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The stochastic simulation of biological systems is an increasingly popular technique in
bioinformatics. It is often an enlightening technique, especially for multi-stable systems
whose dynamics can be hardly captured with ordinary di↵erential equations. To be
e↵ective, stochastic simulations should be supported by powerful statistical analysis
tools. The simulation/analysis workflow may however result in being computationally
expensive, thus compromising the interactivity required especially in model tuning. In
this work we discuss the main opportunities to speed up the framework by parallelisation
on modern multicore and hybrid multicore and distributed platforms, advocating the
high-level design of simulators for stochastic systems as a vehicle for building e�cient
and portable parallel simulators endowed with on-line statistical analysis. In particular,
the Calculus of Wrapped Compartments (CWC) Simulator, which is designed according
to the FastFlow’s pattern-based approach, is presented and discussed in this work.
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1 Introduction

The stochastic simulation of biological systems is an increasingly popular technique in
bioinformatics, as either an alternative or a complementary tool to traditional di↵erential
equations (ODEs) solvers. This trend, starting from Gillespie’s seminal work [68], has
been supported by a growing number of formalisms aiming to describe biological systems
as stochastic models [21].
Unfortunately, the stochastic modelling and simulation approach is computationally

more expensive than ODEs. Nevertheless, it is still considered attractive for its superior
ability to describe transient and multi-stable behaviours of biological systems: rare or
divergent trends, spikes and families of hypothetical conditions that are typically hidden
in the averaged process described by ODEs.
The high computational cost of stochastic simulations is well known and has led, in

the last two decades, to a number of attempts to accelerate them up by using several
kinds of techniques, such as approximate simulation algorithms and parallel computing.
In this work, this latter approach is taken into account.

1.1 Goals

Since stochastic simulations rely basically on Monte Carlo methods, many independent
instances should be computed to achieve statistically meaningful results. These indepen-
dent instances have been traditionally exploited in an embarrassingly parallel fashion,
executing a partition of the instances on di↵erent platforms over large infrastructures
(e.g. grids, clouds). This approach su↵ers from some drawbacks related to design, per-
formance and usability of simulation tools. A relevant issue is slow time-to-solution as
the single experiment (which is typically repeated several times to fine-tune stochastic
parameters) requires to manage complex interactions with shared environments (enqueue
jobs, deploy initial data, gather results etc.) and post-processing results.
In the meanwhile, the entire hardware industry has moved to multicore, which nowa-

days equips the large majority of computing platforms, included ones constituting large
computing clusters. These platforms, which are increasingly di↵used in scientific labora-
tories, typically o↵er moderate to high peak computational power. This potential power,
however, cannot always be turned into actual application speedup. This flaw becomes
worth of particular attention for I/O and memory-bound applications, since all the cores
usually share the same memory and I/O subsystem.
Indeed, the simulation of biological systems produces a large amount of data, which can

be regarded as streams of data resulting from the on-going simulations. The management
of these streams is not trivial on multicore platforms, as the memory bandwidth cannot
usually sustain a continuous flux of data coming form all the cores at the same time.
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1 Introduction

A related aspect concerns the filtering and the analysis of raw results, which require
the merging of data obtained from di↵erent simulation instances – and possibly their
statistical description or mining – with data reduction techniques. In distributed com-
puting, this phase is often demoted to a secondary aspect in the computation and treated
with o↵-line post-processing tools, frequently not even disclosed in performance results.
The outlined approach is no longer practical because of a number of reasons:

1. the ever-increasing size of produced data burdens on the main weaknesses of mul-
ticore platforms, i.e. memory bandwidth and core synchronisations;

2. the “sequencing” of simulation and analysis phases slow down the design-to-result
process, which is particularly annoying during the tuning of the biological model;

3. the design of the tools is often specifically optimised for a specific parallel platform,
either multicore or distributed (or not optimised at all).

Since the frequency and the size of data moved across the simulation/analysis process
strictly depend by the required accuracy, the simulation and analysis of biological sys-
tems at high-precision happens to be a serious issue on modern shared-memory multicore
(and multicore cluster) platforms.
This work presents a critical rethinking of the parallelisation of the whole simula-

tion/analysis workflow1 in the light of hybrid multicore and distributed platforms. In
this vision, data analysis is managed as an on-line process working on streams of data
resulting from the on-going simulations. This approach has non-trivial e↵ects on tool
design since both the parallel simulator and the parallel analysis should work on (high-
frequency) streams, and requires e�cient data dependencies management (both on dis-
tributed and shared-memory systems). While the execution of multiple Monte Carlo
simulation instances “in insulation” is an embarrassingly parallel process, the whole
simulation-analysis workflow definitively is not.
We also focus on the tools that are required to derive an e�cient simulator from easy

engineering viewpoints. This latter aspect will be of crucial importance for the next
generation of biological tools, that will be prevalently used by bioinformatics scientists,
who are likely to be more interested in the accurate modelling of natural phenomena
rather than on the synchronisation protocols required to build e�cient tools on both
multicore platforms and large distributed execution environments.

1.2 Approach

In this work we investigate parallelism exploitation on tools for Monte Carlo simulation
(and analysis) in several ways:

1. parallelism within a single simulation instance

2. parallelism among (independent) simulation instances

1
in this work we deliberately use the term workflow – instead of the more common pipeline – in order

to abstract its meaning from any implementation pattern.
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1 Introduction

3. parallelism between simulation and analysis stages (i.e. pipeline)

4. parallelism among analysis engines

The goal of point 1 is the parallelisation of the single step of a simulation instance.
This issue has been approached using Single Instruction Multiple Data (SIMD) hardware
accelerators.
The goal of point 2 is the parallel execution of independent simulation instances with

dynamic load balancing, which tends to align instances to the simulation time, thus out-
putting aligned data streams to the analysis module and minimizing alignment bu↵ering.
The data structure on which the alignment is realized is called selective memory. Tech-
nically, a low-level scheduler has been designed which dynamically remaps n simulation
instances over k < n simulation workers at every time quantum. The scheduler prioritizes
“slow” simulation tasks, in order to minimize the gap (naturally induced by random-walk
e↵ect) between execution and simulation times for all the simulation instances.
The goal of point 3 is the concurrent execution of simulation and analysis modules,

i.e. the online statistical filtering of sample streams coming from multiple simulation
instances. Exploited techniques include pipelines and fixed-size sampling windows which,
together with selective memory, allow the realization of memory-e�cient filters based
on partial sample streams. This latter technique is exact for instantaneous estimators
(e.g. sample mean and variance) while it exhibits an arbitrary approximation degree
(depending on the size of the sampling windows) for the engines that work on the whole
data set (e.g. clustering).
The goal of point 4 is the parallel execution of statistical analysis engines. It is

actually an embarrassingly parallel schema, except from those engines which use results
at sampling time tn to initialize the computation at time tn+1 (e.g. clustering).
In order to asses the e↵ectiveness of high-level parallel programming in supporting

e�ciency and performance portability on heterogeneous parallel computing platforms,
the presented guidelines have been actually implemented on top of FastFlow [19], a
high-level stream programming framework targeting hybrid multicore and distributed
platforms.

1.3 Results

A simulator tool for the Calculus of Wrapped Compartments (CWC for short) [50] has
been used as test-bed. CWC is a recently proposed formalism, based on term rewriting,
for the representation of biological systems. The tool has been designed exploiting a
high-level methodology based on parallel patterns on top of the FastFlow programming
framework. The very same design has been used for several variants targeting di↵erent
platforms, namely multicore, multicore cluster, public cloud and federated public cloud.
This easiness of portability has been made possible by the high-level approach, enabled
by the layered FastFlow architecture.
The tool has been implemented in FastFlow/C++ . In the multicore variant, threads

execute in a lock-less fashion (non-blocking multithreading). The distributed variant ex-
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[50] CWC calculus

[8] 1, 2 (multicore)

[7] 3, 4 (multicore)

[18] 2, 3 (distributed)

[3] 2, 3, 4 (multicore)

[20] 2, 3, 4 (cloud)

[120] CWC Simulator tool

Table 1.1: Publications

ploits zero-copy communications provided by the ZeroMQ library and works on TCP/IP
networks. Supported operating systems include GNU/Linux, Mac OS X, Microsoft Win-
dows XP and Windows 7 with di↵erent compilers (gcc, icc, Microsoft Visual Studio).
The tool includes a Bison parser for CWC models and a Java graphical user interface
which displays the output of the statistical analysis.
In order to assess the validity of the approach, the simulation/analysis workflow pro-

vided by the tool has been validated for performance and e↵ectiveness in capturing
biological systems behaviours. Experiments have been conducted, over representative
proof-of-concept biological systems, on multicore, multicore cluster and cloud platforms.

1.4 Publications

Some of the contents of this work have been already published during the development
process. Table 1.1 summarizes the produced publications, with respect to the points
outlined in section 1.2.
The CWC Simulator tool has been released as open source software under LGPL

licence [120].

1.5 Summary

In Chapter 2, we provide some background material about parallel computing (Sec. 2.1)
and systems biology (Sec. 2.2). For the former topic we briefly review parallel com-
puting platforms (2.1.1) and high-level parallel programming frameworks (2.1.2, 2.1.3),
in particular FastFlow (2.1.4) that we use in this work. For the latter topic we intro-
duce the formal modelling (2.2.1) and stochastic simulation (2.2.2) of biological systems
(compared to ODE), reviewing existing modelling languages (2.2.3), simulation tools for
systems biology (2.2.4) and cloud-based tools for bioinformatics (2.2.5).
In Chapter 3, we present CWC, the formal calculus for the stochastic modelling of

biological systems we use in this work. First, we define the syntax and the qualitative
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1 Introduction

aspects of CWC (Sec. 3.1), also providing some modelling guidelines (3.1.4); then we
present a stochastic quantitative model for CWC (Sec. 3.2).
In Chapter 4, we outline the simulation/analysis workflow, which optimisation is the

main topic of this work. First, we discuss on what features a tool should exhibit in order
to support biologists when studying a biological system by way of stochastic simulation
(Sec. 4.1); then we review the most common optimisation approaches, highlighting their
main drawbacks (Sec. 4.2).
In Chapter 5, we use the CWC calculus and its (sequential) simulator core (5.2.1) as

paradigmatic example to discuss the key features required to overcome the issues out-
lined in 4.2 and derive an easy porting on multicore platforms (Sec. 5.1). In particular we
will argument on the technical challenges required by the parallelisation of a single sim-
ulation instance and many independent instances (5.1.1). The key features discussed are
turned into a family of solutions. The former issue is approached using SIMD hardware
accelerators (5.2.2), the latter advocating a novel streamed simulation schema based
on FastFlow accelerator that guarantees both easy development and e�cient execution
(5.2.3).
In Chapter 6 we focus on the analysis stage of the framework. We introduce the

problem of rich on-line analysis of simulation data and the issues posed by dealing with
large (even big) data streams (Sec. 6.1). We discuss the realisation of an e�cient parallel
analysis stage, featuring multiple statistical and mining methods on streamed simulation
outcomes (6.2.2). Finally we put all together, building up the whole CWC Simulator
workflow for multicore platforms (Sec. 6.2).
In Chapter 7 we show how our approach fits on increasingly popular distributed plat-

forms for High Performance Computing (HPC) bioinformatics, namely multicore clus-
ters and public IaaS clouds (7.1). Finally we present the distributed CWC Simulator
workflow (7.2), a very low-e↵ort extension targeting hybrid multicore and distributed
platforms.
In Chapter 8 we evaluate experimentally our approach along two main lines: the ef-

fectiveness of the proposed on-line analysis to capture the behaviour of the simulated
systems (Sec. 8.1), and the e�ciency and speedup of the tool in executing the simula-
tion/analysis workflow on multicore (8.2.2), hybrid multicore cluster (8.2.3) and cloud
(8.2.4) platforms.
In Chapter 9 we give some concluding remarks.
In Appendix A we discuss some aspects related to statistical correctness of the imple-

mented tools; in particular we focus on the correct use of PRNGs, in order to guarantee
the statistical independence of the simulation instances.
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2 Background

In this chapter, we provide some background material.
In Sec. 2.1 we review the most common parallel computing platforms (2.1.1); then we

introduce the problem of e↵ective programming of such platforms exploiting high-level
skeleton-based approaches on multicore (2.1.2) and multicore cluster (2.1.3) platforms;
in particular we present FastFlow (2.1.4), that we use in this work.
In Sec. 2.2 we give a brief introduction to systems biology, modelling of biological

systems (2.2.1) and their stochastic simulation (2.2.2), especially by means of the Gille-
spie SSA algorithm; we review existing modelling languages (2.2.3), simulation tools for
systems biology (2.2.4) and cloud-based tools for bioinformatics (2.2.5).

2.1 Parallel Computing

Computing hardware has evolved to sustain an insatiable demand for high-end perfor-
mances along two basic ways. On the one hand, the increase of clock frequency and the
exploitation of instruction-level parallelism boosted the computing power of the single
processor. On the other hand, many processors have been arranged in multi-processors,
multi-computers, and networks of geographically distributed machines.
Nowadays, after years of continual improvement of single core chips trying to increase

instruction-level parallelism, hardware manufacturers realised that the e↵ort required for
further improvements is no longer worth the benefits eventually achieved. Microprocessor
vendors have shifted their attention to thread-level parallelism by designing chips with
multiple internal cores, known as multicores (or chip multiprocessors).
More generally, it is a matter of fact that parallelism at multiple levels is now the

driving force of computer design across all classes of computers, from small desktop
workstations to large warehouse-scale computers.

2.1.1 Platforms

We briefly recap the review of existing parallel computing platforms from [73].
Following the taxonomy in [66], we can define two main classes of architectures sup-

porting parallel computing:

• Single Instruction stream, Multiple Data streams (SIMD): the same instruction
is executed by multiple processors using di↵erent data streams. SIMD computers
support data-level parallelism by applying the same operations to multiple items
of data in parallel.

12



2 Background

• Multiple Instruction streams, Multiple Data streams (MIMD): each processor
fetches its own instructions and operates on its own data, and it targets task-
level parallelism. In general, MIMD is more flexible than SIMD and thus more
generally applicable, but it is inherently more expensive than SIMD (see 2.1.1).

We can further subdivide MIMD into two subclasses:

– tightly coupled MIMD architectures, which exploit thread-level parallelism
since multiple cooperating threads operate in parallel on the same execution
context;

– loosely coupled MIMD architectures, which exploit request-level parallelism,
where many independent tasks can proceed in parallel “naturally” with little
need for communication or synchronization.

Although it is a very common classification, this model is becoming more and more
coarse, as many processors are nowadays “hybrids” of the classes above (e.g. GPGPU).

SIMD computers

One of the simplest examples of SIMD computers are Intel Streaming SIMD Extensions
(SSE) [75] of the x86 architecture. Processors implementing SSE (with a dedicated
unit) can perform simultaneous operations on multiple operands in a single register. For
example, SSE instructions can simultaneously perform eight 16-bit operations on 128-bit
registers. Advantages of such approach is almost negligible overhead and little hardware
cost, while they are very hard to integrate into existing code, which actually amounts
to writing in assembly language.
An increasingly popular platform specifically targeting data-level parallelism con-

sists in the use of GPU instructions for general-purpose computing, and it is known
as General-Purpose computing on Graphics Processing Units (GPGPU). For a limited
cost, anyone can buy a GPU with hundreds of parallel floating-point units, which makes
high computational power more accessible. Moreover, using specific programming lan-
guages and frameworks (e.g. NVIDIA CUDA [94], OpenCL [78]) partially reduces the
gap between high computational power and easiness of programming, though it still re-
mains a low-level parallel programming approach, since the user has to deal with very
close-to-metal aspects like memory allocation and data movement between the GPU and
the host platform.
GPGPU is not strictly a SIMD architecture. For example, NVIDIA CUDA-enabled

GPUs are based on multithreading, thus they support all types of parallelism; however,
control hardware in these platforms is very limited (e.g. no global thread synchronisa-
tion), making GPGPU more suitable for data-level parallelism.

Symmetric shared-memory multiprocessors

Thread-level parallelism implies the existence of multiple program counters, hence is
exploited primarily through MIMDs. We remark that threads can also be used to support
data-level parallelism, but some overhead is introduced at least by thread communication
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Figure 2.1: Structure of a SMP

and synchronisation. This overhead means the grain size (i.e. the ratio of computation
to the amount of communication) is a key factor for e�cient exploitation of thread-level
parallelism.
The most common MIMD computers are multiprocessors, defined as computers con-

sisting of tightly coupled processors that share memory through a shared address space.
Single-chip systems with multiple cores are known as multicores. Symmetric (shared-
memory) multiprocessors (SMPs) typically feature small numbers of cores (nowadays
eight or fewer), thus it is possible for the processor to share a single centralized memory
that all processors have equal access to (Fig. 2.1). In multicore chips, the memory is
e↵ectively centralized, and all existing multicores are SMPs. SMP architectures are also
sometimes called uniform memory access (UMA) multiprocessors, arising from the fact
that all processors have a uniform latency from memory, even if the memory is organized
into multiple banks.
The alternative design approach consists of multiprocessors with physically distributed

memory, called distributed shared memory (DSM). To support larger processor counts,
memory must be distributed rather than centralized; otherwise, the memory system
would not be able to support the bandwidth demands of processors without incurring
in excessively long access latency. Such architectures are known as nonuniform memory
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access (NUMA), since the access time depends on the location of a data word in memory.

Cache Coherence and False Sharing SMP machines usually support the caching of
both shared and private data, reducing the average access time as well as the memory
bandwidth required. Unfortunately, caching shared data introduces a new problem be-
cause the view of memory held by two di↵erent processors is through their individual
caches, which could end up seeing two di↵erent values. This di�culty is generally re-
ferred to as the cache coherence problem and several protocols have been designed to
guarantee cache coherence. In cache-coherent SMP machines, false sharing is a subtle
source of cache miss, which arises from the use of an invalidation-based coherence al-
gorithm. False sharing occurs when a block is invalidated (and a subsequent reference
causes a miss) because some word in the block, other than the one being read, is written
into. In a false sharing miss, the block is shared, but no word in the cache is actually
shared, and the miss would not occur if the block size were a single word. It is a matter
of fact that false sharing is one of the most di↵used (and underestimated) sources of
performance flaws of parallel computing on cache-coherent SMP platforms.

Clusters and Clouds

In contrast with shared-memory architectures, clusters look like individual computers
connected by a network. Since each processor has its own address space, the memory of
one processor cannot be accessed by another processor without the assistance of software
protocols running on both processors. In such design, message-passing protocols are
used to communicate data among processors. Clusters are examples of loosely coupled
MIMDs. These large-scale systems are typically used for cloud computing with a model
that assumes either massive numbers of independent requests or highly parallel, intensive
compute tasks.
In this work we focus on two classes of large-scale distributed systems:

• Private clouds, in particular multicore clusters, which are inter networked – pos-
sibly heterogeneous – multicore devices.

• Public clouds, which are (physical or virtual) infrastructures o↵ered by providers
in the form of inter networked clusters. In the most basic public cloud model,
providers of IaaS (Infrastructures-as-a-Service) o↵er computers – physical or (more
often) virtual machines – and other resources on-demand. Public IaaS clouds can
be regarded as virtual multicore clusters.

