
A Dynamic Memory Allocator for
heterogeneous platforms
Maurizio Drocco∗, Marco Aldinucci∗,1,
Massimo Torquati†,2

∗ University of Torino, corso Svizzera 185, 10149 Torino, Italy
† University of Pisa, largo Pontecorvo 3, 56127 Pisa, Italy

ABSTRACT

Modern computers are built upon heterogeneous multi-core/many cores architectures (e.g. GPGPU
connected to multi-core CPU). Achieving peak performance on these architectures is hard and
may require a substantial programming effort. High-level programming patterns, coupled with
efficient low-level runtime supports, have been proposed to relieve the programmer from wor-
rying about low-level details such as synchronisation of racing processes as well as those fine
tunings needed to improve the overall performance. Among them are (parallel) dynamic mem-
ory allocation and effective exploitation of the memory hierarchy. The memory allocator is often a
bottleneck that severely limits program scalability, robustness and portability on parallel systems.

In this work we introduce a novel memory allocator, based on the FastFlow’s allocator and
the recently proposed CUDA Unified Memory, which aims to efficiently integrate host and device
memories into a unique dynamic-allocable memory space, accessible transparently by both host
and device code.

KEYWORDS: Concurrency; multiprocessors; non-blocking synchronisation; skeleton programming;
dynamic memory allocation

1 Introduction

Dynamic memory allocation enables programs to determine and request memory for its data
structures at runtime. It is a necessary commodity for expressive parallel programming, typ-
ically used for implementing complex data structures (arrays, lists, trees) that need constant
restructuring at runtime. Graph analysis and in-memory MapReduce problems are only two
examples of large classes of problems that require a parallel application to work with such
dynamic and irregular data structures. Unfortunately, it is a matter of fact that dynamic
memory allocation is a relevant source of performance poorness in many parallel systems,
since the most popular allocators (i.e. components that manages dynamic memory alloca-
tion) are not designed for supporting concurrent requests in an efficient way, thus resulting

1E-mail: {drocco,aldinuc}@di.unito.it
2E-mail: torquati@di.unipi.it

in very poor scalability with respect to e.g. the number of cores of a multi-core platform.
This leads to flaws in terms of both execution time and memory wastage.

Moreover, hardware industry (in particular in the HPC world) is moving towards hetero-
geneous parallel platforms that rely on so-called many-cores accelerator devices (e.g. GPG-
PUs), supporting offloading of the execution of parallel kernels from the host (i.e. the CPU) to
such dedicated devices. This trend poses many challenges for parallel programming models
that should provide performance portability and seamless exploitation of such massively
parallel platforms (e.g. NVidia K40 GPGPU has 2880 cores). In this scenario, efficient allo-
cators for hybrid multi-core/many-cores platforms must deal with extremely high traffic of
concurrent requests coming from a possibly huge number of processing elements. Moreover
they should provide seamless integration of heterogeneous host/devices memories into a
unified address space, equally accessible by both host and device code, in order to ease the
code portability.

2 Dynamic Memory Allocators in the Many-core Era

The design of dynamic memory allocators has been extensively studied for both sequential
and parallel systems. A dynamic memory allocator is a generic name given to the system
that manages a heap of memory and handles, in a centralised manner, the memory alloca-
tion and deallocation requests coming from applications. Generally, such a system (1) keeps
track of the memory blocks on its heap, including the allocation state of each block, (2) han-
dles requests to allocate or free memory while constantly updating the state of the heap
accordingly, and (3) communicates with the (main) operating system to alter the size of the
heap when required.

Multi-core Allocators Doug Lea’s DLmalloc is one of the most popular allocator and it is
used in the GNU libc library. Although it features some nice features (e.g. coalescence of
adjacent free blocks for minimising internal fragmentation), it is designed for a strict single-
thread model, thus it scales poorly as cores are added to the system. Hoard allocator tackles
this by using two types of heaps: a global heap and a per-process local heap. This approach
limits the amount of conflicts that require locking, augmenting the concurrency, but local
heaps lead to severe over-provisioning and low overall memory utilisation [SHGV14].

Many-cores Allocators Traditional parallel allocators fall short on many-cores SIMD/SIMT
machines, since they tend to somehow serialise concurrent allocations. Xmalloc allocator for
CUDA GPGPUs aims to work around this issue by gathering requests coming from threads
of the same block. ScatterAlloc brings to GPGPUs the concept of local (per-block) heap from
Hoard allocator. KMA is a OpenCL allocator based on lock-free accesses to a centralised
queue of superblocks [SHGV14]. They are all efficient, but none of them deals with integra-
tion of host/device memories.

3 FastFlow

The FastFlow parallel programming environment was originally designed to support ef-
ficient streaming on cache-coherent multi-core platforms [ADKT14]. It is realised as a C++

(header-only) pattern-based parallel programming framework aimed at simplifying the de-
velopment of applications for (shared-memory) multi-core and GPGPUs platforms. The key
vision of FastFlow is that ease-of-development and runtime efficiency can both be achieved
by raising the abstraction level of the design phase. It provides developers with a set of par-
allel programming patterns (aka algorithmic skeletons), in particular data-parallel patterns
(such as map, stencil, reduce and their composition). High-level patterns are implemented on
top of the Core patterns level, consisting of the composition/nesting of basic stream-parallel
patterns (farm, pipeline and feedback).

