:93.

53. Gruenert G, Ibrahim B, Lenser T, et al. Rule-based spatial
modeling with diffusing, geometrically constrained mol-
ecules. BMCBioinformatics 2010;11:307.

54. Klingbeil G, Erban R, Giles M, etal. StochSimGPU: parallel
stochastic simulation for the systems biology toolbox 2 for
MATLAB. Bioinformatics 2011;27(8):1170.

55. FastFlow website. [Online] http://mc-fastflow.sourceforge.net
(14 January 2013, date last accessed).

56. Kahn G. The semantics of a simple language for parallel
programming. In: Proceeding of Information Processing.
Stockholm. Sweden, North Holland, 1974, pp. 471–5.

57. Aldinucci M, Danelutto M, Kilpatrick P, et al. An efficient
unbounded lock-free queue for multi-core systems. In:
Proceeding of 18th International Euro-Par 2012 Parallel Processing.
ser. LNCS, Vol. 7484. Springer-Verlag Berlin, Heidelberg,
2012, 662–73.

58. ZeroMQ website 2012. http://www.zeromq.org/ (10 June
2013, date last accessed).

59. Coppo M, Damiani F, Drocco M, et al. Stochastic calculus
of wrapped compartments. In: Proceeding of 8thWorkshop on
QuantitativeAspects of Programming Languages (QAPL),Vol. 28.
ser. Paphos, Cyprus, 27-28th March 2010: EPTCS, 2010,
82–98.

60. CWCSimulator Project. Sourceforge website, 2013. http://
sourceforge.net/projects/cwcsimulator/.

Systems biology in the cloud page 15 of 16

http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://hadoop.apache.org
http://hadoop.apache.org
http://folding.stanford.edu/English/HomePage
http://folding.stanford.edu/English/HomePage
http://iguana.cs.ucsb.edu/wordpress/
http://www.engineering.ucsb.edu/~cse/StochKit/index.html
http://www.engineering.ucsb.edu/~cse/StochKit/index.html
http://www.engineering.ucsb.edu/~cse/StochKit/index.html
http://mc-fastflow.sourceforge.net
http://www.zeromq.org/
http://sourceforge.net/projects/cwcsimulator/
http://sourceforge.net/projects/cwcsimulator/


61. Leloup J, Gonze D, Goldbeter A. Limit cycle models for
circadian rhythms based on transcriptional regulation in dros-
ophila and Neurospora. J Biol Rhythms 1999;14(6):433–48.

62. Amazon Elastic Compute Cloud. http://aws.amazon.com/
ec2/ (10 June 2013, date last accessed).

63. OpenCL,Khronos Compute Working Group. http://www.
khronos.org/opencl/ (10 June 2013, date last accessed).

64. Goli M, Garba M, González-Vélez H. Streaming dynamic
coarse-grained CPU/GPU workloads with heterogeneous
pipelines in FastFlow. In: Proceeding of the 14th IEEE
International Conference on High Performance Computing and
Communications (HPCC). Liverpool, UK: IEEE, 2012;445–52.

65. Blilie C. Patterns in scientific software: an introduction.
Comput Sci Eng 2002;4(3):48–53.

page 16 of 16 Aldinucci et al.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