The (public) cloud model encompasses a pay-per-use business model. End users are not
required to take care of hardware, power consumption, reliability, robustness, security,
and the problems related to the deployment of a physical computing infrastructure. In
IaaS cloud usage, the aggregate computing power and storage space are provided to user
applications in an elastic fashion. In principle, they can be scaled up and down according
to user needs, and billed accordingly. The pay-per-use business model is typically applied
in term of the Quality of Service (e.g. performance, latency, storage space) provided by
the service.
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2.1.2 Programming multicores

Shifting from sequential to parallel computing, a trend largely motivated by the advent of
multicore platforms, does not always translate into greater CPU performance: multicores
are small-scale but full-fledged parallel machines and they retain many of their usage
problems. In particular, sequential code will get no performance benefits from them.
A workstation equipped with a quad-core CPU but running sequential code is wasting
3/4 of its computational power. Developers are then facing the challenge of achieving a
trade-o↵ between performance and human productivity (total cost and time to solution)
in developing and porting applications to multicore and parallel platforms in general.
Therefore e↵ective parallel programming happens to be a key factor for e�cient par-

allel computing, as we shall see in the following discussion.

Types of parallelism

Traditionally, types of parallelisms are categorised in three main classes:

• Task Parallelism. Parallelism is explicit in the algorithm and consists of running
the same or di↵erent code on di↵erent executors (cores, processors, etc.). Di↵erent
flows-of-control (threads, processes, etc.) communicate with one another as they
work. Communication takes place usually to pass data from one thread to the next
as part of a graph.

• Data Parallelism is a method for parallelising a single task by processing inde-
pendent data elements of this task in parallel. The flexibility of the technique
relies upon stateless processing routines implying that the data elements must be
fully independent. Data Parallelism also supports Loop-level Parallelism where
successive iterations of a loop working on independent or read-only data are par-
allelised in di↵erent flows-of-control (according to the model co-begin/co-end) and
concurrently executed.

• Stream Parallelism is a method for parallelising the execution (a.k.a. filtering) of
a stream of tasks by segmenting each task into a series of sequential1 or parallel
stages. This method can be also applied when there exists a total or partial order,
respectively, in a computation preventing the use of data or task parallelism. This
might also come from the successive availability of input data along time (e.g.
data flowing from a device). By processing data elements in order, local state
may be either maintained in each stage or distributed (replicated, scattered, etc.)
along streams. Parallelism is achieved by running each stage simultaneously on
subsequent or independent data elements.

In this work we are interested mainly in stream parallelism, since it underlies a large
spectrum of parallel applications. In particular, stochastic simulation tools produce
outcomes that can be naturally regarded as data streams.

1
In the case of total sequential stages, the method is also known as Pipeline Parallelism.
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Low-level approach

Typically, low-level approaches provide the programmers only with primitives for flows-
of-control management (creation, destruction), their synchronisation and data sharing,
which are usually accomplished in critical regions accessed in mutual exclusion (mutex).
As an example, POSIX thread library can be used to this purpose. Programming parallel
complex applications is this way is certainly hard; tuning them for performance is often
even harder due to the non-trivial e↵ects induced by memory fences (used to implement
mutex) on data replicated in core’s caches.
Indeed, memory fences are one of the key sources of performance degradation in com-

munication intensive (e.g. streaming) parallel applications. Avoiding memory fences
means not only avoiding locks but also avoiding any kind of atomic operation in memory
(e.g. Compare-And-Swap, Fetch-and-Add). While there exists several assessed fence-free
solutions for asynchronous symmetric communications2, these results cannot be easily
extended to asynchronous asymmetric communications3, which are necessary to support
arbitrary streaming networks. This ability is one of the core features of FastFlow (2.1.4).
A first way to ease programmer’s task and improve program e�ciency consists in

raising the level of abstraction of concurrency management primitives. As an example,
threads might be abstracted out in higher-level entities that can be pooled and scheduled
in user space possibly according to specific strategies to minimise cache flushing or
maximise load balancing of cores. Synchronisation primitives can be also abstracted out
and associated to semantically meaningful points of the code, such as function calls and
returns, loops, etc. Intel Threading Building Block (TBB) [76], OpenMP [97], and Cilk
[46] all provide this kind of abstraction (even if each of them in its own way).
This kind of abstraction significantly simplifies the hand-coding of applications but it

is still too low-level to e↵ectively (semi-)automatise the optimisation of the parallel code.
Moreover, the above-mentioned programming framework for multicore architectures are
not specifically designed to support streaming applications.

Skeleton-based approach

In order to reduce complexity and simultaneously providing the user with a higher level
of abstraction, algorithmic skeletons have been proposed [47]. They provide predefined
parallel computation and communication patterns, hiding the parallelism management
to the user.
Some basic forms of parallelism above have been encoded in high-level patterns (a.k.a.

skeletons), that capture common parallel programming paradigms (e.g. MapReduce,
ForAll, Divide & Conquer, etc.) and make them available to the programmer as high-
level programming constructs equipped with well-defined functional and extra-functional
semantics [11]. Many skeletons appeared in literature in the last two decades covering
many di↵erent usage schema of the three classes of parallelism, on top of both the mes-
sage passing [48, 55, 116, 5, 16, 34, 102, 12, 56, 9] and shared memory [1, 76] programming

2
Single-Producer-Single-Consumer (SPSC) queues [81].

3
Multiple-Producer-Multiple-Consumer queues (MPMC).
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models.
The algorithmic skeleton community has proposed various programming frameworks,

aimed at providing the application programmer with very high-level abstractions com-
pletely encapsulating parallelism exploitation patterns and solving most of the problems
mentioned above [47, 69]. Initial skeleton-based programming frameworks targeted only
cluster/network of workstations. More recently, some of the existing frameworks have
been extended in such a way that (clusters of) multicores may also be exploited.

Skeletons for stream parallelism

A stream-parallel program can be naturally represented as a graph of independent stages
(kernels or filters) which communicate over data channels. Conceptually, a streaming
computation represents a sequence of transformations on the data streams in the pro-
gram. Each stage of the graph reads one or more tasks from the input stream, applies
some computation, and writes one or more output tasks to the output stream. Paral-
lelism is achieved by running each stage of the graph simultaneously on subsequent or
independent data elements.
Several skeletons exists that support stream-parallel programming.
The pipeline skeleton is one of the most widely-known, although sometimes it is under-

estimated. Parallelism is achieved by running each stage simultaneously on subsequent
data elements, with the pipeline’s throughput being limited by the throughput of the
slowest stage.
The farm skeleton models functional replication and consists in running multiple in-

dependent stages in parallel, each operating on di↵erent tasks of the input stream. The
farm skeleton is typically used to improve the throughput of slow stages of a pipeline.
It can be better understood as a three stage – emitter, workers, collector – pipeline.
The emitter dispatches stream items to a set of workers, which independently elaborate
di↵erent items. The output of the workers is then gathered by the collector into a single
stream. These logical stages are considered by a consolidated literature as the basic
building blocks of stream programming.
The loop skeleton (also known as feedback), provides a way to generate cycles in a

stream graph. This skeleton is typically used together with the farm skeleton to model
recursive and Divide&Conquer computations.
Several languages and libraries are available for programming stream applications.

Some of them, e.g. CUDA and OpenCL, are very close to the metal and cannot be
considered as high-level languages. Some others provide programmers with a higher
level of abstraction, but are oriented to coarse grain computations (e.g. ASSIST [126, 4],
StreamIt [124], Brook [38]). Not many succeed to target streams, even at medium or fine
grain with a high-level programming model, inter-alia Intel Threading Building Blocks
(TBB) [76] and FastFlow (2.1.4).
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2.1.3 Programming multicore clusters

Programming tools and frameworks are needed for e�ciently target the architectures
hosting inter networked – possibly heterogeneous – multicore devices, which appear to
be the reference architecture ferrying programmers from the mainly sequential to mainly
parallel programming era [27]. The urgency is even more crucial given that both grids
and clouds provide application programmers with the possibility to reserve collections of
multicores to support parallel applications eventually presented as (or orchestrated by)
web services.
Shared-memory multicores and clusters/networks of (virtualised or not) processing

elements require quite di↵erent techniques and tools to support e�cient parallelism ex-
ploitation. The de facto standard tools in the two cases are OpenMP [97] and MPI [96],
used either alone or in conjunction. Despite being very e�cient on some classes of appli-
cations, OpenMP and MPI share a common set of problems: poor separation of concerns
among application and system aspects, a rather low level of abstraction presented to the
application programmers and poor support for really fine grained applications. These
are all considerations that hinder the ease of use of MPI and OpenMP.
At the moment it is not clear if the mixed MPI/OpenMP programming model always

o↵ers the most e↵ective mechanisms for programming clusters of SMP systems [39]. Fur-
thermore, when directly using communication libraries such as MPI, the abstraction level
is rather low. The programmer has to think about decomposing the problem, integrating
the partial solutions, and bother with communication problems such as deadlocks and
starvation.
Therefore we advocate the use of high-level parallel programming frameworks target-

ing hybrid multicore and distributed platforms as a vehicle for building e�cient parallel
software – possibly derived semi-automatically from sequential code – featuring perfor-
mance portability over heterogeneous parallel platforms.

2.1.4 FastFlow

FastFlow [19] is a structured skeleton-based parallel programming framework originally
designed for cache-coherent shared-memory multicore platforms. It has been recently
extended to support distributed systems and cloud [6].
The key vision of FastFlow is that ease-of-development and runtime e�ciency can

both be achieved by raising the abstraction level of the design phase, thus providing
developers with a set of parallel programming patterns (skeletons). They include stream-
oriented patterns (farm, farm-with-feedback and pipeline) and data-parallel patterns
(map, reduce). The predefined patterns provided by FastFlow may be customised in
di↵erent ways. For example, default patterns may be arbitrarily nested in order to get
pipelines with farm stages and vice-versa. Using the customisation features, di↵erent
higher-level patterns may be implemented, such as Divide&Conquer, map and reduce
patterns [15].
From the performance viewpoint, one distinguishing feature at the core of FastFlow

is that it supports lock-free (fence-free) Multiple-Producer-Multiple-Consumer (MPMC)
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Figure 2.2: Layered FastFlow design

queues [17] able to support low-overhead high-bandwidth multi-party communications on
multicore architectures, i.e. any streaming network, including cyclic graphs of threads.
The key intuition underneath FastFlow is to provide the programmer with lock-free
MP queues and MC queues (that can be used in pipeline to build MPMC queues)
to support fast streaming networks. Traditionally, MPMC queues are built as passive
entities: threads concurrently synchronise (according to some protocol) to access data;
these synchronisations are usually supported by one or more atomic operations (e.g.
Compare-And-Swap) that behave as memory fences. FastFlow design follows a di↵erent
approach: in order to avoid any memory fence, the synchronisations among queue readers
or writers are arbitrated by an active entity (e.g. a thread). We call these entities
Emitter (E) or Collector (C) according to their role; they actually read an item from
one or more lock-free SPSC queues and write onto one or more lock-free SPSC queues.
This requires a memory copy but no atomic operations. The performance advantage of
this solution descends from the higher speed of the copy with respect to the memory
fence, that advantage is further increased by avoiding cache invalidation triggered by
fences. This also depends on the size and the memory layout of copied data. The former
point is addressed using data pointers instead of data, and enforcing that the data is not
concurrently written: in many cases this can be derived by the semantics of the skeleton
that has been implemented using MPMC queues (as an example this is guaranteed in a
stateless farm and many other cases).
FastFlow design is layered (see Fig. 2.2). The lower layer, called simple streaming

20



2 Background

1 class ↵ node {
2 protected:
3 virtual bool push(void⇤ data) { return qout�>push(data);}
4 virtual bool pop(void⇤⇤ data) { return qin�>pop(data);}
5 public:
6 virtual void⇤ svc(void ⇤ task) = 0;
7 virtual int svc init () { return 0; };
8 virtual void svc end() {}
9 ...

10 private:
11 SPSC⇤ qin;
12 SPSC⇤ qout;
13 };

Figure 2.3: FastFlow’s ff_node class schema

networks, basically provides two basic abstractions:

• process-component, i.e. a control flow realised with POSIX threads and processes,
for multicore and distributed platforms respectively.

• 1-1 channel, i.e. a communication channel between two components, realised with
wait-free single-producer/single-consumer queues (FF-SPSC) [14] and zero-copy
ZeroMQ channels [127] for multicore and distributed platforms, respectively.

Both realisations of the 1-1 channel are the top of the state-of-the-art in their classes,
in terms of latency and bandwidth. As an example, FF-SPSC exhibits a latency down
to 10 ns per message on a standard Intel Xeon @2.0GHz [14]. ZeroMQ is an LGPL
open-source communication library [127]. It provides the user with a socket layer that
carries whole messages across various transports: inter-thread communications, inter-
process communications, TCP/IP and multicast sockets. ZeroMQ o↵ers an asynchronous
communication model, which provides a quick construction of complex asynchronous
message-passing networks, with reasonable performance. The message API o↵ers the
possibility to perform zero-copy sends and and non-blocking calls to the socket layer.

Above this mechanism, the second layer – called arbitrary streaming networks – further
generalizes the two concepts, providing:

• FastFlow node, i.e. the basic unit of parallelism that is typically identified with a
node in a streaming network. It is used to encapsulate sequential portions of code
implementing functions, as well as high-level parallel patterns such as pipelines
and farms. From the implementation viewpoint, the ff_node C++ class realizes a
node in the shared-memory scenario and the ff_dnode extends it in the distributed
memory setting. (see Fig. 2.3).

• collective channel, i.e. a collective communication channel, either among ff_nodes
or many ff_dnodes.
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unicast unidirectional point-to-point communication between two peers

broadcast sends the same input data to all connected peers

scatter sends di↵erent parts of the input data, typically partitions, to all con-
nected peers

onDemand the input data is sent to one of the connected peers, the choice of which
is taken at run-time on the basis of the actual work-load

fromAll a.k.a. all-gather, collects di↵erent parts of the data from all connected
peers combining them in a single data item

fromAny collects one data item from one of the connected peers

Table 2.1: Collective communication patterns among ff_dnodes

Eventually, the third layer provides the farm, pipeline and other parallel patterns as
C++ classes.
Each ff_node is used to run a concurrent activity in a component, and it has associated

two channels: one used to receive input data (pointers) to be processed and one to deliver
the (pointers to the) computed results. The svcmethod encapsulates the computation to
be performed on each input datum to obtain the output result. svc_init and svc_end

methods are executed when the application is started and before it is terminated. The
three methods constitute the only thing the programmer has to provide to instantiate
an ff_node.
In the current version (see Fig. 2.2), which supports distributed platforms, many

graphs of ff_nodes can be connected by way of ff_dnodes (which support network
collective channels), thus providing a useful abstraction for e↵ective programming of
hybrid multicore and distributed platforms.
A ff_dnode’s external channel can be specialized to provide di↵erent patterns of

communication. The set of communication collectives allows one to provide exchange
of messages among a set of distributed nodes, using well-known predefined patterns.
The semantics of each communication pattern currently implemented are summarized
in Table 2.1.
FastFlow programming model is based on streaming of pointers, which are used as

synchronisation tokens. This abstraction is kept also in the distributed version (i.e.
across network channels) by way of two auxiliary methods provided by ff_dnode for
data marshalling and unmarshalling. These (virtual) methods provide the programmers
with the tools to serialise and de-serialise data flowing across ff_dnodes. The hand-
made serialisation slightly increases the coding complexity (e.g., with respect to Java
automatic serialisation) but makes it possible to build very e�cient network channels.
As a matter of a fact, the lesson learned from Java RMI is that automatic serialisation
and high-performance can be hardly coupled.
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2.2 Systems Biology and Computer Science

The recent, often astonishing developments in biology have produced a huge amount of
data on the structure of living matter; consider e.g. the success of the human genome
project. Less instead is known on the versatile biological functions that cells and their
components display. Consequently, in the last years we have seen a shift from structure
to functionality, and the growth of a new paradigm, that moves from the classical re-
ductionist approach to a system level understanding of life. It is called systems biology.
We can describe it as the systematic study of an organism, viewed as an integrated
and interacting network of components. Instead of analyzing individual aspects of the
organism, systems biology takes a holistic approach, focusing on all the components and
the interactions among them, all as part of one system.
There is a general understanding in the scientific community that computer science

will be as indispensable for biology as mathematics has been for physics. E.g., mapping
the human genome would be impossible without computers, algorithms and syntax to
model structures: it has been crucial representing DNA as a formal language over a four
character alphabet and using search and matching algorithms over strings. Much in
the same way, computer science appears to be essential for understanding the behavior
of living organisms: passing from structure to functions amounts to equipping syntax
with semantics. Indeed, biological systems are often described as entities (syntax) that
change their state because of the occurrence of (bio-chemical) interactions, giving rise
to some observable behavior (semantics).

2.2.1 Modelling biological systems

The most common approaches used by biologists to describe biological systems have
been mainly based on the use of deterministic mathematical means like, e.g., Ordinary
Di↵erential Equations (ODEs for short). ODEs make it possible to abstractly reason on
the behaviour of biological systems and to perform a quantitative in silico investigation.
However, this kind of modelling becomes more and more di�cult, both in the specifica-
tion phase and in the analysis processes, when the complexity of the biological systems
taken into consideration increases. More recently, the observation that biological sys-
tems (for example in the case of chemical instability) are inherently stochastic [64], has
led a growing interest in the stochastic modelling of chemical kinetics.
Besides, the concurrently interacting structure of biological systems has inspired the

possibility to describe them by means of formalisms developed in Computer Science for
the description of computational entities [108]. Di↵erent formalisms have either been
applied to (or have been inspired from) biological systems. Automata-based models [21,
90] have the advantage of allowing the direct use of many verification tools such as model
checkers. Rewrite systems [54, 104, 30] usually allow describing biological systems with
a notation that can be easily understood by biologists. Process calculi, including those
commonly used to describe biological systems [108, 103, 40], have the advantage of
being compositional, but their way of describing biological entities is often less intuitive.
Quantitative simulations of biological models represented with these kind of frameworks
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Figure 2.4: Integration of in silico simulations into the biological analysis process

(see, e.g. [103, 57, 80, 29, 58, 51]) are usually developed via a stochastic method derived
from Gillespie’s algorithm [68]. These formalisms, in fact, are mainly used to represent
interactions between complex biological structures like cells, bacteria or genes whose
results would be hard to validate in the ODE approach.

2.2.2 Simulation of biological systems

The stochastic simulation of biological systems is an increasingly popular technique in
bioinformatics, as either an alternative or a complementary tool to traditional di↵erential
equations (ODEs) solvers. This trend has started from Gillespie’s seminal work [68]
(which is recapped below), in which the validity of the simulation approach is firmly
assessed.
Thus, one of the most relevant contributions provided by computer science to sys-

tems biology regards the ability of running in silico simulations over biological systems
modelled through some formalism. Figure 2.4 shows the integration schema of in silico
simulations into biological analysis processes.