The latest extensions of the FastFlow framework,

Core patterns
pipeline, farm, feedback

High-level patterns
mapreduce, stencil, D&C, ...

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

Figure 1: Architecture of FastFlow.

aimed at supporting heterogeneous platforms, make
it possible to easily port the application to hybrid
multicore/GPGPU systems by embedding CUDA or
OpenCL business code. Data-parallel patterns can be
run both on multi-cores and offloaded onto GPGPUs.
In the latter case, the business code can include GP-
GPU-specific statements (i.e. CUDA or OpenCL state-
ments).

At the bottom level (i.e. the Building blocks level)
FastFlow CPU implementation of patterns is realised
via non-blocking graphs of threads connected by way
of lock-free channels [ADKT14], while the GPU im-
plementation is realised by way of the OpenCL or

CUDA bindings and offloading techniques. The framework also takes care of memory trans-
fers between CPU host and GPGPU device. In general, different patterns can be mapped
onto different sets of cores or accelerators, thus, in principle, using the full available power
of the heterogeneous platform. The architecture of FastFlow framework is reported in Fig. 1.

FastFlow Allocator FastFlow’s allocator, loosely based on the idea of the slab allocator.
With slab allocation, memory chunks suitable to fit data objects of certain type or size are
pre-allocated. The slab allocator keeps track of these chunks, known as caches, so that when
a request to allocate memory for a data object of a certain type is received it can instantly
satisfy the request with an already allocated slot. Destruction of the object, however, does
not free up the memory, but only opens a slot which is put in the list of free slots by the
slab allocator. The next call to allocate memory of the same size will return the now unused
memory slot. This process eliminates the need to search for suitable memory space and
alleviates memory fragmentation. In this context a slab is one or more contiguous pages in
the memory containing pre-allocated memory chunks. Also, slab relies on the concept of
object re-use, which is meant for keeping commonly used object in an initialised state, since
the initialisation task might be the most expensive part of the process.

Under the performance perspective, FastFlow’s allocator minimises concurrency by dis-
tributing the global state over per-thread local objects (the cloud-shaped FFalloc items in
Fig. 2). Moreover it is lock-less, as it reduces the use of locks and mutual exclusion to the
minimum required – basically when memory management is committed to the main under-
lying allocator (e.g. malloc/free operators in GNU libc). For every other contention it uses
FastFlow’s lock-free SPSC queues, which is a guarantee of efficiency and scalability.

FFalloc

FFalloc

FFalloc

FFalloc
P

Cn

C2

C1

Producer P:
for(i=0;i<10M;i++){
 pi = malloc(rnd(size));
 *pi=...;
 dispatch_RR pi;
}

...

Consumer Ci:
while (pi=get())
 do_work(1μs,pi);
 free(pi);
}

uSPSC queue

P

Cn

C2

C1

...

FFalloc

FFalloc

FFalloc

FFalloc

...
uSPSC queue

+= malloc

free

free

free

Figure 2: A possible allocation/deallocation workflow with FastFlow’s allocator.

4 Future work

Let us consider, as a paradigmatic scenario, a FastFlow graph deployed onto a heteroge-
neous multi-core CPU host connected to a NVidia CUDA-capable GPGPU device. The re-
cently proposed CUDA Unified Memory introduces automatic memory management, pro-
viding unified address space for both host and device code. However it works in one direc-
tion, in the sense it only allows device code to access host-allocated memory by managing
all the memory transfers needed to keep the two memory copies synchronised.

Going further along the same direction, we propose a novel dynamic memory allocator,
based on FastFlow’s allocator and Unified Memory, which allows both host and device code
to access memory (dynamically) allocated from a global shared space. In the initialisation
phase, a global heap of memory is allocated via CUDA Unified Memory allocator. On top
of FastFlow’s allocator, each GPGPU-mapped node is coupled to n local objects – where n is
the number of kernel threads for that node – that reside on the device and manage memory
requests for single kernel threads, thus actually avoiding inter-thread concurrency on mem-
ory operations. Moreover, the object re-using mechanism discussed above limits requests
for effective memory (de)allocation to the global heap, which is the only shared structure
that must be protected (in a efficient lock-free fashion) from conflicting accesses. We remark
that the proposed allocator fits particularly well in the pattern-based FastFlow programming
framework, allowing mapping of different patterns onto different devices (e.g. GPGPU-Map
CPU-Reduce) and seamless portability to different heterogeneous platforms.

References

[ADKT14] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati.
Fastflow: high-level and efficient streaming on multi-core. In Programming
Multi-core and Many-core Computing Systems, Parallel and Distributed Comput-
ing, chapter 13. Wiley, March 2014.

[SHGV14] Roy Spliet, Lee Howes, Benedict R. Gaster, and Ana Lucia Varbanescu. KMA: A
dynamic memory manager for OpenCL. In Proc. of Workshop on General Purpose
Processing Using GPUs, GPGPU-7, New York, NY, USA, 2014. ACM.

	Introduction
	Dynamic Memory Allocators in the Many-core Era
	FastFlow
	Future work