Gillespie SSA

The general problem studied by systems biology is to determine the status of the mod-
elled system along its time evolution. More precisely, given the initial state of the
modelled system and the set of reactions which can occur, we want to determine the
status of the system at a later time.
The traditional way of treating this problem is to translate it into the mathematical

language of ordinary di↵erential equations (ODEs) and solve them. According to [68],
this approach introduces some approximation induced by assuming that the time evolu-
tion of the reacting system is both continuous (i.e. population levels take values from R)
and deterministic. However, the time evolution of a reacting system is not a continuous
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process, because molecular population levels obviously can change only by discrete inte-
ger amounts. Moreover, fairly simple kinetic theory arguments show that the stochastic
formulation of chemical kinetics has a firmer physical basis than the deterministic for-
mulation.
Computing a solution for the stochastic formulation of a problem by solving the mas-

ter equation (which gives, over the time, the probability for the system to be in a certain
state), is unfeasible, since the master equation is often mathematically intractable. Gille-
spie’s direct method (also known as stochastic simulation alogrithm, SSA for short) uses
a Monte Carlo procedure to numerically simulate the time evolution of the given system.
It works on a stochastic formulation of chemical kinetics that is based on the theory

of collisions and that assumes a stochastic reaction constant cµ for each considered
chemical reaction Rµ. The reaction constant cµ is such that cµdt is the probability that
a particular combination of reactant molecules of Rµ will react in an infinitesimal time
interval dt.
The probability that a reaction Rµ will occur in the whole solution in the time in-

terval dt is given by cµdt multiplied by the number of distinct Rµ molecular reactant
combinations. For instance, the reaction

R1 : S1 + S2 ! 2S1

will occur in a solution with X1 molecules S1 and X2 molecules S2 with probability

X1X2c1dt

Instead, the inverse reaction
R2 : 2S1 ! S1 + S2

will occur with probability
✓
X1

2

◆
c2dt =

X1(X1 � 1)

2!
c2dt

The number of distinct Rµ molecular reactant combinations is denoted with hµ, hence,
the probability of Rµ to occur in dt (denoted with aµdt) is

aµdt = hµcµdt

Now, assuming that S1, . . . , Sn are the only molecules that may appear in a chemical
solution, a state of the simulation is a tuple (X1, . . . , Xn) representing a solution con-
taining Xi molecules Si with i = 1, . . . , n. Given a state (X1, . . . , Xn), a set of reactions
R1, . . . , RM , and a value t representing the current time, Gillespie’s algorithm performs
two steps:

1. The time t + ⌧ at which the next reaction will occur is randomly chosen with ⌧
exponentially distributed with parameter

PM
⌫=1 a⌫ ;

2. The reaction Rµ that has to occur at time t+⌧ is randomly chosen with probability
aµdt.
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The function Pg(⌧, µ)dt represents the probability that the next reaction will occur in
the solution in the infinitesimal time interval (t+ ⌧, t+ ⌧ + dt) and will be Rµ. The two
steps of the algorithm imply

Pg(⌧, µ)dt = P 0
g (⌧) · a⌧dt

where P 0
g (⌧) corresponds to the probability that no reaction occurs in the time interval

(t, t+ ⌧). Since P 0
g (⌧) is defined as

P 0
g (⌧) = e(�

PM
⌫=1 a⌫⌧)

we have, for 0  ⌧ < 1,

Pg(⌧, µ)dt = e(�
PM

⌫=1 a⌫⌧) · aµdt
Finally, the two steps of the algorithm can be implemented in accordance with Pg(⌧, µ)

by choosing ⌧ and µ as follows:

⌧ =

 
1

PM
⌫=1 a⌫

!
ln

✓
1

r1

◆

µ = the integer for which
µ�1X

⌫=1

a⌫ < r2

MX

⌫=1

a⌫ 
µX

⌫=1

a⌫

where r1, r2 2 [0, 1] are two real values generated by a random number generator. After
the execution of the two steps, the clock has to be updated to t+ ⌧ and the state has to
be modified by subtracting the molecular reactants and adding the molecular products
of Rµ.

2.2.3 Calculi for systems biology

In this section we will put CWC (Chapter 3) in the framework of qualitative and stochas-
tic models for the description and analysis of biological systems.

Qualitative Models

In the last few years many formalisms originally developed by computer scientists to
model systems of interacting components have been applied to Biology. Among these,
there are Petri Nets [90], Hybrid Systems [21], and the ⇡-calculus [103, 52, 109]. More-
over, new formalisms have been defined for describing biomolecular and membrane inter-
actions [30, 40, 42, 54, 57, 107]. Others, such as P systems [104], have been proposed as
biologically inspired computational models and have been later applied to the description
of biological systems.
The ⇡-calculus and new calculi based on it [57, 107] have been particularly successful

in the description of biological systems, as they allow describing systems in a composi-
tional manner. Interactions of biological components are modelled as communications on
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channels whose names can be passed; sharing names of private channels allows describing
biological compartments.
These calculi o↵er very low-level interaction primitives, but may cause the models

to become very large and di�cult to read. Calculi such as those proposed in [40, 42,
54] give a more abstract description of systems and o↵er special biologically motivated
operators. However, they are often specialised to the description of some particular kinds
of phenomena such as membrane interactions or protein interactions.
P systems [104] have a simple notation and are not specialised to the description of

a particular class of systems, but they are still not completely general. For instance,
it is possible to describe biological membranes and the movement of molecules across
membranes, and there are some variants able to describe also more complex membrane
activities. However, the formalism is not so flexible to allow describing easily new activ-
ities observed on membranes without extending the formalism to model such activities.
CWC can describe situations that cannot be easily captured by the previously men-

tioned formalisms, which consider membranes as atomic objects (extensions of P sys-
tems with objects on membranes can be found in [37, 41]). Representing the membrane
structure as a multiset of the elements of interest allows the definition of di↵erent func-
tionalities depending on the type and the number of elements on the membrane itself.
Danos and Laneve [54] proposed the -calculus. This formalism is based on graph

rewriting where the behaviour of processes (compounds) and of set of processes (solu-
tions) is given by a set of rewrite rules which account for, e.g., activation, synthesis and
complexation by explicitly modelling the binding sites of a protein.
CLS [30] has no explicit way to model protein domains (however they can be encoded,

and a variant with explicit binding has been defined in [28, 22]), but accounts for an
explicit mechanism (the looping sequences) to deal with compartments and membranes.
Thus, while the -calculus seems more suitable to model protein interactions, CLS allows
for a more natural description of membrane interactions. Another feature lacking in
many other formalisms is the capacity to express ordered sequences of elements. While
we might encode ordered structures in CWC with nested compartments, CLS o↵ers such
a feature in an explicit way, thus allowing to naturally operate over proteins or DNA
fragments which should be frequently defined as ordered sequences of elements.

Stochastic Models

The stochastic semantics of CWC is defined in terms of the collision-based paradigm
introduced by Gillespie. A similar approach is taken in the quantitative variant of the
-calculus ([53]) and in BioSPi ([103]). In [80], a stochastic semantics for bigraphs has
been developed. An application in the field of systems biology has been provided by
modelling a process of membrane budding. Compartmentalised stochastic simulations,
addressing the problem of dynamic structure, have also been investigated in the domain
of P systems, see, e.g., [99, 121].
A stochastic semantics for CLS (SCLS) has been defined in [29]. Such a semantics

computes the transition rates by resorting to a complete counting mechanism to detect all
the possible occurrences of patterns within a term. CWC rules, similar to what happens
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in [121] for P systems, in Bio-PEPA [44], in [36] for a variant of the ambient calculus and
in [59] for CLS, are equipped with rate functions, rather than with rate constants. Such
functions may allow the definition of kinetics that are more complex than the standard
mass-action ones. In particular, equipping the rewrite rules with a function leads to the
definition of a stochastic semantics that can abstract from the classical one based on
collision analysis (based on constant rates and practical for a very low level analysis,
for example chemical interactions), and allows defining more complex rules (for higher
simulation levels, for example cellular or tissue interactions) which might follow di↵erent
probability distributions.
CWC has been originally proposed in [51] as a variant of (S)CLS with the aim of

strongly simplifying the development of e�cient automatic tools for the analysis of bio-
logical systems, while keeping the same expressiveness. The main simplification consists
in the removal of the sequencing operator, thus lightening the formal treatment of the
patterns to be matched in a term (whose complexity in SCLS is strongly a↵ected by
the variables matching in the sequences). Then, in [49] CWC has been extended with
compartment labels, a feature that is not present in (S)CLS.
BioAmbients [107], is a calculus in which biological systems are modelled using a

variant of the ambient calculus. In BioAmbients both membranes and elements are
modelled by ambients, and activities by capabilities (enter, exit, expel, etc.). In [36],
BioAmbients are extended by allowing the rates associated with rules to be context
dependent. Dependency is realised by associating to a rule a function which is evaluated
when applying the rule, and depends on the context of the application. The context
contains the state of the sibling ambients, that is the ambients in parallel in the innermost
enclosing ambient (membrane). The property of the context used to determine the value
of the function is its volume that synthesises (with a real number) the elements present
in the context.
MGS [67, 91], is a domain specific language for simulation of biological processes. The

state of a dynamical system is represented by a collection. The elements in the collection
represent either entities (a subsystem or an atomic part of the dynamical system) or
messages (signal, command, information, action, etc.) addressed to an entity. The
dynamics is defined by rewrite rules specifying the collection to be substituted through
a pattern language based on the neighbourhood relationship induced by the topology of
the collection. It is possible to specify stochastic rewrite strategies. In [92], this feature
is used to provide the description of various models of the genetic switch of the � phage,
from a very simple biochemical description of the process to an individual-based model
on a Delaunay graph topology.
Finally, the recent framework proposed by Oury and Plotkin [95] is based on stochas-

tic multi-level multiset rewriting and is similar to CWC. Their models, constructed from
species and agents (representing, respectively, atoms and compartments in CWC) evolve
according to a stochastic semantics associating rates to rewrite rules. As pointed out
in [95], the main di↵erence with respect to CWC is that the analysis is strongly term
rewriting oriented and compartment wrappings may not be specified explicitly (an en-
coding based on nested agents is shown to do the work).
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2.2.4 Tools for systems biology

In this section, we will put the CWC Simulator tool in the framework of the tools for the
simulation of biological systems. In particular, we will focus on tools exploiting parallel
computing.
In the field of biological modeling, tools such as SPiM [101] and Dizzy [105] have been

used to capture first order approximations to system dynamics using a combination of
stochastic simulations and di↵erential equation approximations. SPiM has long been
the standard tool for simulating stochastic ⇡ calculus models.
Bio-PEPA [45] is a timed process algebra designed for the description of biological

phenomena and their analysis through quantitative methods, such as stochastic simula-
tions and probabilistic model-checking. Two software tools are available for modelling
with Bio-PEPA: the Bio-PEPAWorkbench and the Bio-PEPA Eclipse Plugin.
The parallelisation of stochastic simulators has been extensively studied in the last two

decades. Many of these e↵orts focus on hybrid multicore and distributed architectures.
The Swarm algorithm [106], which is well suited for biochemical pathways optimiza-

tion, has been used in a distributed environment – e.g., in Grid Cellware [60], a grid-based
modelling and simulation tool for the analysis of biological pathways that o↵ers an in-
tegrated environment for several mathematical representations, ranging from stochastic
to deterministic algorithms.
DiVinE is a general distributed verification environment meant to support the devel-

opment of distributed enumerative model-checking algorithms, including probabilistic
analysis features used for biological systems analysis [32].
StochKit [100] is a C++ stochastic simulation framework. Among other methods,

it implements the Gillespie algorithm and in its second version it targets multicore
platforms. It is therefore similar to our work. Anyway, it does not implement on-line
trajectory reduction, which is performed in a post-processing phase.
In [77] a parallel computing platform has been employed to simulate a large bio-

chemical network in hundreds di↵erent cellular volumes using Gillespie SSA on multiple
processors. Parallel computing techniques made it possible to run massive simulations in
reasonable computational times, but the analysis of the simulation results to characterize
the intrinsic noise of the network has been done as a post-processing step.
The Hy3S software package [111], that includes hybrid stochastic simulation algo-

rithms, and SRSim [70], that performs rule-based spatial modelling, are both embar-
rassingly parallelised by way of the MPI (Message Passing Interface) library. In this
case, high latencies and communication connection problems of the computing clusters
could decrease the speed e�ciency.
In [86], the authors propose an adaptation for GPGPUs of the Gillespie SSA by way

of the NVIDIA CUDA framework aiming to compute in parallel di↵erent trajectories
(i.e. di↵erent simulation instances). The implementation, tested on two simple models,
shows remarkable speedups compared to the execution on a single-core workstation. The
implementation, which is hand-optimized for the specific architecture, is hardly portable
on other platforms and does not implement any kind of on-line trajectory reduction.
The latter problem specifically requires e�cient global synchronization mechanisms that
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Tool Calculus Simulation Schema Parallelism Data Analysis

CWC Simulator CWC Gillespie FastFlow online statistics

SPiM ⇡-calculus Gillespie none none

Dizzy Reaction Model Gillespie, Gibson-Bruck, ⌧-leap, ODE none none

BioPEPA Process Algebra ODE, Gillespie none none

Cellware Reaction Model Gillespie, Gibson-Bruck, ODE none none

DiVinE Model Checker ODE MPI none

StochKit Reaction Model Gillespie, ⌧-leap MPI post-processing

StochKit2 Reaction Model Gillespie, ⌧-leap POSIX threads post-processing

Hy3S Reaction Model Gibson-Bruck, Hybrid MPI post-processing

Li and Petzold’s Reaction Model Gillespie CUDA none

StochSimGPU Reaction Model Gillespie, Gibson-Bruck, Li CUDA post-processing

Table 2.2: Comparison of some simulation tools for systems biology

are missing in GPGPUs.
StochSimGPU [79] exploits GPUs for parallel stochastic simulations of biological sys-

tems. The tool allows to compute averages and histograms of the molecular populations
across the sampled realizations on the GPU. The tool relies on a GPU-accelerated version
of the Matlab framework, which can be hardly compared in flexibility and performance
with a C++ implementation.
A schematic comparison of the main features of the tools cited above is reported in

Table 2.2.

2.2.5 Bioinformatics in the cloud

The cloud has the potentiality to become an enabling technology for bioinformatics and
computational biology. It can seamlessly provide applications and their users with large
amount of computing power and storage in an elastic and on-demand fashion. This
naturally meets the need of simple availability of processing large amount of heteroge-
neous data, of storing massive amount of data and of using the existing tools in di↵erent
fields of bioinformatics. The ability of managing the whole data set in the cloud, as we
advocate in this work, has been widely recognized as necessary for next generation bioin-
formatics [123]. As an example, the typical workflow of DNA sequencing [114] foresees
that biologists design the experiments and send samples to sequencing centres, which
make available raw data (through specific services, such as FTP, HTTP) to biologists,
who have to download and use terabytes of data. At the same time, biologists copy the
data into local machines for being used by bioinformatics scientists for the subsequent
data analysis. This typical workflow implies that large (possibly big) amount data are
moved several times from sites to sites, thus slowing down the analysis and the interpre-
tation of the results. These multiple data movements can be partially or entirely avoided
by moving the whole workflow in the cloud.
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Cloud tools for bioinformatics

DNA sequencing and sequence alignment are classic examples of computational biology
application in which having computing power as more as possible is never enough [85].
Examples of these applications are: Crossbow [83], a software pipeline for genome re-
sequencing analysis which runs in the cloud (according to a MapReduce paradigm [128])
on top of Hadoop [25]; CloudBurst [113], which accomplishes mapping of next-generation
sequence data to the human genome for a variety of biological experiments (e.g. SNP
discovery and genotyping) achieving a significant speedup with respect to sequential ex-
ecution, and Myrna [82], a di↵erential gene expression calculation tool in large RNA-Seq
datasets that integrates all the RNA sequencing steps (read alignment, normalisation,
aggregation and statistical modelling) in a single cloud-based computational pipeline.
DNA sequencing is not the only bioinformatics application field for which the cloud

has been adopted. Another example is in-silico organ modelling, which is a relatively new
method for studying the development and functionality of human, and not only, body
parts with computers. In [110], for example, a model of the human liver is emulated in a
cloud-based system where each liver lobule is represented by Monte Carlo samples. By
using this architecture, the authors demonstrate that the parallel computing paradigm
permits to develop systems emulating organs with functionalities equivalent to those
of an in-vitro specimen. A multi-scale model for the progression of pancreatic cancer
that can be executed on a cloud platform is presented in [63]. This platform is de-
signed for the needs of life science and pharmaceutical research allowing the integration
of physiologically based and classical approaches to model drug pharmacokinetics and
pharmacodynamics as well as metabolic and signalling networks.
Protein folding simulation is another notable example of calculation intensive process.

In particular, it is the process that converts a two-dimensional unfolded polypeptide in
a three dimensional structure. Folding@home initiative [122] attempted to attack the
problem via opportunistic computing, distributing tasks to Internet users. Although
Folding@home can be executed on a multitude of hardware platforms, given the un-
reliability of internet computer clients, the performance of the project is hindered by
errors in the local network or the computers themselves wasting, otherwise useful, com-
puter resources. The Microsoft@home project permits the execution of generic scientific
computer-intensive applications, including Folding@home, in the cloud.
Simulation modelling of biological processes is the backbone of systems biology and

discrete stochastic models are particularly e↵ective for describing molecular interaction
at di↵erent levels [43]. Nevertheless, it is common knowledge that these types of stochas-
tic simulations, as for instance the Monte Carlo ones, are computationally intensive, and
among the bioinformatics applications they are the ones that could benefit from dis-
tributed implementations on the cloud.
Despite the evident advantages of carrying out simulations on the cloud, at the mo-

ment, cloud based simulators occur at a slow pace and the scientific community is not
fully exploiting the opportunity to grasp the potential of the cloud paradigm. While im-
plementations and services for Monte Carlo simulations on the cloud [63, 117, 62, 125, 93]
are few, the convenience of having virtually unlimited resources will make the cloud plat-
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System Description Used resources Cloud Data Analysis

CloudBurst System to map sequence
data to a reference genome

Apache Hadoop Amazon
EC2

Source code to be compiled
and executed on a Hadoop
cluster

Bayer Computa-
tional Systems
Biology Software
Suite [33]

Platform for computa-
tional biology by inte-
grating body physiology,
disease biology and molec-
ular reaction networks

Apache Hadoop,
PK-Sim, MoBi-R,
MoBi-Matlab

D-Grid
GmbH

Executable to be installed

Crossbow Software pipeline for
genome resequencing
analysis

Bowtie, Soap-
SNP, Apache
Hadoop

Amazon
EC2

Crossbow Web Applica-
tion

Folding@home Protein folding simulation – Windows
Azure

Folding@home website

Myrna Calculate di↵erential gene
expression in RNA-seq
datasets

Bowtie, R/Bio-
conductor,
Apache Hadoop

Amazon
EC2

Myrna Web Application

Table 2.3: Comparison of some cloud-based tools for computational biology and bioin-
formatics available on the web

form the perfect candidate for calculation-intensive applications.
Table 2.3 compares the features of some computational biology and bioinformatics

tools freely available on the web.
From a more general perspective, given that many existing bioinformatics tools and

simulators rely on web services, their transition to a cloud based infrastructure will be
quite natural and we expect, in the near future, that cloud-based bioinformatics appli-
cations and services will be created at accelerating pace. Examples of such a transition,
which have been already put in place, are CloudBurst [113] which (as above described)
maps next generation sequencing data [118] and Cloud Blast, a “clouded” implemen-
tation of NCBI BLAST [89], which basically have kept the same web service based
architecture but changed the underlying hardware infrastructure to a cloud-based one.
Cloud computing, however, poses a few “still unsolved” problems both for developers

and users of cloud based software, ranging from data transfers over low-bandwidth net-
works to privacy and security issues. These aspects lead to ine�ciency for some types
of problems and future solutions should address such issues [114].
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The modelling and analysis of biological systems has deep roots in Mathematics, specif-
ically in the field of Ordinary Di↵erential Equations (ODEs). Alternative approaches
based on formal calculi, often derived from process algebras or term rewriting systems,
provide a quite complementary way to analyse the behaviour of biological systems. These
calculi allow to cope in a natural way with notions like compartments and membranes,
which are not easy (sometimes impossible) to handle with purely numerical approaches,
and are often based on stochastic simulation methods.
In this chapter, we present the Calculus of Wrapped Compartments (CWC) – the

formal calculus we use in this work – on which we can express the compartmentalisation
of a biological system whose evolution is defined by a set of rewrite rules.
In Sec. 3.1 we define the syntax of CWC terms (3.1.1), contexts (3.1.2) and rewrite

rules (3.1.3); we also provide some modelling guidelines (3.1.4).
In Sec. 3.2 we define CWC quantitative systems and we present a quantitative model

based on stochastic evolution (3.2.1).
The contents of this chapter have been published in [50].

3.1 The CWC Formalism

Like most modelling languages based on term rewriting (notably CLS), a CWC model
consists of a term, representing the (biological) system and a set of rewrite rules which
model the transformations determining the system’s evolution. Terms are defined from a
set of atomic elements via an operator of compartment construction. Compartments are
enriched with a nominal type, represented as a label, which identifies the set of rewrite
rules which may be applied to them.

3.1.1 Terms and structural congruence

Terms of the CWC calculus are intended to represent a biological system. A term is a
multiset of simple terms. Simple terms, ranged over by t, u, v, . . . are built by means
of the compartment constructor, (�c�)�, from a set A of atomic elements (atoms for
short), ranged over by a, b, c, . . . and from a set L of compartment types (represented
as labels attached to compartments), ranged over by `, `0, `1, . . . and containing a distin-
guished element > which characterises the top level compartment. The syntax of simple
terms is defined as follows:

t ::= a
�� (a c t)`
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(a) (a b c c •)`
(b) (a b c c (d e c •)`

0
)

`
(c) (a b c c (d e c •)`

0
f g)

`

Figure 3.1: Some examples of CWC terms

We write t to denote a (possibly empty) multiset of simple terms t1 · · · tn. Similarly,
with a we denote a (possibly empty) multiset of atoms. The set of simple terms will be
denoted by T .
Then, a simple term is either an atom or a compartment (a c t)` consisting of a wrap

(represented by the multiset of atoms a), a content (represented by the term t) and a
type (represented by the label `). Note that we do not allow nested structures within
wraps but only in compartment contents. We write • to represent the empty multiset
and denote the union of two multisets u and v as u v. The notion of inclusion between
multisets, denoted as usual by ✓, is the natural extension of the analogous notion be-
tween sets. The set of terms (multisets of simple terms) and the set of multisets of atoms
will be denoted by T and A, respectively. Note that A ✓ T .
Since a term t = t1 · · · tn is intended to represent a multiset we introduce a relation of

structural congruence between terms of CWC defined as the least equivalence relation
on terms satisfying the following rules:

t u w v ⌘ t w u v
if u ⌘ w then t u v ⌘ t w v

if a ⌘ b and t ⌘ u then (a c t)` ⌘ (b cu)`
From now on we will always consider terms modulo structural congruence. To denote
multisets of atomic elements we will sometimes use the compact notation na where a
is an atomic element and n its multiplicity, so for instance 3a 2b is a notation for the
multiset a a a b b.
An example of term is t = 2a 3b (c d c e f)` representing a multiset consisting of two

atoms a and three b (for instance five molecules) and an `-type compartment (c d c e f)`

which, in turn, consists of a wrap (a membrane) with two atoms c and d (for instance,
two proteins) on its surface, and containing the atoms e (for instance, a molecule) and f
(for instance a DNA strand whose functionality can be modelled as an atomic element).
See Figure 3.1 for some graphical representations.

Notation 3.1.1 (Top-level compartment) For sake of uniformity we assume that
the term representing the whole system is always a single compartment labelled > with
an empty wrap, i.e., all systems are represented by a term of the shape (• c t)>, which
we will also write as t for simplicity.
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3.1.2 Contexts

The notion of reduction in CWC is formalised via the notion of reduction context. To
define them, the syntax of terms is enriched with a new element ⇤ representing a hole
which can be filled only by a single compartment. Reduction contexts (ranged over by
C) are defined by:

C ::= ⇤
�� (a cC t)`

where a 2 A, t 2 T and ` 2 L. Note that, by definition, every context contains a single
hole ⇤. The set of contexts is denoted by C.
Given a compartment t = (a cu)` and a context C, the compartment obtained by filling

the hole in C with t is denoted by C[t]. For instance, if t = (a cu)` and C = (b c⇤ c)`
0
,

then C[t] = (b c (a cu)` c)`
0
.

The composition of two contexts C and C 0, denoted by C[C 0], is the context obtained
by replacing ⇤ with C 0 in C. For example, given C = (a c⇤ b)`, C 0 = (c c⇤ d e)`

0
, we

get C[C 0] = (a c (c c⇤ d e)`
0
b)`.

The following proposition follows straightforwardly by the definitions of term, struc-
tural congruence and context.

Proposition 3.1.2 (Unique decomposition) Given a term t and a subterm u occur-
ring in t there is a unique context C such that t = C[(a c t0)`] and u ✓ a or u ✓ t0.

Note that this property would not be true if we allow C, t to be a context.

3.1.3 Rewrite rules and qualitative reduction semantics

A rewrite rule is defined by a pair of compartments (possibly containing variables), which
represent the patterns along which the system transformations are defined. The choice
of defining rules at the level of compartments simplifies the formal treatment, allowing
a uniform presentation of the system semantics.
In order to formally define the rewrite rules, we introduce the notion of open term (a

term containing variables) and pattern (an open term that may be used as left part of a
rewrite rule). To respect the syntax of terms, we distinguish between “wrap variables”
which may occur only in compartment wraps (and can be replaced only by multisets of
atoms) and “content variables” which may only occur in compartment contents or at
top level (and can be replaced by arbitrary terms)
Let VT be a set of content variables, ranged over by X,Y, Z, and VA a set of wrap

variables, ranged over by x, y, z such that VT \ VA = ;. We denote by V the set of
all variables VT [ VA, and with ⇢ any variable in V. Open terms are terms which may
contain occurrences of wrap variables in compartment wraps and content variables in
compartment contents. Similarly to terms, open terms are defined as multisets o of
simple open terms defined in the following way:

o ::= a
�� X

�� (q c o)`
q ::= a

�� x
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(i.e. q denotes a multiset formed only of atomic elements and wrap variables). Let O
and O denote the set of simple open terms and the set of open terms (multisets of simple
open terms), respectively. An open term is linear if each variable occurs in it at most
once.
An instantiation (or substitution) is defined as a partial function � : V ! T . An

instantiation must preserve the type of variables, thus for X 2 VT and x 2 VA we have
�(X) 2 T and �(x) 2 A, respectively. Given o 2 O, with o� we denote the term
obtained by replacing each occurrence of each variable ⇢ 2 V appearing in o with the
corresponding term �(⇢).
Let ⌃ denote the set of all the possible instantiations and Var(o) denote the set of

variables appearing in o 2 O.
To define the rewrite rules, we first introduce the notion of patterns, which are partic-

ular simple open terms representing the left hand side of a rule. Patterns, ranged over
by p, are the linear simple open terms defined in the following way:

p ::= (a x c b p X)`

where a and b are multisets of atoms, p is a multiset of pattern, x is a wrap variable,
X is a content variable and the label ` is called the type of the pattern. The set of
patterns is denoted by P. Patterns are intended to match with compartments. Note
that we force exactly one variable to occur in each compartment content and wrap. This
prevents ambiguities in the instantiations needed to match a given compartment.1 The
linearity condition, in biological terms, corresponds to excluding that a transformation
can depend on the presence of two (or more) identical (and generic) components in
di↵erent compartments (see also [95]).

Some examples of patterns are:

• (x c a b X)` which matches with all compartments of type ` containing at least
one occurrence of a and one of b.

• (x c (a y cY )`1 X)`2 which matches with compartments of type `2 containing a
compartment of type `1 with at least an a on its wrap.

A rewrite rule is a pair (p, o), denoted by p 7�! o, where p = (a x c b p X)` 2 P
and o = (q c o)` 2 O are such that Var(o) ✓ Var(p). Note that rewrite rules must
respect the type of the involved compartments. A rewrite rule p 7�! o then states that a
compartment p�, obtained by instantiating variables in p by some instantiation function
�, can be transformed into the compartment o� with the same type ` of p. Linearity is
not required in the r.h.s. of a rule, thus allowing duplication (or erasure).
A CWC system over a set A of atoms and a set L of labels is represented by a set

RA,L (R for short when A and L are understood) of rewrite rules over A and L.

1
The presence of two (or more) variables in the same compartment content or wrap, like in (x c a X Y )

`
,

would introduce the possibility of matching the same path in di↵erent although equivalent ways. For

instance we could match a term (x c a a b b)

`
with X = a, Y = b b or X = a b, Y = b, etc.

36



3 The Calculus of Wrapped Compartments

A transition between two terms t and u of a CWC system R (denoted t �! u) is
defined by the following rule:

R = p 7�! o 2 R � 2 ⌃ C 2 C
C[p�]

R�! C[o�]

where C[p�] ⌘ t and C[o�] ⌘ u.
In a rule p 7�! o the pattern p represents a compartment containing the reactants of

the reaction that will be simulated. The crucial point for determining an application of
the rule to a term t is to find the compartments matching with p (i.e. the compartments
in which the corresponding reaction can take place).

Note that the applicability of a rewrite rule depends on the type of the involved
compartments but not on the context in which it occurs. This corresponds to the
assumption that only the compartment type can influence the kind of reaction that
takes place in them but not their position in the system.

Note that a same pattern can have more than one match in a term. Take for instance
the term (a c 2b 2c)` (a b c 4b)` and the pattern p = (a x c b X)`. Then p matches
the first compartment with the substitution �1(x) = •, �1(X) = b 2c and the second
compartment with the substitution �2(x) = b, �2(X) = 3b

Remark 3.1.3 (i) The same reduction rule can determine di↵erent transitions of
the same term if applied in di↵erent contexts. Consider, for instance, the rule
(p, o) where p = (a x c b X)` and o = (a x c c X)`. Now consider the term
t = (• c (a c b b0)` (a c b b00)`)>. Considering di↵erent contexts we can have both
t �! (• c (a c c b0)` (a c b b00)`)> and t �! (• c (a c b b0)` (a c c b00)`)>

(ii) For some rewrite rules ` : p 7�! o there may be, in general, di↵erent substitu-
tions � such that p� ⌘ t (for some term t) but the results o� produced by them
are di↵erent. Consider, for instance, the rewrite rule (y c a (b x cX)` Y )> 7�!
(y c (a b x cX)` Y )> modelling a catalysed membrane joining at top level. In
this case, a term t = (• c a (b b c c)` (b c c)`)> can make a transition in two
di↵erent terms, depending on which membrane will be joined by the element a.
Namely, (• c (a b b c c)` (b c c)`)>, given an instantiation � such that �(x) = b
and (• c (b b c c)` (a b c c)`)>, given an instantiation �0 such that �0(x) = •. We
remark that this can happen only when compartments are involved in the rewriting.
We will need to take it into account in the stochastic approach.

Notation 3.1.4 (Rules that involve only content or wrap) Usually, rules involve
only the content or the wrap of a compartment. Moreover, in a rule (a x c b p X)` 7�!
(q c o)` very often X has single occurrence, at top level, in o and x in q. We therefore
introduce the following notations:

• ` : a p 7�!c o (or simply ` : a p 7�! o) as a short for (x c a p X)` 7�! (x c o X)`,
and

• ` : a 7�!w b as a short for (a x cX)` 7�! (b x cX)`
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3 The Calculus of Wrapped Compartments

where x and X are canonically chosen variables not occurring in a, p, o or b. Note that,
according to Notation 3.1.1, rules of the shape > : a 7�!w b are forbidden (since the top
level compartment must always have an empty wrap).

3.1.4 Modelling guidelines

In this section we give some explanations and general hints about how CWC could
be used to represent the behaviour of various biological systems. Here, entities are
represented by terms of the rewrite system, and events by rewrite rules.
First of all, we should select the biomolecular entities of interest. Since we want to

describe cells, we consider molecular populations and membranes. Molecular populations
are groups of molecules that are in the same compartment of the cells and inside them.
As we have said before, molecules can be of many types: we classify them as proteins,
chemical moieties and other molecules.
Membranes are considered as elementary objects: we do not describe them at the level

of the phospholipids they are made of. The only interesting properties of a membrane are
that it may have a content (hence, create a compartment) and that in its phospholipid
bilayer various proteins are embedded, which act for example as transporters and recep-
tors. Since membranes are represented as multisets of the embedded structures, we are
modelling a fluid mosaic in which the membranes become similar to a two-dimensional
liquid where molecules can di↵use more or less freely [119].
Compartment labels are useful to identify the kind of a compartment and the prop-

erties which are common for each compartment of that type. For example, we may use
compartment labels to denote the nuclei of a set of cells, the di↵erent organelles, etc..
Table 3.1 lists the guidelines for the abstraction into CWC rules of some basic biomolec-

ular events, some of which will be used in our experiments. Entities are associated with
CWC terms: elementary objects (genes, domains, etc...) are modelled as atoms, molecu-
lar populations as CWC terms, and membranes as atom multisets. Biomolecular events
are associated with CWC rewrite rules.
The simplest kind of event is the change of state of an elementary object. Then,

there are interactions between molecules: in particular complexation, decomplexation
and catalysis. Interactions could take place between simple molecules, depicted as single
symbols, or between membranes and molecules: for example a molecule may cross or
join a membrane. There are also interactions between membranes: in this case there
may be many kinds of interactions (fusion, vesicle dynamics, etc. . . ). Finally, we can
model a state change of a compartment (for example a cell moving onto a new phase
during the cell cycle), by updating its label.2 Changing a label of a compartment implies
changing the set of rules applicable to it. This can be used, e.g., to model the di↵erent
activities of a cell during the di↵erent phases of its cycle.

2
Note that, like in the other cases, this reaction is intended to take place in a compartment of a type `

00
.

Without the simplification made in Table 3.1 this rule should be written as `

00
: (x cX)

` 7�! (x cX)

`0
.
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Biomolecular Event CWC Rewrite Rules

State change (in content) a 7�!c b

State change (on membrane) a 7�!w b

Complexation (in content) a b 7�!c c

Complexation (on membrane) a b 7�!w c
a (b x cX)` 7�!c (c x cX)`

(b x c a X)` 7�!c (c x cX)`

Decomplexation (in content) c 7�!c a b

Decomplexation (on membrane) c 7�!w a b
(c x cX)` 7�!c a (b x cX)`

(c x cX)` 7�!c (b x c a X)`

Membrane crossing a (x cX)` 7�!c (x c a X)`

(x c a X)` 7�!c a (x cX)`

Catalysed membrane crossing a (b x cX)` 7�!c (b x c a X)`

(b x c a X)` 7�!c a (b x cX)`

Membrane joining a (x cX)` 7�!c (a x cX)`

(x c a X)` 7�!c (a x cX)`

Catalysed membrane joining a (b x cX)` 7�!c (a b x cX)`

(b x c a X)` 7�!c (a b x cX)`

(x c a b X)` 7�!c (a x c b X)`

Compartment state change (x cX)` 7�!c (x cX)`
0

Table 3.1: Guidelines for modelling biomolecular events in CWC, written in the compact
notation of 3.1.4. The types (labels) associated to the rules are omitted for
simplicity.

3.2 Quantitative CWC Systems

In order to make the formal framework suitable for modelling quantitative aspects of
biological systems, each transition is usually associated with a numerical parameter
characterizing the kinetic rate of the corresponding reaction.
In a stochastic simulation algorithm, this parameter and the quantity of reagents

involved contribute stochastically to determine the next state of the system and the time
needed to reach it. The system is then described as a Continuous Time Markov Chain
(CTMC) [98]. This allows to simulate its evolution by means of standard simulation
algorithms (see e.g. [68]). Stochastic simulation techniques can be applied to all CWC
systems but, in several cases, at a high computational cost. The deterministic method
based on pure ODEs is computationally more e�cient, but can be applied, in general,
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3 The Calculus of Wrapped Compartments

only to systems in which compartments are absent or have a fixed, time-independent,
structure.
In our calculus we will associate to a reaction a rate function having a parameter

depending on the overall content of the compartment in which the reaction takes place.
This allows to tailor the reaction rates on the specific characteristics of the system, as
for instance when representing nonlinear reactions as it happens for Michaelis–Menten
kinetics, or to describe more complex interactions involving compartments that may
not follow the standard mass action rate. These latter, more classical, collision based
stochastic semantics (see [68]) can be encoded as a particular choice of the rate function
(see 3.2.1). A similar approach is used in [59] to model reactions with inhibitors and
catalysts in a single rule.
Obviously some care must be taken in the choice of the rate function: for instance it

must be complete (defined on the domain of the application) and non-negative.

Definition 3.2.1 A quantitative rewrite rule is a triple (p, o, f), denoted p
f7�! o, where

(p, o) is a rewrite rule and f : ⌃ ! R�0 is the rate function associated to the rule.3

The rate function takes an instantiation � as parameter. Such an instantiation models
the actual compartment content determining the structure of the environment in which
the l.h.s. of a rule matches and that may actively influence the rule application. Notice
that, di↵erent instantiations that allow the l.h.s. p of a rule to match a term t can produce
di↵erent outcomes which could determine di↵erent rates in the associated transitions.
In the following we will use the function Occ : A⇥ T ! N to count the occurrences

of an atom within the multiset of atoms at the top level of a term. Namely, Occ(b, t)
returns the number of occurrences of the atom b at the top level of t.

Example 3.2.2 Consider again the term given in Remark 3.1.3. If the rate function of
the rewrite rule is defined as f(�) = 0.0002 · (Occ(b,�(x))+1), the initial term t results
in (a b b c c)` (b c c)` with a rate 0.0004 and in the term (b b c c)` (a b c c)` with rate
0.0002.

We already mentioned that equipping rewrite rules with a function leads to the defini-
tion of a stochastic semantics that can abstract from the classical one based on collision
analysis (practical for very low level simulations, for example chemical interactions), and
allows defining more complex rules (for higher simulation levels, for example cellular or
tissue interactions) which might follow di↵erent probability distributions. An intuitive
example could be a simple membrane interaction: in the presence of compartments, a
system could not be considered, in general, as well stirred. In such a case, the classical
collision based analysis could not always produce faithful simulations and more factors
(encapsulated within the context in which a rule is applied) should be taken into account.
A quantitative CWC system over a set A of atoms and a set L of labels is represented

by a set RA,L (R for short when A and L are understood) of quantitative rewrite rules
over A and L.
3
The value 0 in the codomain of f models the situations in which the given rule cannot be applied, for

example when the particular environment conditions forbid the application of the rule.
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(a) t

(b) t

0

Figure 3.2: Application of a rule to a CWC term

3.2.1 Stochastic evolution

In the stochastic framework, the rate of a transition is used as the parameter of an expo-
nential distribution modelling the time spent to complete the transition. A quantitative
CWC system R defines a Continuous Time Markov Chain (CTMC) in which the rate

of a transition C[p�]
R�! C[o�] is given by f(�), where the rule R = (p, o, f) 2 R is the

quantitative rule which determines a transition.4 The so defined CTMC determines the
stochastic reduction semantics of CWC.
When applying a simulation algorithm to a CWC system we must take into account,

at a given time, all the system transitions (with their associated rates) that are possible
at that point. They are identified by:

• the rewrite rule applied;

• context which selects the compartment in which the rule is applied;

• the outcome of the transition.

Remark 3.2.3 We must take some care in identifying transitions involving compart-
ments. For instance, if we consider the CWC term

t = 25m 8a (10c c 24a 20b)` (10c c 24a 20b)`

4
When it does not give rise to ambiguities we omit the label R, identifying the rewrite rule, from the

stochastic transition.
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shown in Figure 3.2 (a) there are two compartments that are exactly the same. If we
apply to t the rule ` : a b 7�! c we obtain the term t0 shown in Figure 3.2 (b). Actually,
starting from t there are two compartments on which the rule can be applied, producing
the same term t0 (up to structural congruence). Although the transition is considered as
one (up to structural congruence), the quantitative evolution must take this possibility
into account by counting two transitions.

From the transition rates we can define, following a standard simulation procedure
[68], the exponential probability distribution of the moment in which the next reaction
will take place and the probability distribution of the next transition that will take place.
In particular, given a term t and a global time �, we first identify all the transitions

e1, . . . , eM that can be applied to t. Note that a transition is identified by both the
corresponding rewrite rule and the compartment in which it takes place (see also Remarks
3.1.3 and 3.2.3). Let ⇡1, . . . ,⇡M be the corresponding rates. Defining ⇡ =

PM
i=1 ⇡i, the

simulation procedure allows to determine, following Gillespie’s direct method:

1. The time �+ ⌧ at which the next stochastic transition will occur, randomly chosen
with ⌧ exponentially distributed with parameter ⇡;

2. The transition ei that will occur at time � + ⌧ , randomly chosen with probability
⇡i
⇡ .

Mass action law

Gillespie’s stochastic simulation algorithm is defined essentially for well stirred systems,
confined to a constant volume and in thermal equilibrium at some constant temperature.
In these conditions we can describe the system state by specifying only the molecular
populations, ignoring the positions and velocities of the individual molecules. Di↵erent
approaches such as Molecular Dynamics, Partial Di↵erential Equations or Lattice-based
methods are required in case of molecular crowding, anisotropy of the medium or canal-
isation.
We might restrict CWC in order to match Gillespie’s framework. Namely, since we

just need to deal with simple molecular populations, we might restrict terms to multisets
of atoms.
The usual notation for chemical reactions can be expressed by:

(3.1) n1a1 + . . .+ n⇢a⇢
k
*n0

1b1 + . . .+ n0
�b�

where, ai, . . . , a⇢ and bi, . . . , b� are the reagents and product molecules, respectively,
ni, . . . , n⇢ and n0

i, . . . , n
0
� are the stoichiometric coe�cients and k is the kinetic constant.

We only consider now rewrite rules modelling chemical reactions as in reaction 3.1. A
chemical reaction of the form 3.1 (that takes place within a compartment of type `) can
be expressed by the following CWC rewrite rule:

(3.2) ` : n1a1 . . . n⇢a⇢
f7�! n0

1b1 . . . n0
�b�
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which is short for (x cn1a1 . . . n⇢a⇢ X)`
f7�! (x cn0

1b1 . . . n0
�b� X)`, where the rate

function f of rule 3.2 should be suitably defined to model Gillespie’s assumption of well
stirred systems. In particular, the framework defined by Gillespie, based on molecular
collision analysis, leads to binomial distributions of the reagents involved. Namely, we
define the rate function f as:

(3.3) f(�) =

✓
Occ(a1,�(X)) + n1

n1

◆
· . . . ·

✓
Occ(a⇢,�(X)) + n⇢

n⇢

◆
· k

where k is the kinetic constant of the modelled chemical reaction.
When the stoichiometric coe�cients are low (e.g.  2) and the molecular populations

are high, this can be approximated as:

(3.4)
(Occ(a1,�(X)) + n1)n1 · . . . · (Occ(a⇢,�(X) + n⇢))n⇢

n1 · . . . · n⇢
· k

By construction, the following holds.

Fact 3.2.4 Molecular populations defined as multisets of atoms that evolve according to
a fixed set of transformations of the form given by reaction 3.1, represented by rule 3.2,
interpret into the stochastic semantics of CWC the law of mass action within Gillespie’s
framework for the evolution of chemically reacting systems.

Example: Prey-Predator-Virus

In order to illustrate the quantitative semantics of CWC we consider, as a running
example, a toy case study derived from the well-known Lotka-Volterra prey-predator
dynamics. Let us consider the prey-predator oscillatory dynamics to be confined into
a compartment IN interfered with rare events causing dramatic changes in the species
evolution. A rare event like these could be schematically represented as a viral epi-
demic entering and exiting compartment IN with a relatively slow rate. Once inside the
compartment IN the viral epidemic has the capability of killing some preys.
The set of CWC rules modelling this example – which we call the Prey-Predator-Virus

model – is given in Figure 3.3. The preys (atoms a) and predators (atoms b) are located

(N1) > : Vir (x c X)IN
0.037�! (x cVir X)IN

(N2) > : (x cVir X)IN
0.17�! Vir (x c X)IN

(B1) IN : a X
17�! a a X

(B2) IN : a b X
0.0017��! b b X

(B3) IN : b X
17�! X

(B4) IN : Vir a X
0.17�! Vir X

Figure 3.3: CWC rules for the Prey-Predator-Virus dynamics
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in compartment IN and follow a dynamics given by the rules (B1),(B2) and (B3). The
viral epidemic (atom Vir) enters and leaves the compartment with rules (N1) and (N2)
respectively, and kills the preys with rule (B4).
The simulations are performed for 60 time units, with the starting term:

Vir (• c 1200a 1200b)IN.

Several stochastic simulations of the toy case study were performed, showing di↵erent
possible system evolutions of the dynamics of the species inside the compartment IN
depending on the viral epidemic factor. Two of these runs are shown in Figure 3.4. A
characteristic of this example is that the evolution of the system is strongly determined
by the virus epidemic random event that can change dramatically the dynamics of the
species.

44



3 The Calculus of Wrapped Compartments

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

# 
at

om
s

Virus Interference
Prey
Predators

(a) First experiment

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Time

# 
at

om
s

Virus Interference
Prey
Predators

(b) Second experiment

Figure 3.4: Two di↵erent simulation runs of the Prey-Predator-Virus model, showing the
di↵erent behaviours of the dynamics of the species inside the compartment
IN depending on the viral epidemic factor
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4 The Simulation/Analysis Workflow

A biological scientist aiming to study the behaviour of a system by means of stochastic
simulation, basically has to perform two operations: execute several simulation instances
of the system under investigation – modelled through some formalism – and filter the
simulation outcomes with analysis methods (e.g. statistics, mining).
In this chapter, we outline a general simulation/analysis workflow, which optimisation

is the main topic of this work.
In Sec. 4.1 we discuss on the main aspects that should be taken into account while

designing a modern simulation tool for biological systems.
In Sec. 4.2 we review the most common optimisation approaches, highlighting their

main drawbacks.

4.1 What do Bioinformatics Scientists Need?

To be functional, simulation tools for systems biology should e↵ectively support scientists
in executing the two main steps they have to perform when studying a biological system
by means of stochastic simulation, namely:

• the simulation step, in which independent simulation instances of the modelled
system are generated and executed;

• the analysis step, in which simulation results are merged and filtered with a set of
analysis (e.g. statistics, mining) engines.

The design (and optimisation) of such tools under the perspective of increasingly
complex modelled systems – thus requiring more and more complex analysis – and
modern high-performance computing platforms is a challenging task, since a number of
aspects should be taken into account:

1. multiple analysis modules: in many biological case studies the searched pattern
in experimental results is unknown and might require to try di↵erent kinds of
analysis. Therefore tools should support the execution of multiple analysis engines
and the addition of new ones in a plug-and-play fashion.

2. statistical significance: in order to infer statistically meaningful results, large sam-
ples should be collected, then many simulation instances have to be executed and
tools should scalable in performance;

3. high-precision: the sampling resolution depends on the required accuracy, thus fine
grain sampling resolution could be required to discriminate system state changes
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(in particular for multi-stable systems). This implies that tools should be able to
manage (analyse and eventually store) high-frequency data streams coming from
simulation instances;

4. low-latency : during the initial phase of the study, the (stochastic) parameters of
the model need to be fine-tuned. To this aim, the whole experiment is usually
repeated several times. In this phase, the time-to-solution is a crucial aspect, thus
the execution of the simulation instances should be as fast as possible and the
analysis should be ideally a real-time process.

5. multicore platforms : either in the form of commodity desktop workstations or
interconnected in (physical or virtualised) clusters, multicores are increasingly dif-
fused in scientific laboratories. Thus modern tools should e�ciently exploit their
high computational power.

Aspects 1, 2, 3 and 4 suggest that modern simulator tools should feature fast execution
of simulation instances, multiple analysis (and eventually storage) of large (even big)
high frequency data streams, all in a low-latency fashion. This is enough to claim that
the simulation/analysis process on biological systems at high-precision happens to be a
computationally expensive task.
The high computational cost of stochastic simulations has led, in the last two decades,

to a number of attempts to accelerate them up by exploiting parallel computing. The
most common approach – which naturally couples with distributed HPC infrastructures
(e.g. grid, clouds) which have been the reference architectures in scientific laboratories
in the last decades – results in a family of solutions that we call “embarassingly paral-
lel”. As discussed in Section 4.2, this approach have several drawbacks that are further
exacerbated on modern multicore-based computing platforms.
In this work we advocate a novel approach, based on regarding the whole simula-

tion/analysis process as a monolithic stream-processing workflow, thus naturally dealing
with on-line (possibly real-time) analysis, and optimising it by way of high-level parallel
programming frameworks, in order to guarantee performance portability and low-e↵ort
porting on heterogeneous platforms.

4.2 The “Embarrassingly Parallel” Approach

The most common approach for the optimisation of simulation tools consists in executing
(independent) simulation instances in an embarrassingly parallel fashion, executing a
partition of the instances on di↵erent machines and demoting the analysis to a secondary
aspect treated with o↵-line post-processing tools (Fig. 4.1).
This approach has been often coupled with High Performance Computing (HPC)

infrastructures, such as grid or clusters of multi-/many-core. However, it su↵ers from
some drawbacks from design, performance and usability viewpoints.
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Figure 4.1: The “embarrassingly parallel” approach

4.2.1 Usability drawbacks

Traditional HPC platforms are expensive to deploy (and rent); their configuration is
hardly customisable. Moreover, HPC platforms su↵er from reduced interactivity and
might induce slow time-to-solution. Each experiment requires to enqueue the simulations
in a shared environment, deploy initial data, simulate the model, gather results from
a distributed environment, post-process them (often sequentially) and then eventually
access the results. Moreover, as we discussed in aspect 4, this process is typically repeated
several times to fine-tune simulation parameters.

4.2.2 Performance drawbacks

Demoting the analysis of results to a secondary aspect, without considering it in perfor-
mance evaluation, is definitively a too coarse simplification. When dealing with multiple
statistical and mining engines working on large data streams, the analysis of results could
result in a very expensive task, comparable in cost to the execution of the simulation
instances. Thus, the “sequencing” of simulation and analysis phases actually slows down
the design-to-result process, as experimentally demonstrated in 8.2.2.
Moreover, as we discuss in 5.2.3, (stochastic) simulation instances could exhibit highly

unbalanced behaviours – in particular of multi-stable systems – thus proceeding at very
di↵erent execution speeds. But the filtering of the results cannot start until each simu-
lation instance has produced at least one data point. This is a “pitfall” which actually
invalidates any attempt of minimising the transient storage of data –thus the reducing
either shared-memory or I/O tra�c – by simply putting the simulation and analysis
stages in pipeline.
Finally, with respect to aspect 5, the design of e�cient simulator tools targeting
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multicore (and multicore cluster) platforms is even more challenging, since the outlined
workflow actually becomes an I/O-bound problem, as we discuss in 5.1.1.
The very same approach has been used also in recent e↵orts exploiting GPGPUs [86].

The ever-increasing size of produced data makes this approach no longer viable.

4.2.3 Engineering drawbacks

In the previous scenario, the design of the simulator is often specifically optimised for
a specific parallel platform, either multi-core or distributed (or not optimised at all).
This reduce dramatically the portability of code from both engineering and performance
viewpoints. In such a scenario porting a tool to a di↵erent architecture amounts to
re-design the whole low-level parallel infrastructure of the tool (i.e. communication
and synchronisation between computing elements), thus rethinking the exploitation of
parallelism - which is the basis of performance optimisation – on the new platform.
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Platforms

The key vision we advocate to overcome the issues outlined in Sec. 4.2, is based on
considering the optimisation of the whole simulation/analysis workflow, regarding data
analysis as an on-line process working on streams of data resulting from the on-going
simulations. Supporting e�cient on-line data analysis has non-trivial e↵ects on the
design of the simulation stage. Moreover, in this approach both the simulation and
the analysis stages should work on (high-frequency) streams, and require e�cient data
dependencies management (both on distributed and shared-memory systems). While
running multiple instances of a Monte Carlo simulation “in insulation” is actually an
embarrassingly parallel process, running them in a way that supports e�cient on-line
analysis of large (possibly big) data is not.
In this chapter, we use the CWC calculus (Chapter 3) and its (sequential) simulator

core (5.2.1) as paradigmatic example to discuss the key features required to derive an
easy porting on multicore platforms (Sec. 5.1). In particular we will argument on the
parallelisation of a single simulation instance, many independent instances, and the
technical challenges they require (5.1.1). In particular we will exploit the stream oriented
pattern-based parallel programming supported by the FastFlow framework (2.1.4).
The key features discussed in Sec. 5.1 are turned into a family of solutions to speed up

both the single simulation instance and many independent instances, providing at the
same time the support for on-line data analysis. The former issue is approached using
SIMD hardware accelerators (5.2.2), the latter advocating a novel simulation schema
based on FastFlow accelerator that guarantees both easy development and e�cient ex-
ecution (5.2.3).

5.1 Exploiting Parallelism in Simulations

Gillespie algorithm realizes a Monte Carlo type simulation method, thus it relies on
repeated random sampling to compute the result. An individual simulation, which
tracks the state of the system at each time-step, is called a trajectory. Many thousands
of trajectories might be needed to get a representative picture of how the system behaves
on the whole.
For this, stochastic simulations are computationally more expensive than ODEs nu-

merical unfolding. This balance is well-known and it motivated many attempts to speed
up their execution time along last two decades [65]. They can be roughly categorised in
attempts that tackle the speeding up of a single simulation and a bulk of independent
simulations. In the following these (not mutually exclusive) approaches are discussed
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under the viewpoint of parallel computing techniques and their exploitation on commod-
ity multicore platforms. This discussion is not intended to be an encyclopaedic review of
other techniques that can be used to achieve the same aim, such as ones related to the
approximation of the simulation results, such as ⌧ -leaping and hybrid techniques [21].

5.1.1 What can be accelerated? Where parallelism can be found?

Speeding up a single simulation

Parallelizing a single Gillespie-like stochastic simulation, i.e. the derivation of a simula-
tion trajectory, is intrinsically hard. Unless introducing algorithmic relaxations – which
correctness should be proved and typically lead to approximate simulation results – two
successive Monte Carlo steps of the same simulation instance cannot be concurrently
executed since there exists a strict data dependency between the two steps. Also, at the
single step grain, speculative execution is unfeasible because of the excessive branching
of possible future execution paths. As result, the only viable option to exploit parallel
computing within a single simulation consists in parallelizing the single Monte Carlo
step. Here, the available concurrency could be determined via data dependency anal-
ysis that can be made for any given specific simulator code (see Sec. 5.2). Typically,
parallelism exploited at this level is extremely fine-grained since the longest concurrent
execution path may at most count few machine instructions.
In this range, currently, no software mechanisms can support an e↵ective inter-core or

multi-processor parallelization: the overhead will easily overcome any benefit; the only
viable option is hardware parallelism within a single core. Since, typically, instruction
stream parallelism is already exploited by superscalar processor architecture, the only
additional parallelization opportunity has to be searched in data parallelism to be ex-
ploited via a hardware accelerator, such as internal SSE or external GPGPU accelerators
(see 2.1.1). In both cases, the simulator code should be deeply re-designed in a contigu-
ous sequence of SIMD instructions. As we shall see in Sec. 5.2, this generally may lead
to very modest advantages with respect to the required e↵ort.

Speeding up independent simulation instances

The intrinsic complexity in the parallelization of the single step has traditionally led
to the exploitation of parallelism in the computation of independent instances of the
same simulation, which should anyway be computed to achieve statistical convergence of
simulated trajectories (as in all Monte Carlo methods). The problem is well understood;
it has been exploited in the last two decades in many di↵erent flavours and distributed
computing environments, from clusters to grid to clouds, as discussed in Sec. 4.2.
Thanks to their independence, the di↵erent instances needed to simulate a biological

model can be easily computed in an embarrassingly parallel fashion. However, the com-
plete simulation workflow needed to derive simulation results includes additional phases,
such as the dispatching and scheduling of simulations, result gathering, trajectory data
assembling and analysis phases, which exhibit data dependencies (thus requires commu-
nication and/or synchronizations). Often, to simplify the design of the simulation tool,
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these phases are neither parallelized nor considered in the performance evaluation. These
phases, often (questionably) considered as pre-processing and post-processing phases,
may result as expensive as the simulation itself.
The “embarrassingly parallel” simplification has negligible e↵ect under the assumption

that output data has a negligible size, but this is not likely to happen in this and next
generation of biological simulations. As an example, a simulation of the HIV di↵usion
problem (computed using the StochKit toolkit for 4 years of simulation time) may easily
produce over 5 GBytes of raw data per instance [2]. As clear, the data size is n-folded
when n instances are considered. Eventually, this data should be gathered and often
reduced to a single trajectory via statistical methods or analyzed with data mining
methods, that can be much more time expensive to be figured out than bare statistical
estimators.
These potential performance flaws are further exacerbated in multi-core and many-core

platforms. These platforms do not exhibit the same degree of replication of hardware
resources that can be found in distributed environments, and even independent processes
actually compete for the same hardware resources within the single platform, such main
and secondary memory, which performances represent the real challenge of forthcom-
ing parallel programming models (a.k.a. memory wall problem). While simulation is
substantially a CPU-bound problem on distributed platform, it may become mainly an
I/O-bound problem on a multicore platform due to the need to store and post-process
many trajectories. In particular, multi-stable simulations may require very fine grain
resolution to discriminate trajectory state changes, and as it is clear, the finer the ob-
served simulation time-step the strongest the computational problem is characterized as
I/O-bound.

5.1.2 How to parallelize? A list of guidelines

In the previous section we discussed where parallelism can be found in Gillespie-like
algorithms; the question that naturally follows is how this parallelism can be e↵ectively
exploited. We advocate here a number of parallelization issues that, we believe, can be
used as pragmatic “guidelines” for the e�cient parallelization of this kind of algorithms
on multicore. Observe that, in principle, they are quite independent of the source of
parallelism; however, they focus on inter-core parallelism, thus cannot be expected to be
applied to other kinds of parallelism (e.g. SIMD parallelism). They will be then used
along Sec. 5.2 as “instruments” to evaluate the quality of the parallelization work for
the execution of independent instances of the CWC simulator.

Data stream as a first-class concept

The in silico (as well as in vitro) analysis of biological systems produces a huge amount of
data. Often, they can be conveniently represented as data streams since they sequentially
flows out from one or more hardware or software devices (e.g. simulators); often the cost
of full storage of these streams overcomes their utility, as in many cases only a statistical
filtering of the data is needed. These data streams can be conveniently represented

52



5 Parallel Simulations on Multicore Platforms

as first-class concept ; their management should be performed on-line by exploiting the
potentiality of underlying multicore platforms via suitable high-level programming tools.

E↵ective, high-level programming tools

To date, parallel programming has not embraced much more than low-level communi-
cation and synchronisation libraries. In the hierarchy of abstractions, it is only slightly
above toggling absolute binary in the front panel of the machine (see 2.1.2). We believe
that, among many, one of the reasons for such failure is the fact that programming
multicore is still perceived as a branch of high-performance computing with the conse-
quent excessive focus on absolute performance measures. By definition, the raison d’être
for high-performance computing is high performance, but MIPS, FLOPS and speedup
need not be the only measure. Human productivity, total cost and time to solution are
equally, if not more, important. The shift to multicore is required to be graceful in the
short term: existing applications should be ported to multicore systems with moderate
e↵ort. This is particularly important when parallel computing serves as tools for other
sciences since non expert designer should be able to experiment di↵erent algorithmic
solutions for both simulations and data analysis. This latter point, in particular, may
require data synchronisation and could represent a very critical design point for both
correctness and performance.

Cache-friendly synchronization for data streams

Current commodity multicore and many-core platforms exhibit a cache-coherent shared
memory since it can e↵ectively reduce the programming complexity of parallel programs
(whereas di↵erent architectures, such as IBM Cell, have exhibited their major limits in
programming complexity). Cache coherency is not for free, however. It largely a↵ects
synchronisations cost and may require expensive performance tuning (see 2.1.1). This is
both an opportunity and a challenge for parallel programming framework designers since
a properly designed framework should support the application with easy exploitation
of parallelism (either design from scratch or porting from sequential code) and high-
performance.

Load balancing of irregular workloads

Stochastic processes exhibit an irregular behavior in space and time by their very nature
since di↵erent simulations may cover the same simulation time span following many
di↵erent, randomly chosen, paths and number of iterations. Therefore, parallelization
tools should support the dynamic and active balancing of workload across the involved
cores.

5.2 The CWC Simulator Testbed

The proposed guidelines are validated using the CWC Simulator as running example.
It has been developed as a plain C++ sequential code, then it has been parallelised
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for multicore, in order to evaluate the e↵ectiveness of the methodology also in term of
development e↵ort.
In the parallelisation two main frameworks have been used: the GCC compiler SSE

intrinsics [75] to speed up a single simulation, and the FastFlow parallel programming
framework (2.1.4) to speed up independent simulation instances, which provides the
basic facilities described in 5.1.1.

5.2.1 The CWC Simulator core

The CWC Simulator core basically implements the Gillespie SSA over CWC systems.
Thus, given a term and a set of rules, it iterates the following logical steps until the
end-of-simulation time is reached:

1. (Match) it searches all the occurrences of the rules matching in some compartment
or wrap of the term. Then it associates a stochastic rate to each match. This step
results into a weighted matchset.

2. (Resolve) it stochastically decides the time o↵set at which the next reaction will
occur and the rule that will activate it. Moreover, since in CWC reactions can
occur at di↵erent contexts, it consults the matchset in order to decide how portion
of the system will react.

3. (Update) it actually applies the selected reaction, a↵ecting both the system and
the clock, moving forward the simulation process.

Each iteration of the steps above is called a simulation step. The pseudo-code of the
simulation step is sketched in Fig. 5.1.

5.2.2 Speeding up a single simulation

As discussed in Sec. 5.1.1, the parallelisation of the single CWC simulation step is the-
oretically feasible via the SSE accelerator. In Fig. 5.1, the phases of the code that can
be parallelised in SIMD fashion with moderate e↵ort are marked with the “SIMD” la-
bel. The exploited parallelism degree is 4 since 4x32-bit operation has been used. The
experimental results reported in Sec. 8.2.1 show that the achieved speedup is almost
negligible because only a fraction of the whole simulation step has been actually paral-
lelised. Similar parallelisation e↵orts conducted on GPGPU accelerators, which exploit
a much larger potential SIMD parallelism, do not actually result in satisfactory results.
As an example, see the parallelisation of Gillespie’s first reaction method on NVIDIA
CUDA [61].
Unfortunately, the extension of the SIMD parallelism to larger fractions of the code

may require a very high coding e↵ort since the redesign of the original code is required.
As an example recursive patterns (used for tree-matching, marked with “non-SIMD”
parallelism in Fig. 5.1) are not easily manageable using SIMD parallelism and should
be di↵erently coded before being parallelised. Observe that these recursive kernels can-
not either be parallelised across cores because they are excessively fine-grained; as a
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1 Simulation Step {
2 // 1. Match
3 foreach r 2 ruleset {
4 Match(r, T, TOP LEVEL); // [non�SIMD parallelism]
5 }
6

7 // 2. Resolve (Monte Carlo)
8 (tau, mu) = Gillespie(matchset);
9 context = stochastic choice on matchset[mu];

10

11 // 3. Update
12 (P,O) = left and right side (mu);
13 delete P sigma from T at context; // SIMD
14 put deleted elements in sigma;
15 add O sigma to T at context; // SIMD
16 simclock += tau;
17 }

Figure 5.1: CWC Simulator pseudo-code with sources of fine-grain parallelism

qualitative example, the parallelisation via POSIX threads (tested with FastFlow and
Intel TBB) is, on the reference multicore platform we use in 8.2.2, from 10 to 100 times
slower with respect to sequential version due to synchronisation overheads (i.e. cache
coherence, cache misses, etc.).
All in all, intra-core SIMD parallelism appears the only viable way to this kind of

parallelisation. Observe however that it might require, for this class of algorithms, a
coding e↵ort that easily overcomes the potential benefits.

5.2.3 Speeding up independent simulation instances

Starting from the CWC sequential simulator code, we here advocate a parallelisation
schema supporting the parallel execution of many self-balancing simulation instances
on multicore. Its design aims to address all the issues discussed in 5.1.1: it is realised
by means of the FastFlow framework (2.1.4) that natively supports high-level parallel
programming patterns working on data streams and it exhibits an e�cient lock-free
run-time support that can be integrated with SIMD code. It therefore makes it possible
the easy porting of the sequential CWC code on multicore for the execution of multiple
simulation instances (either replicas or the parameter sweeping of a simulation), and the
on-line synthesis of their trajectories.
For the sake of simplicity, here we regard the reduction phase of the trajectories as

a monolithic process, which performs bu↵ering, alignment and synthesis by means of
some reduction function. We present a more detailed view of the reduction phase in
Chapter 6.
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The schema supports three main behaviours, which are exemplified in Fig. 5.2:

i) The di↵erent simulation instances (called a,b,c,d,e,f) are dispatched for the execution
on di↵erent workers threads of a FastFlow farm, which run on di↵erent cores; a
worker sequentially runs all the simulations it received. The dispatching of instances
to workers could be either performed before the execution according to some static
policy (e.g. Round-Robin) or via an on-line scheduling policy (e.g. on-demand).
Workers stream out the trajectories, which are sampled at fixed time steps along
simulation time. Streams are bu↵ered in the farm collector and then reduced in a
single stream according to one or more functions (e.g. F). Observe that the constant
sampling assumption simplifies the reduction process even if it is not strictly required
since data could be on-line re-aligned during the bu↵ering [2]. Also notice that since
simulation time advances according to a random variable, di↵erent instances advance
at di↵erent wall-clock time rates. The phenomenon is highlighted in Fig. 5.2-i
splitting each instance in four equal fractions of the simulation time (e.g. ha1, a2,
a3, a4i, hb1, b2, b3, b4i), which exhibit di↵erent wall-clock times to be computed
(segment length). This may induce even a significant load unbalance that could be
only partially addressed using on-line scheduling policies.

ii) A possible solution to improve load balancing of the schema consists in coupling the
on-line scheduling policy with the reduction of execution time-slice that is subject
to the scheduling policy. At this end, each simulation instance can be represented
as an object that incorporate its current progress and provide the scheduler with
the possibility of stopping and restarting an instance. In this way, as it happens
in a time-sharing operating system, (fixed or variable length) slices of an instance
can be scheduled on di↵erent workers provided slices of the same instances are se-
quenced (possibly on di↵erent workers). Thanks to cache-coherent shared memory
the scheduling can be e�ciently realized via pointer management. The idea is exem-
plified in Fig. 5.2-ii. Also, scheduling and dispatching to workers can be equipped
with predictive heuristics based on instance history in order to characterize the
relative speed of the simulation instances.

iii) The previous schema can be further improved by pipelining the reduction phase
that is performed on-line. Since instance time-slicing can make all the instances to
progress, a running window of all the trajectories can be reduced while they are still
being produced. The reduction process, which is logically made within a separate
computing element (i.e. the farm collector thread in this simplified schema), can be
either run on an additional processor or interleaved with the execution of simulation
instances (see Fig. 5.2-iii). The solution also significantly reduces the amount of data
to be kept in memory because:

• thanks to interleaving all the trajectories advances almost aligned with respect
to simulation time;

• the already reduced parts of the trajectories can be deleted from main memory
(and stored in secondary memory if needed). We call selective memory the data
structure implementing this solution.
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Figure 5.3: Architecture of the FastFlow-based CWC parallel simulations

The three schemas can be e↵ectively implemented using FastFlow as sketched in
Fig. 5.3. In particular, the FastFlow farm accelerator feature [13] fits well the pre-
vious design since it makes possible to o✏oad a stream of object pointers onto a farm
of workers, each of them running a CWC simulation engine, and to implement user-
defined dispatching and reduction functions via standard Object Oriented sub-classing.
FastFlow natively provides the programmer with streams, a configurable farm pattern,
and an e�cient run-time support based on lock-free synchronisations. All these features
e↵ectively made it possible to port the CWC sequential simulator to multicore with
moderate e↵ort. In addition, the complexity of the achieved solution can be gracefully
improved by successive refinements in order to test di↵erent scheduling policies or vari-
ants to the basic schema. In this regard the accelerator feature represents a key issue
since it enables the programmer to make very local changes to the original code that
in first approximation consists in changing a method call into the o✏oad of the same
method.
We present the actual realisation of the simulation stage of the CWC Simulator worflow

in 6.2.1.
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Most biological data from dynamical kinetics of species might require further processing
with statistical or mining tools to be really functional to biological scientists. In partic-
ular, the bulk of trajectories coming from Monte Carlo simulators can exhibit a natural
unevenness due to the stochastic nature of the tool and are typically represented with
many and large data series. This unevenness, in the form of deviant trajectories, high
variance of results and multi-stable behaviours, often represents the real nature of the
phenomena that is not captured by traditional approaches, such as ODEs.
In this chapter, we introduce the problem of rich on-line analysis of simulation data

and the issues posed by dealing with large (even big) data streams (Sec. 6.1). We discuss
the realisation of an e�cient parallel analysis stage, featuring multiple statistical and
mining methods on streamed simulation outcomes (6.2.2). In this context, we provide
a coarse categorization of biological systems targeted by the provided filters, namely
mono-stable, bi-stable/multi-stable and oscillatory systems.
Finally we return to the main topic of this work, building up the whole CWC Simulator

workflow for multicore platforms (Sec. 6.2).

6.1 E↵ective Analysis of Stochastic Simulation Outcomes

To be e↵ective, stochastic methods in systems biology require many trajectories with
a fine grain resolution in order to make observable deviant trajectories, peaks, high
variance of results and multi-stable behaviours, which often represent the real nature
of the phenomena that is not well captured by traditional approaches, such as ODEs.
These events are often not immediate to detect in the bulk of gross simulation results.
Several techniques for analysing such data, e.g. principal components analysis, linear
modelling and canonical correlation analysis have been proposed. It can be imagined
that next generation software tools for natural sciences should be able to perform this
kind of processing in pipeline with the running data source, as a partially or totally
on-line process because:

• it will be needed to manage an ever increasing amount of experimental data, either
coming from measurement or simulation;

• it will substantially improve the overall experimental workflow by providing the
natural scientists with an almost real-time feedback, enabling the early tuning or
sweeping of the experimental parameters, and thus scientific productivity.
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Figure 6.1: The (pipelined) interaction between simulation and analysis stages

Moreover, the flexibility given by the possibility of running many di↵erent analysis
modules in parallel is of particular interest, as in many biological case studies the searched
pattern in experimental results is unknown and might require to try di↵erent kinds of
analysis.
The parallel analysis of the system dynamics (e.g. along time) is more challenging since

on-line data processing requires statistical and mining operators to work on streamed
data and, in general, random access to data is guaranteed only within a limited window
of the whole dataset, while already accessed data can be only stored in synthesised form.
When data description techniques, which require accessing the whole data set in ran-

dom order, cannot be used, on-line data description and mining require novel algorithms.
The extensive study of these algorithms is an emerging topic in data discovery commu-
nity and is beyond the scope of this work, which focuses on the design of a parallel
infrastructure featuring easy engineering of battery of filters. Nevertheless, the design
we present, which is based on sliding windows over the data set, provides the support
for approximated methods, which approximation degree depends on the width of the
sliding windows .

6.2 The CWC Simulator Workflow

In this section we present the CWC Simulator workflow, which is composed of a three-
stage pipeline: simulation stage (Sec. 6.2.1), analysis stage (Sec. 6.2.2) and display of
results (Sec. 6.2.3), which is is realised by way of a Graphical User Interface (GUI).
The simulation and analysis stages are pipelined (Fig. 6.1) in such a way that, at each
observed simulation time ti, the simulation stage streams out the partial results of all
simulation trajectories (aligned at ti) to the analysis stage that immediately produces
a partial result. Analysis stage, which can be equipped with user-defined statistic and
mining operators, works on sliding data windows and does not require to keep in memory
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the full data set with both performance and response time benefits.
Fig. 6.1 shows a detailed view of the interaction between simulation and analysis

stages; for the sake of simplicity, in this (simplified) representation the alignment of
the trajectories is assumed to be performed by the gather node, while in the actual
realisation of the tool this task is performed by a dedicated stage.
The big picture of the whole workflow is shown in Fig. 6.2. The easiness of engineering

is guaranteed by the high level of abstraction provided by FastFlow: in the picture, all
the grey boxes as well as all the code needed for synchronisation and data streaming
(double-headed arrows) is automatically generated by the FastFlow framework. The
implementation of the whole software actually consists in declaring the structure of the
workflow in terms of FastFlow objects (i.e. farm and pipelines) and filling white boxes
with sequential code.

6.2.1 The simulation pipeline

The design of the simulation pipeline has been discussed in 5.2.3. In particular, we
consider the schema in Fig. 5.2-iii.
The pipeline is composed of three main parts: a generation of simulation tasks stage,

a farm of simulation engines stage and a alignment of trajectories stage (Fig. 6.2).
The input of the simulation pipeline (either from GUI or from file) contains the model

to be simulated and the parameters of the simulation. The output is a stream of arrays
of simulation results. Each of these arrays holds a point for each of the trajectories of
all (independent) simulations, aligned at a given simulation time. Actually, each array
represents a snapshot (called “cut”) at a given simulation time of the whole dataset of
results (Fig. 6.1). This not necessarily represents the current status (at a given point in
wall-clock time) of all running simulations. Stochastic simulations exhibit an irregular
behaviour in space and time according to their nature, since di↵erent simulations may
cover the same simulation timespan, following many di↵erent (randomly-chosen) paths,
in a di↵erent number of iterations. Therefore, parallelisation tools should support the
dynamic and active balancing of workload across the involved cores. This mainly mo-
tivates the structure of the simulation pipeline. The first stage generates a number of
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independent simulation tasks, each of them wrapped in a C++ object. These objects are
passed to the farm of simulation engines, which dispatch them (on-demand) to a num-
ber of simulation engines (sim eng). Each simulation engine brings forward a simulation
that lasts a precise simulation time (simulation quantum). Then it reschedules back the
operation along the feedback channel. Simulation results produced in this quantum are
streamed towards the next stage which sorts out all received results and aligns them
according to the simulation time. Once all simulation tasks overcome a given simulation
time, an array of results is produced and streamed to the analysis pipeline.
In this process, the farm scheduler prioritises “slow” simulation tasks, in such a way

that the front-line task proceeds as much aligned as possible to simulation time. This
solves both the load balancing problem by keeping all simulation engines always busy
and reduces to the minimum the transient storage of incomplete results, thus reducing
the shared-memory tra�c.
We remark that the generation of simulation tasks should guarantee the statistical

independence of the instances. This aspect is discussed in Appendix A.

6.2.2 The analysis pipeline

The analysis pipeline is depicted in Fig. 6.1.
By design, each snapshot at a given simulation time of all simulation trajectories (i.e.

an array of simulation results), can be analysed immediately and independently (thus
concurrently) one each other. For example, the mean and variance (as well as other
statistical estimators) can be immediately computed and streamed out to the display
stage. More complex analyses, i.e. ones aimed to understand system dynamics, have
further requirements. In the most general case, they require the access to the whole
dataset. Unfortunately this can be hardly done with a fully on-line process. In many
cases, however, it is possible to derive reasonable approximation of these analyses from a
sliding window of the whole dataset (e.g. for trajectory clustering). For this, the stream
incoming (from the selective memory) in the analysis pipeline is passed through a stage
that creates a stream of (partially overlapping) sliding windows of trajectories cuts.
Each sliding window can be eventually processed in parallel and therefore is dispatched
to a farm of statistic engines. Results are collected and re-ordered (i.e. gathered) and
streamed toward the user interface and the permanent storage.
The analysis pipeline is provided with three families of pre-defined estimators cover-

ing most common kind of statistical analysis. Current filters are aimed to analyse the
following families of systems:

1. Mono-stable systems (via statistical estimators). Mean, standard deviation and
other statistical estimators are typically used to evaluate, both qualitatively and
quantitatively, the behaviour of stable systems and the reliability of the stochastic
models used for their simulation (i.e. comparison with ODE results). Quantiles
calculation is also often useful to approximate the distribution of simulation tra-
jectories over time as it performs an histogram which summarises the involved
quantities without the e↵ects of long-tailored asymmetric distribution or outliers.

62



6 On-line Analysis of Irregular Streamed Data

In fact, in those cases, descriptive statistics could not underline a central tendency.

2. Multi-stable systems (via trajectory clustering). The clustering of trajectories helps
the analysis of biological systems exhibiting a multi-stable behaviour. Each cluster
can automatically separate and distinguish di↵erent cases which can be eventually
analysed by statistical estimators. Concentrations of a given instant from all sim-
ulations are numerically filtered from stochastic noise and the global trends are
extrapolated from clusters. In this work we employed two clustering techniques:
K-means [71] and Quality Threshold (QT) [74] clustering. The clustering proce-
dure collects the filtered data contained into a sliding time window �W centered
in the current data point xi ⌘ f(ti) where ti ⌘ t0 + i�S (where �S is a con-
stant sampling time) for all simulation trajectories and the extrapolated forecast
point xEi , referred to the local trend, using the information of the Savitzky-Golay
filter [112], i.e. a low-pass filter suitable for data smoothing. The main idea under-
neath Savitzky-Golay filtering is to find filter coe�cients cn that preserve higher
moments, i.e. to approximate the underlying function within the moving window
not by a constant (whose estimate is the average), but by a polynomial of higher or-
der. This scheme also allows the computation of numerical derivatives considering
the coe�cient of the derived polynomial.

3. Periodic phenomena (via peak detection). Many processes in living organisms are
oscillatory. For these kind of systems the analysis must be focused on the re-
currence of phenomena, for instance concentration spikes or peaks of biological
quantities, which also make it possible to determine the frequency of occurrence of
a given phenomenon. The peak detection is basically performed by way of the anal-
ysis of the local maximum in a continuous curve, which is in turn detected through
the analysis of the derivatives of the curve estimated by the Savitzky-Golay filter.
From the period between successive peaks, the frequency of the related event is
then inferred.

The e↵ectiveness of such filters will be discussed in Sec. 8.1.
We remark that, thanks to modular design of the pipeline, additional filtering func-

tions can be easily plugged in by simply extending the list of statistics with additional
sequential or parallel functions (i.e. adding a function pointer to that list).

6.2.3 The Graphical User Interface

The CWC Simulator workflow is wrapped in a back-end tool that can be steered either
via a command line tool or a graphical user interface, which make it possible to design
the biological model, to run simulations and analysis and to view partial results during
the run. Also, the front-end makes it possible to control the simulation workflow from a
remote machine. Two screenshots of the graphical front-end are reported in Fig. 6.3.
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(a) Specification of the CWC model

(b) Visualisation of real-time results of multiple analysis engines

Figure 6.3: Screenshots of the CWC Simulator GUI
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7 Simulation/Analysis Workflow in the
Cloud

Public IaaS cloud platforms (which can be regarded as virtual multicore clusters) are
attractive for HPC bioinformatics since they provide virtually unlimited computational
resources on-demand. Moreover, multicore clusters (which can be regarded as private
clouds), are increasingly di↵used in scientific laboratories. Thus, a well engineered tool
should be able to adapt on such heterogeneous platforms (which are informally referred
to as “Clouds”), with respect to both performance portability and low porting e↵ort.
In this chapter, we show how our approach fits on such increasingly popular distributed

platforms for HPC bioinformatics (7.1).
Then we present the distributed CWC Simulator workflow (7.2), developed on top of

FastFlow framework as a very low-e↵ort extension of the multicore variant presented in
Chapter 6.

7.1 The Workflow on Modern Distributed Platforms

Clouds are increasingly di↵used in HPC scientific laboratories. They make available
on-demand and on a pay-per-use basis an elastic parallel computing platform that can
be customised with a specific set of tools such as simulators for systems biology. Cloud
“elasticity” enables the users to deploy the same application on a virtualised parallel
platform of configurable type, size and computational power. The typical platform can
be abstracted as a virtual cluster of shared-memory multicore platforms (see 2.1.1).
Once deployed, the virtualised platform is immediately ready to compute and can be
interactively used by the end user.
The potentiality of such platforms, however, can be fully exploited only if the running

software (e.g. simulation tool) exhibits a similar flexibility and interactivity:

1. The application should benefit from both levels of parallelism available in a (virtu-
alised) multicore (and many-core if available) cluster, hopefully providing the end
user with performance scalability with respect to both levels.

2. The programming model should manage parallelism as a first-class concept to make
the tools (e.g. simulator) easy to design, develop and extend; the programming
model should be able to capture parallelism at all levels, i.e. distributed platforms,
multicore and many-core, and possibly it should be able to support the seamless
porting of application across the described platforms with performance portability.
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Figure 7.1: Architecture of the distributed CWC Simulator. The distributed workflow
is obtained by replicating the simulation pipeline of the multicore version in
Fig. 6.2 via the farm pattern.

3. The software tools itself should be designed to be reactive and interactive in order
to be dynamically steered by bioinformatics scientists.

To the best of our knowledge, many related works (2.2.5) cover some of these aspects,
but none of them addresses all three aspects at the same time.
We claim our approach targets all these issues. We designed the workflow on top of the

high-level FastFlow programming framework, which guarantees a very low-e↵ort port-
ing to (and between) distributed platforms (see 7.2); the exploitation of parallelism on
di↵erent platforms is almost entirely in charge of the parallel programming methodology
provided by the FastFlow programming framework, which natively targets multicores,
many-cores and cluster platforms, exhibiting performances at the top of the state-of-
the-art, thus providing performance portability; finally, the on-line data analysis allows
to o✏oad the whole workflow in the cloud as a single parallel pipeline with no storage of
intermediate results on virtualised storage, thus improving interactivity, as we discussed
in Chapter 6.
We remark that the ability of managing the whole data set in the cloud, minimizing

(possibly avoiding) large data movements, has been widely recognized as necessary for
next generation bioinformatics (see 2.2.5).

7.2 The Distributed CWC Simulator

Thanks to the high-level design of the CWC simulator and the extension of the FastFlow
to distributed platforms [6], the porting of the CWC simulator to distributed platforms
has been possible with a very limited coding e↵ort.
The architecture of the distributed CWC Simulator is shown in Fig. 7.1. It is clear

that the design directly derives from the existing multi-core version, shown in Fig. 6.2,
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7 Simulation/Analysis Workflow in the Cloud

where the simulation pipeline has been substituted with a farm of simulation pipelines.
Each of them can be run on a di↵erent platform: it receives simulation parameters from
the generation of simulation tasks node, and feeds the alignment of trajectories node
with a stream of results. These nodes have been upgraded from ff_nodes to ff_dnodes
to support network channels. Also, the simulation pipeline is extended with two fringe
ff_dnodes to implement de-serialising and serialising activities without touching existing
code. Notice that they are not strictly needed since their functionality can be also
embedded in the farm’s dispatch and gather nodes, but this requires to subclass them,
thus altering rather than reusing previous version. Observe that the two additional
nodes do not bring service-time penalties, since all data exchanges between them and
the dispatch/gather process happen via pointer passing, and they are working in pipeline
with the farm. Moreover, they can be used to tune communication grain by coalescing
successive items in the result streams, e.g. to tune the workflow against the network
latency.
Fig. 7.1 shows the semi-automatic porting provided by high-level parallel programming

approach, namely solid boxes are ff nodes, double-stroked boxes are ff dnodes, and
dashed boxes are FastFlow patterns; double-headed arrows are streams; grey boxes are
automatically generated by the FastFlow framework, while white boxes hold user-defined
code which is the same as the multicore version one.
If needed, also the analysis pipeline can be made distributed, following exactly the

same schema.

7.2.1 The distributed CWC Simulator on public cloud

Since the typical IaaS cloud platform can be abstracted as a virtual cluster of shared-
memory multicore platforms, the distributed version of the CWC Simulator workflow
naturally fits on such kind of platform. The overall architecture of the distributed CWC
Simulator workflow deployed on cloud is reported in Fig. 7.2. Note that the communi-
cation between simulation and analysis stages does not require storage of intermediate
results on virtualised storage.
In Fig. 7.2, the FastFlow framework automatically generates the implementation of

patterns connecting ff_nodes and ff_dnodes with streams, which are implemented ei-
ther in the shared-memory model within the single virtual machine or in the message-
passing model across virtual machines.
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8 Experimental Evaluation

In this chapter we evaluate experimentally the validity of our approach. Experiments
follow two main lines: the e↵ectiveness of the proposed on-line analysis to capture the
behaviour of biological systems (Sec. 8.1) and the e�ciency of the tool in executing the
workflow on di↵erent platforms (Sec. 8.2).
For the former purpose, paradigmatic examples of three classes of biological systems

are discussed, i.e. mono-stable (8.1.1), bi-stable/multi-stable (8.1.2, 8.1.3), and oscil-
latory (8.1.4); the key behaviour of the systems in these classes is studied by way of
the three classes of on-line analysis tools, namely statistical description, clustering, and
frequency detection.
For the latter purpose, we evaluate the e�ciency, especially in terms of speedup, taking

into account the performance on both multicores (8.2.2) and multicore clusters (8.2.3); we
also present some preliminary experiments conducted on public cloud platforms (8.2.4).

8.1 Expressivity and E↵ectiveness

In order to evaluate the e↵ectiveness of the proposed approach, paradigmatic examples of
three classes of biological systems are discussed, i.e. mono-stable, bi-stable/multi-stable,
and oscillatory systems. The key behaviour of the systems in these classes is studied
by way of the three classes of on-line analysis tools introduced in 6.2.2, respectively,
statistical description, clustering, and frequency detection.
In the first three examples, all biochemical reactions are assumed to follow the mass

action law. In this case the reaction rules are decorated simply with the corresponding
kinetic constants.

8.1.1 Mono-stable systems

Consider a simple biological model that specifies ammonium transport from external
environment into the cells of Escherichia Coli based on [87, 31]. In defining this model
some CWC specific features, although in a simplified form, are used.
The transport of ammonia/ammonium (Am) is fundamental to nitrogen metabolism.

Escherichia Coli has the ability to grow at Am concentrations by expressing an Am
transport protein AmtB. AmtB functions as a channel protein that binds NH 4

+ at
the entrance gate of the channel, deprotonates it and conducts the product NH 3 into
the cytoplasm. In addition to the above mentioned AmtB mediated transport, the
bidirectional free di↵usion of the uncharged ammonia through the membrane is also
included in the model.
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(rDif 1) > : NH 3(x cX)cell
1.47�! NH 3(x cNH 3 X)cell

(rDif 2) cell : NH 3
1.47�! •

(rAT 1) > : NH4
+(AmtB x cX)cell

500007�! (AmtB -NH 4
+ x cX)cell

(rAT 2) > : (AmtB -NH 4
+ x cX)cell

0.57�! NH4
+(AmtB x cX)cell

(rAT 3) > : (AmtB -NH 4
+ x cX)cell

0.0057�! H(AmtB -NH 3 x cX)cell

(rAT 4) > : (AmtB -NH 3 x cX)cell
0.0057�! H(AmtB x cNH 3 X)cell

(rN 1) cell : NH 3
30007�! NH4

+

(rN 2) cell : NH4
+ 56.27�! NH 3

(rGS ) cell : NH4
+ 0.0087�! •

Figure 8.1: CWC rules for the Escherichia Coli dynamics

The E. Coli cell has AmtB molecules on the wrap. We do not consider the dynamics
of the external ammonium form (NH 3) keeping it constant in the rules (rDif 1) and
(rDif 2). The set of rewrite rules modelling the kinetics is given in Fig. 8.1.
This model is useful to analyse how the setting of the model parameters a↵ects the

maximal concentration level of NH 3 and NH 4
+ inside the cell reachable from given

initial conditions.
The performed simulations concern the computation of the first two moments of the

species NH 3 inside the cell using the on-line statistics based upon 100 simulations run-
ning for 200 time units using a sampling time �S = 1 time unit. The starting term
was:

30NH 3 5000NH 4
+ (50AmtB c )cell .

Fig. 8.2 shows the on-line computation of the mean and standard deviation for species
NH 3 inside the cell compared with the solution of the corresponding deterministic sim-
ulation using ODEs.
Fig. 8.3 reports the analysis of convergence of the ammonium flow transported. In-

creasing the number of simulations, the confidence interval of 95% of the sample average
reduces its amplitude.
These results about a mono-stable behaviour suggest that the mean follows closely the

deterministic trajectory. Furthermore, fluctuations around the mean captured through
the standard deviation calculation indicate the e↵ect of the noise on the system. If
this e↵ect is severe, a deterministic approach to the analysis of such a system can be
misleading and calls for a thorough stochastic treatment.
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Figure 8.2: Mean and standard deviation on the Escherichia Coli model. The figure
reports also the raw simulation trajectories.
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Figure 8.3: Convergence of the sample average on the Escherichia Coli model
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8.1.2 Bi-stable biological systems

One of the most studied examples of bi-stabile model is the Schlögl model [115]. The
simplicity of this network makes it an ideal prototype to show the e↵ectiveness of the
on-line clustering techniques on the filtered trajectories in the presence of bi-modality.

a a
0.037�! a a a

a a a
0.00017�! a a

b
2007�! b a

a
3.57�! •

Figure 8.4: CWC rules for the Schlögl dynamics

The set of CWC rules modelling this system is reported in Fig. 8.4 (in the following
examples all reactions are assumed to take place in the external environment, thus we
omit to explicitly write the compartment (>) in which they take place).
The number of molecules of the species b is kept constant (bu↵ered) while, at equi-

librium, the species a displays a noise-induced switching between the two stable steady
states (see Fig. 8.5a). This case is paradigmatic to show that simple mean and standard
deviation are not significant to summarise the overall behaviour and the mean is not
representative of any simulation trajectory.
Fig. 8.5b shows the resulting clusters (colored circles) computed on-line using K-means

on the Schlögl model for species a over 100 stochastic simulations starting with the term:

200b 250a.

Circles diameters are proportional to each cluster size.
Fig. 8.6 reports the analysis of convergence for the Schlögl model. In this case the

confidence interval is computed (in pipeline) after the clustering of the results. Notice
that, in this case (and in general in multi-stable outputs) the clustering of results is a key
feature since confidence intervals of the average before the clustering of results generally
do not decrease their amplitude with an increase of simulation trajectories.
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8.1.3 Multi-stable systems

A well-studied example of multi-stability in genetic systems is the Bacteriophage � life
cycle [26]. This process involves two di↵erent biological entities delimited by membranes,
the phage and the bacterium. Lambda phage is a virus particle consisting of a head,
containing a double-stranded linear DNA, and a tail. The phage particle recognises
and binds to its host, Escherichia Coli, causing the DNA in the head of the phage to
be ejected through the tail into the cytoplasm of the bacterial cell. After this, it can
enter into one of two alternative stages called lysogeny and lysis. The lysogenic stage is
a dormant stage in which the phage inserts its DNA into the host DNA and passively
reproduces with the host. The only protein expressed in this phase is the � repressor CI .
When the host becomes stressed, the phage is more likely to go into lysis, in which case
it reproduces more phages, kills the host and spreads to other bacteria. The decision
between lysis and lysogeny can be thought of as a switching mechanism. A simplified
model for the bacteriophage was proposed in [72]. In their model, the gene cI expresses
the � repressor (denoted by the symbol CI ), which dimerises (denoted by CI2 ) and binds
to DNA (denoted by D) as a transcription factor at either of two binding sites. The
binding of the transcription factor to the site enhancing the transcription of CI (positive
feedback) is denoted by D+CI2 . The phagic DNA in state D+CI2 leads the lysogenic
stage. The binding of the transcription factor to the site repressing the transcription of
CI (negative feedback) is denoted by D�CI2 . The symbol D+CI2D�CI2 denotes the
phagic DNA when both sites are bound (CI2 can bind to the repressing site also when
another CI2 dimer is bound to the promoting site, with a global repressing e↵ect).

CI CI
0.057�! CI2

CI2
0.57�! CI CI

CI2 D
0.0267�! D+CI2

D+CI2
0.0267�! CI2 D

CI2 D
0.0267�! D�CI2

D�CI2
0.0267�! CI2 D

D+CI2 CI2
0.137�! D+CI2D�CI2

D+CI2D�CI2
0.137�! D+CI2 CI2

D+CI2 P
407�! D+CI2 P CI2 CI2

CI
0.00077�! •

Figure 8.7: CWC rules for the Bacteriophage � dynamics

The CWC rules in this system are reported in Fig. 8.7, where P represents the RNA
polymerase, assumed here to be constant, and two proteins per mRNA transcript were
considered.
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100 raw trajectories, lower figure shows the on-line QT clustering results.
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In this model the stochastic time trajectories of CI switch between two stable equilibria
if the noise amplitude is su�cient to drive the trajectories occasionally out of the basin
of attraction of one equilibrium into the basin of attraction of the other equilibrium
(Fig. 8.8a).
Fig. 8.8b shows the resulting clusters (gray circles) computed on-line using QT on the

Bacteriophage � model for species CI over 100 stochastic simulations starting with the
term:

10CI D P .

Circles diameters are proportional to each cluster size and arrows display the local trends
of the clustered trajectories.
K-means is suitable for stable switch systems where the number of clusters and their

tendencies are known in advance, in the other cases QT, although more computationally
expensive, can build accurate partitions of trajectories giving evidence of instabilities
with a dynamic number of clusters.
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8.1.4 Oscillatory systems

We examine here the theoretical model for circadian oscillations based on transcriptional
regulation of the frequency (frq) gene in the fungus Neurospora. The model relies on
the feedback exerted on the expression of the frq gene by its protein product FRQ. In
this model, sustained rhythmic variations in protein and mRNA (M) levels occur, in the
form of limit cycle oscillations [84].

> : (x cFRQ X)⌘
f
FRQ

(t)7�! (x cFRQ X)⌘ M > : M
0.57�! M FRQ

> : M
fM7�! • > : FRQ

fd7�! •
> : FRQ (x cX)⌘

0.57�! (x cFRQ X)⌘ > : (x cFRQ X)⌘
0.67�! FRQ (x cX)⌘

Figure 8.9: CWC rules for the Neurospora dynamics

The CWC rules modelling this case are reported in Fig. 8.9, where the cytosol is
referred as the > compartment while ⌘ is the label of the compartment representing
the nucleus. The model is based on the negative feedback exerted by the protein FRQ
on the transcription of the frq gene; the rate of gene expression is enhanced by light.
The model includes gene transcription in the nucleus, accumulation of the corresponding
mRNA in the cytosol with the associated protein synthesis, protein transport into and
out of the nucleus, and regulation of gene expression by the nuclear form of the FRQ
protein. The function

fFRQ(t) = vs(t)
Kn

I

FRQn +Kn
I

denotes the rate of frq transcription. The parameter vs(t) defined by:

vs(t) =

⇢
200 when 2nT  t < (2n+ 1)T
160 when (2n+ 1)T  t < (2n+ 2)T

(n � 0)

increases in light conditions of the current time of the simulation, where T represents
the period of the dark-light phases. The constant KI is related to the threshold beyond
which nuclear FRQ represses frq transcription; the Hill coe�cient n, characterises the
degree of cooperation of the repression process. In the functions, the occurrence of a
symbol indicates its multiplicity. The mRNA degradation is given by the Michaelis rate
function:

fM = vm
M

KM +M
.

The FRQ degradation is given by the Michaelis rate function:

fd = vd
FRQ

Kd + FRQ

where vd is the maximum rate of FRQ degradation and the Michaelis constant related
to this process is Kd.
As in [84] we modelled the oscillations under two di↵erent conditions:
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Figure 8.10: Simulation results of the cytosolic FRQ protein of the Neurospora model.
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1. constant dark condition;

2. alternate light and dark phases.

Following [84], the values of the parameters are set as: vm = 50.5, vd = 140, ks = 0.5,
k1 = 0.5, k2 = 0.6, Km = 50, KI = 100, Kd = 13, n = 4. Concentrations have been
made discrete by scaling 1nM to 100 symbolic elements. In the constant dark condition,
parameter vs is equal to 160, in the alternate condition, vs is equal to 160 during the
dark phase and to 200 during the light phase. Fig. 8.10a shows an extract of a single
stochastic simulation of the circadian oscillations in the dark/light alternate condition,
plotting the number of FRQ proteins within the nucleus, the total number of FRQ
proteins in the cell and the number of mRNA molecules leading the synthesis of FRQ.
Fig. 8.10b shows the outcome of the peak detection tool, which is able to summarize
the frequency of the peak events over time. The plot results after capturing the peaks
in the curve of the cytosolic mRNA for the FRQ protein synthesis. Measuring the
distance between two consecutive peaks, we compute the period of each oscillation and
then plot the moving average, over 200 simulations, of the local periods. In the constant
dark condition, the circadian period is close to 21 and half hours. It increases, producing
damping oscillations with a period of approximately 24 hours, in the dark/light alternate
condition.
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8.2 Performance

In this section we report some experimental results about performances of the realised
tool. Variants of the tool have been experimentally evaluated on di↵erent computing
platforms, as summarised in Table 8.1.

Tool variant Computing platform

SIMD-enriched Intel workstation equipped with a quad-core Xeon E5520
Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache
and 24 GBytes of main memory with Linux x86 64. Each
core is equipped with a SSE4.2 SIMD engine.

Multicore Intel workstation equipped with 4 eight-core E7-4820 Ne-
halem (32 cores, 64 contexts) @2.0GHz with 18MB L3 cache
and 64 GBytes of main memory with Linux x86 64.

Distributed Infiniband connected cluster of Intel workstations, each of
them equipped with 2 six-core Xeon-X5670 (12 Hyper-
Threads) @3.0GHz with with 12MB L3 cache and 24 GBytes
of main memory with Linux x86 64.

Distributed 8 virtual machines (VMs) each having 4 cores Intel E-2670
2.6 GHz with 20MB of L3 cache running in the Amazon EC2
with Linux x86 64.

Distributed Heterogeneous environment including: 8 EC2 virtual ma-
chines with 4 virtualised cores, two workstations at Univer-
sity of Pisa, each having 16 cores Intel Sandy Bridge @2GH.z
with 20MB of L3 shared cache and one workstation at Uni-
versity of Torino, having 32 cores Intel Nehalem @2.0GHz
with 18MB of L3 shared cache. All machines run Linux
x86 64.

Table 8.1: Tool variants and computing platforms for performance experiments

8.2.1 SIMD-enriched CWC Simulator

The SIMD-based approach discussed in Sec. 5.2.2 is experimentally evaluated in terms
of speedup results.
All the reported experiments have been executed on an Intel workstation with 2 quad-

core Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24
GBytes of main memory with Linux x86 64. Each core is equipped with a SSE4.2 SIMD
engine.
Table 8.2 reports the achieved speedup on a single core of the workstation, for a n-

species generalisation of the well-known Lotka-Volterra model (the 2-species case is the
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# of species Sequential (s) SIMD (s) Speedup Ideal speedup

2 5.021 5.071 0.99 4

4 19.076 18.887 1.01 4

8 70.743 70.043 1.01 4

16 284.276 278.701 1.02 4

32 1121.231 1099.245 1.02 4

Table 8.2: Execution time (s) and speedup of the SIMD-enriched CWC Simulator against
the sequential version on a n-species Lotka-Volterra model.

standard Prey-Predator model).
Despite SSE exhibits very low overhead, the achieved speedup is almost negligible

because only a fraction of the whole simulation step has been actually parallelised (Am-
dahl’s law applies [24]).

8.2.2 CWC Simulator on multicore

The CWC Simulator workflow is experimentally evaluated in terms of speedup and
throughput results.
All reported experiments have been executed on an Intel workstation equipped with 4

eight-core E7- 4820 Nehalem (32 cores, 64 contexts) @2.0GHz with 18MB L3 cache and
64 GBytes of main memory with Linux x86 64.
As we shall see, the number of statistical engines could be chosen according to a simple

but e↵ective performance model, which is made possible by the high-level approach of
the design. According to the same model, the most interesting sensitivity analysis under
performance viewpoint concerns the number of simulation engines.
As case studies, we consider the simulation workflow for the Neurospora and Bacte-

riophage � models. In the former case, we evaluate the speedup with di↵erent values
of samples per trajectory. In the latter case, we evaluate the benefits provided by the
parallelisation of the statistical engines.

Neurospora

We consider the simulation workflow for the transcriptional regulation of the Neurospora
model (8.1.4). The analysis pipeline is configured with 3 statistic engines executing mean,
standard deviation, quantiles, K-means, QT and frequency detection filters.
Fig. 8.11a and Fig. 8.11b show the speedup obtained for the whole workflow on varying

the number of concurrent simulation engines (one per core), where the simulation points
(or samples) per trajectory, is set to be 104 and 105 simulation points, respectively.
The speedup on the total execution time achieved in the former case (Fig. 8.11a),

scales ideally with respect to the number of simulation engines, whereas a performance
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Figure 8.11: Speedup on the Neurospora model for di↵erent numbers of simulation points
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penalty is paid in the latter case (Fig. 8.11b) for the highest degree of parallelism and
number of produced trajectories.

Bacteriophage �

We consider the simulation workflow for the transcriptional regulation of the Bacterio-
phage � life cycle model (8.1.3).
The speedup of the workflow is shown in Fig. 8.12, against the number of simulation

engines (one per core) in two configurations. Fig. 8.12a uses a single statistical engine
in the analysis pipeline, while Fig. 8.12b uses a farm with 4 statistical engines. Observe
that, in the case of a single statistical engine, the simulator succeeds to e↵ectively use all
the simulation engines only up to 512 independent simulations (producing 512 indepen-
dent trajectories). The speedup decrease as soon as the output data (linear in size with
the number of trajectories) become significant, due to the cost of on-line data filtering
and analysis, i.e. as soon as the simulation pipeline and the analysis pipeline become
unbalanced. As discussed in the previous chapters, the filtering and analysis of data has
not a negligible cost for large data sets.

Discussion

The very same speedup behaviour is achieved for other test cases, and it is worth a
detailed discussion.
For each experiment the total number of FastFlow nodes, i.e. the boxes depicted with

solid lines in Fig. 6.2, is

#(simulation engines) + #(statistical engines)+
#(other nodes) + #(FastFlow support nodes) =
#(simulation engines) + #(statistical engines)+

3 + 4

where “other nodes” are “generation of simulation tasks”, “alignment of trajectories”
and “generation of sliding windows of trajectories” nodes, whereas “FastFlow support
nodes” are the two couples of dispatch-gather nodes in Fig. 6.2.
Observe that for each performance experiment all the runs are executed by fixing

random seeds (see Appendix A). Thus, given a set of simulation parameters, it can
be verified that the stochastic simulation of the single trajectory requires exactly the
same number of iterations and the simulated time progress identically across random
walks irrespectively of the number of simulation/statistic engines and observed simula-
tion points, which can be considered a (synchronised) sampling at fixed simulation times
of trajectories. These observations imply that:

• the parallelism strategy does not break determinism and reproducibility of results
(correctness);

• as reflected in the speedup results, the design of the simulator ensures an e↵ective
load balancing and low synchronisation overheads;
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Figure 8.12: Speedup on the Bacteriophage � model with parallel statistics
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Model Single trajectory information Overall data (20 sim eng, 3 stat eng)

N. samples Avg sim step Sample time Inter-arrival time Throughput Output size

Neurospora 104 7.80 µs 517.24 µs 25.86 µs 2.70 MB/s 82.40 MB

Neurospora 105 8.37 µs 55.51 µs 2.78 µs 28.59 MB/s 823.98 MB

Neurospora 106 75.63 µs 4.65 µs 232.68 ns 303.86 MB/s 8.24 GB

Escherichia Coli 106 173.64 µs 0.58 µs 28.81 ns 476.30 MB/s 9.15 GB

Lotka-Volterra 106 22.86 µs 0.69 µs 34.68 ns 237.05 MB/s 7.32 GB

Table 8.3: Throughput supported by the CWC Simulator

• the e�ciency of parallel execution depends on the order of magnitude of the ob-
served simulation points, and by the number of produced trajectories.

This latter point specifically exploits the working hypothesis: stochastic methods are
particularly informative when used to simulate the model at high resolution, i.e. high
number of samples and trajectories. In this case, the main bottleneck of simulation
software is data movement and management since the computation/data-movement ratio
may easily reach the limits of modern multicore platforms.
In multicore platforms, “observing” the phenomena at a high frequency has non-

trivial e↵ects on simulation/analysis process since the frequency of observation deter-
mines both the quality of results and, inversely, the overall speedup. As shown in
Fig. 8.11a, Fig. 8.11b and Table 8.3, the proposed design and implementation e↵ectively
cope with this trade-o↵ and succeed to exploit high rates of data movement. Thanks to
merging many independent trajectories happening in the simulation pipeline, the output
size, and thus the required disk throughput is greatly reduced (unless the storage of raw
simulation results, happening among the two pipelines, is requested by the user).
The proposed simulation architecture is not only fast but also highly predictable in

terms of performance. This latter aspect is mainly due to the high-level structured
design [10]. The whole workflow is a pipeline of two pipelines (i.e. a pipeline), whose
performance can be modelled by means of the service time (Ts) of each stage Si. In
particular:

Ts(pipeline(S1, S2, . . . Sk)) = max{Ts(S1),Ts(S2), . . .Ts(Sk)}
where Ts(Si) models the average inter-departure time of stream items of the stage i of
the pipeline, which actually matches the average computation time of Si to produce one
stream item. In turn, some of the stages are farm, which exploit n independent replicas
of a (sequential or parallel) worker, e.g. simulation and static engines. Its service time
can be modelled as:

Ts(farm(W,n)) = Ts(W )/n

Given the service time of each sequential stage, e.g. measured in the sequential code,
these equations can be exploited to tune the optimal number of workers n for any new

86



8 Experimental Evaluation

simulation problem and to understand its upper bound in terms of speedup. As an exam-
ple, in the Neurospora with 105 samples test case the sequential code exhibits the follow-
ing timing per trajectory: Ts(generation) ⇠ 0, Ts(sim eng) = 5.3 s, Ts(alignment) = 0.11
s, Ts(windows generation) = 0.02 s, Ts(stat eng) = 0.33 s, with a total execution time
for each trajectory of ⇠ 5.8 s (⇠ 120 minutes for 1200 trajectories). Among those, sim
eng and stat eng are used within a farm, thus their service time can be reduced by in-
creasing the number of workers. Therefore, the maximum performance and e�ciency of
the whole workflow is reached when the two farms are tuned to match the service time
of the slowest sequential stage, i.e. the alignment stage 0.11s). For this, the farm in the
simulation pipeline should be configured with n = 5.3/0.11 t 48 workers, whereas the
farm in the analysis pipeline with n = 0.33/0.11 = 3 workers. The overall speedup upper
bound can be obtained using the total execution time and the slowest stage service time,
i.e. maximum speedup achievable for this test case is t 5.8/0.11 = 53, which includes
the contributes from both the pipeline and the farm. The analysis, despite being ap-
proximated since does not include synchronisation overheads and memory bandwidth
limits, is adherent of results depicted in Fig. 8.11a since the speedup linearly grows with
the number of simulation engines in the n = [1..32] range, where the primary reasons of
the slight performance drop in the right end of the plots is due to the fact that more
virtual cores (i.e. hyper-thread contexts) than physical core are used, and the increased
memory tra�c for high numbers of trajectories. Furthermore, the performance analysis
highlights that the bottleneck of the architecture for high throughput problems, is in the
alignment of trajectory stage. Its parallelisation, which can be addressed by pipelining
simulation engines and a partial alignment stage within the farm, is among future works.
However, this simple reasoning, does not apply when a big number of trajectories is

modelled. In fact, in such cases, the main architecture bottleneck when using an high
number of simulation engines, is the memory bandwidth limit of the underlying platform.
Such e↵ect can be seen in the plot of Fig. 8.11b for the case 1200 trajectories.

8.2.3 CWC Simulator on multicore cluster

All reported experiments have been executed on an Infiniband connected cluster of Intel
workstations, each of them equipped with 2 six-core Xeon-X5670 (12 HyperThreads)
@3.0GHz with with 12MB L3 cache and 24 GBytes of main memory with Linux x86 64.
The Infiniband network is used via the TCP/IP stack (IPoIB).
The experiments have been executed over the Bacteriophage � use case.
The speedup of the distributed version of the simulator is shown in the preliminary

experiments in Fig. 8.13a and Fig. 8.13b, against the number of hosts and the aggre-
gated count of cores in di↵erent hosts, respectively. In both cases 4 statistical engines
are used. As shown in Fig. 8.13a, the simulator exhibits a reasonable scalability with
respect to the number of hosts. In this case, the speedup is also influenced by the num-
ber of simulation engines per hosts since the kind of latency and bandwidth involved
in data streaming depend on the kind of channel (shared-memory or network). Despite
the architecture exhibits a reasonable neutrality with respect to engines-to-cores-to-host
mapping (as shown in Fig. 8.13b), further experimentation is needed to tune message
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Figure 8.13: Speedup of the distributed simulator on the Bacteriophage � life cycle on
the Intel multicore cluster with two di↵erent usage of cores per node.
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sizes (via message coalescing) and study the bottlenecks of the design on larger config-
urations and di↵erent simulations. It can be expected, for example, that alignment of
trajectories stage can be a bottleneck, as it receives the full pressure of data produced
by many hosts. Lifting data-alignment to the simulation pipeline can help in mitigating
this e↵ect, as this stage aggregates output items (i.e. coalesces many small data items
in fewer larger data items), thus reducing the impact of network latency in distributed
communications.

8.2.4 CWC Simulator on cloud

The distributed CWC Simulator have been tested for performance on the Amazon Elastic
Compute Cloud (Amazon EC2) [23] and on a heterogeneous private/public cloud.
The performance of the simulator was tested on the Neurospora model, described

in 8.1.4. We ran two set of experiments: the first one considering 8 virtual machines
(VMs) each having 4 cores Intel E-2670 2.6 GHz with 20MB of L3 cache running in the
Amazon EC2; the second set considering an heterogeneous environment of virtual and
physical machines which allowed to scale the core count up to 96. The heterogeneous
environment, which can be considered a private cloud including a public cloud comprises:
8 EC2 virtual machines with 4 virtualised cores, two workstations at University of Pisa,
each having 16 cores Intel Sandy Bridge @2GH.z with 20MB of L3 shared cache, and
one workstation at University of Torino, having 32 cores Intel Nehalem @2.0GHz with
18MB of L3 shared cache. Virtual and physical machines run Linux x86 64.
In the first test we measured the speedup and the execution time of the simulator when

running 96 days of simulation time on a single quad-core VM. The results obtained are
shown in Fig. 8.14a. In this case, the maximum speedup using all available cores is 3.15
out of 4 so that the execution time decreases from about 224 min of the sequential run
down to about 71 min.
Next, we executed the same test using 8 quad-core VMs. Figure 8.14b reports the

speedup for the same simulation time varying the number of virtual cores used. The
trend is almost ideal. With 32 virtual cores we obtained a completion time of 10.5 min,
with a gain of about 27x with respect to the sequential execution time of the simulator
on a single-core VM of the same clock frequency and a gain of ⇠7x with respect to the
execution time obtained on the single quad-core VM.
In the second set of experiments, we executed the simulation using di↵erent platforms.

Initially we ran the simulator on the 32 cores Nehalem workstation using the shared
memory implementation of the simulator. The minimum execution time obtained on
that machine using all cores available is 67.3 min, i.e. almost the same time obtained
using the 8 Amazon VMs (having an overall number of 32 virtualised cores). This result
confirms the quality of the distributed implementation of the simulator. Next, in order
to further decrease the simulation time, we used together the Nehalem workstation, the
Amazon VMs, and the two 16 cores Sandy Bridge workstations. In this case, since
the machines were not homogeneous in terms of number of cores and computational
power, we used a weighted dispatching policy for the distribution of the simulations,
where the weights used are the number of virtualised or physical cores of the target
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platform. The results obtained for the execution time and the speedup (the speedup is
computed w.r.t. the execution time obtained on single-core Amazon VM), are shown in
Figure 8.15. For this test, the analysis pipeline was mapped on the 32 cores Nehalem
workstation. The minimum execution time obtained using 96 cores (32 cores in the 8
quad-core VMs, 32 cores in the Nehalem workstation and 2x16 cores in the 2 Sandy
Bridge workstations) is 69.3 s, carrying a gain of ⇠62x in the execution time, which a
remarkable result considering the low computation granularity (⇠20 ms) of the single
worker thread and the high frequency of communication (30 – 80 ms) for collecting results
computed by remote machines running the simulation pipeline. As a general rule, the
lower the communication/computation ratio (i.e. the coarser the grain), the higher the
speedup obtained. The test considered has a not optimal communication/computation
ratio (i.e. it is fine grained) and for this reason we were not able to obtain a performance
improvement with more than 64 cores.
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In this work we presented a novel approach for the design of portable stochastic simula-
tors (especially for biological systems), based on regarding the whole simulation/analysis
process as a single stream-processing workflow and accelerating it up by way of high-level
programming frameworks for parallel computing. In particular, the stream-oriented de-
sign of the simulation/analysis workflow make it possible to perform the statistical anal-
ysis and data mining of simulation results as an on-line process starting together with
simulation and immediately starting to provide the user with a stream of final results,
thus enforcing a fast feedback to the bioinformatics scientists.
We have discussed the main issues arising from the parallelisation of the simulation

stage (supporting on-line analysis) on commodity multicore platforms. In particular, we
distinguished two di↵erent approaches to parallelisation, i.e. the parallelisation of the
single simulation instance and many simulation instances. For each class we have defined
a number of design guidelines, which may support the easy and e�cient porting of this
class of algorithms on multicores. These guidelines include both the programming lan-
guage abstractions (streams and high-level programming patterns), the run-time mecha-
nisms (lock-free cache-friendly inter-core synchronisations here provided by the FastFlow
framework), and basic simulator architectural schema (simulation “objectification”, in-
terleaved execution and pipelined reduction), which can be gracefully optimised with
limited e↵ort to experiment di↵erent parallel execution behaviours.
We have also discussed the problem of the e↵ective analysis of stochastic simulation

outcomes, which can be complex to interpret also due to intrinsic stochastic “noise”
and the overlapping of the many required experiments by the Monte Carlo method. At
this aim, we characterised some patterns of behaviour for biological system dynamics,
e.g. monostable, multi-stable, and oscillatory systems, and we exemplified them with
minimal yet paradigmatic examples from the literature. For these, we identified data
filters able to provide statistically meaningful information to the biological scientists in
order to simplify the data analysis. We defined some guidelines to design an e↵ective
and expressive analysis stage, supporting the parallel execution of multiple user-definable
filters on large (even big) data streams.
In order to demonstrate the validity of the presented approach, we used CWC and its

simulator as a test bed. The presented guidelines have been used to develop a multicore-
aware CWC Simulator on top of the high-level FastFlow programming framework, then
we have extended it to support distributed (and public cloud) platforms.
We think the issues for the portable and e�cient design of the workflow are paradig-

matic for a broad class of algorithms for bioinformatics, and more generally for the
implementation of other Monte Carlo methods. Both the simulations and the on-line
statistic filters, which are both parallel and pipelined, can be easily extended with new
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simulation algorithms and filters thanks to FastFlow-based parallel infrastructure that
exempt the programmer from synchronisation and orchestration of concurrent activities.
Experimentation on various execution environments demonstrates that its high-level

design via the FastFlow framework provides the application designer with easy engineer-
ing, seamless portability on distributed and multicore platforms (physical or virtualised),
and automatic load balancing. Moreover, experimental evaluations show that the design
is flexible and robust with respect to target platform, and it is able to provide perfor-
mance scalability on heterogeneous parallel platforms, also for fine-grained problems.
We believe that the design has the potentiality to survive in the hostile environment

populated by platform heterogeneity, coding complexity, high-performance and perfor-
mance portability. In this regard, we believe it is an evolution of the species of simulators
for systems biology.
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A Randomness

Gillespie SSA, as any Monte Carlo method, is based on the generation of approximately-
random sequences of numbers, fitting known probability distributions. Moreover, simu-
lation instances should be repricable (this is crucial for accurate performance evaluation).
This aspects are usually addressed by using a PRNG (Pseudo-Random Number Gener-
ator), an algorithm that, given an initial state (a.k.a. the seed), outputs a deterministic
sequence, completely identified by the seed. Requirements for a suitable PRNG include
good statistical properties and a long period (the maximum length of the generated se-
quence after which the initial state is re-encountered, so the sequence starts to repeat).
In order to obtain statistically meaningful results from the reduction of the outcomes of

di↵erent simulation instances, the instances must be statistically independent. Making
the instances sharing the same PRNG is not a feasible solution for e�cient parallel
computing, thus each instance needs a private generator. In the implemented tool, the
generators are initialised according to the following schema:

8598720 2953930

Sim.
seedMaster

generator

Sim.
generator

Sim.
generator

Sim.
seed

Master
seed

Clearly the master generator should be di↵erent – i.e. it should generate di↵erent se-
quences – from the other generators, otherwise the sequences would overlap. This both
guarantees the instances are statistically independent (if generators are properly chosen)
and makes the experiments fully replicable, since a master seed induces a unique set of
simulation instances.
With the above considerations in mind, we used the MT19937 Mersenne Twister

PRNG [88] for the simulation instances, which exhibits some nice features:

• it’s fast

• it passes various tests for statistical randomness

• it has a (very long) period of 219937 � 1.

In particular, we used the Boost [35] implementation of MT19937, now included in
C++11. This implementation is “parallel-safe”, in the sense that di↵erent instances of
the generator don’t share global structures in memory – actually they act as if they were
“in insulation” – making it suitable to support concurrent simulation instances.
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