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Abstract—Traditionally, skeleton based parallel programming
frameworks support data parallelism by providing the pro-
grammer with a comprehensive set of data parallel skeletons,
based on different variants of map and reduce patterns. On the
other side, more conventional parallel programming frameworks
provide application programmers with the possibility to introduce
parallelism in the execution of loops with a relatively small
programming effort. In this work, we discuss a “ParallelFor”
skeleton provided within the FastFlow framework and aimed at
filling the usability and expressivity gap between the classical data
parallel skeleton approach and the loop parallelisation facilities
offered by frameworks such as OpenMP and Intel TBB. By
exploiting the low run-time overhead of the FastFlow parallel
skeletons and the new facilities offered by the C++11 standard,
our ParallelFor skeleton succeeds to obtain comparable or better
performance than both OpenMP and TBB on the Intel Phi
many-core and Intel Nehalem multi-core for a set of benchmarks
considered, yet requiring a comparable programming effort.

Keywords: parallel design patterns, algorithmic skeleton, data

parallelism, loop parallelism, multi- and many-core.

I. INTRODUCTION

Algorithmic skeletons have been around since the ’90s as

a viable and effective solution to support parallel application

development. An algorithmic skeleton is a general purpose,

efficient, reusable, parametric parallelism exploitation pattern

[1]. Application programmers may instantiate skeletons (or

proper composition of skeletons) to encapsulate and exploit the

full parallel structure of their applications. Business code may

be passed as a parameter to the generic skeleton, thus turning

the generic skeleton into a part of a parallel application.

Algorithmic skeletons are usually provided to the applica-

tion programmers as library entries and therefore a complete

separation of concerns is achieved: application programmers

are in charge of the design of the most convenient parallel

application structure through proper selection of the skeletons

(skeleton compositions) among those provided by the skeleton

framework, while system programmers are in charge of target

architecture specific, efficient and scalable implementation of

the parallel skeletons.

Overall, the algorithmic skeleton approach guarantees ef-

ficiency, scalability and some kind of functional and perfor-

mance portability across different target architectures (possibly

including hardware accelerators and coprocessors) provided

This work has been partially supported by FP7 STREP ParaPhrase (www.
paraphrase-ict.eu).

that the application programmer succeeds modelling the par-

allel structure of the application at hand using a proper com-

position of the available skeletons. Unfortunately, structuring

the parallelism of an application with skeletons requires an

extra effort by the application programmer. The amount and

kind of effort required in the different skeleton programming

frameworks often impaired the acceptance of the frameworks

despite the encouraging performance values demonstrated. The

problem is often exacerbated taking into account that single

parallel patterns may be trivially expressed in other state-of-

the-art non structured parallel programming frameworks such

as OpenMP [2].

Data parallel applications in general, and sequential iterative

kernels with independent iterations (parallel loops, from now

on) in particular, have been proved to be easily implemented

on multi-core platforms using the FastFlow framework by

streamisation of loop iterations implemented using the task-
farm parallel pattern [3].

On the one hand, this approach provides the programmer

with great flexibility, allowing also to fully customise the

scheduling policy and/or to nest multiple level of parallel

computations. On the other hand, it requires a significant

re-factoring of the original sequential code thus introducing

possible new bugs and not preserving sequential equivalence.

Furthermore, when using a skeleton-based parallel approach

for a given parallel problem, a proper selection of the appropri-

ate implementation skeleton (typically totally in charge of the

application programmer) together with a correct implementa-

tion of the sequential wrapper code is of foremost importance

for obtaining the best performance.

For all these reasons, we decided to implement a set of

parallel patterns on top of the basic FastFlow skeletons to

ease the implementation of parallel loops using a skeleton-

based run-time. Almost like in OpenMP pragma compiler

directives [4], with the new ParallelFor pattern the programmer

is only in charge to identify parallel loops, without the need

to rewrite or change the loop body. Currently, the new pattern

is implemented using C++ macros, thus covering only a

(significant) subset of all possible parallel loop cases. An

extension of this pattern is currently under development.

The remainder of the paper is structured as follows: Sec. II

briefly introduces the background. Sec. III discusses the

FastFlow parallel loop implementation details. Sec. IV dis-

cusses results obtained by using a set of tests. Finally, Sec. V

draws conclusions.
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II. BACKGROUND

Loop parallelism is a topic that has been repeatedly inves-

tigated over the years using different approaches and tech-

niques for iterations scheduling [5], [6], [7]. In this paper we

concentrate for performance comparison on OpenMP [2] and

TBB [8], which represent to a major extent, the most widely

used and studied frameworks for loop parallelisations.

A. OpenMP

OpenMP uses a directive based approach, where the pro-

grammers annotate their programs with pragmas that instruct

the compilers about the parallelism to be used in the program.

Despite the introduction of task-based parallelism in recent

versions of the standard, loop parallelism is the most important

part of many OpenMP programs.

In OpenMP, two constructs are used to parallelise a loop:

the parallel and the loop construct. The parallel construct,

introduced by the parallel directive, declares a parallel

region which will be executed in parallel by a pool of

threads. The loop construct, introduced by the for directive,

is placed within the parallel region to distribute the loop

iterations to the threads executing the parallel region (thread

team). OpenMP supports several strategies for distributing

loop iterations to threads. The strategy may be specified via the

schedule(type[,chunk]) clause, which is appended to

the for directive. The type of scheduling policy can be:

• static: loop iterations are divided into as equal as possible

pieces of size chunk and then statically assigned to

threads in a round-robin fashion. Default chunk size is

#iterations/#threads.

• dynamic: use the internal work queue to give a chunk-

sized block of loop iterations to each thread dynamically.

When a thread completes the execution of the chunk, it

retrieves the next chunk from the top of the work queue.

By default, the chunk size is 1.

• guided: similar to dynamic scheduling, but the chunk

size starts off large and decreases to better han-

dle load imbalance between iterations. The optional

chunk parameter specifies the minimum size chunk to

use. The size of the initial block is proportional to

#iterations/#threads, subsequent blocks are propor-

tional to #iterations remaining/#threads. The de-

fault chunk size is 1.

• auto: with this policy the decision regarding scheduling

is delegated to the compiler and/or run-time system. The

programmer gives the compiler the freedom to choose any

possible mapping of iterations to threads. The optional

chunk cannot be specified with this policy.

• runtime: uses the OMP SCHEDULE environment vari-

able to specify which one of the previous loop-scheduling

types should be used. OMP SCHEDULE is a string

formatted exactly the same as would appear on the

parallel construct.

If not otherwise specified, in the tests considered in this

paper, we always used the following pragma directive:

#pragma omp parallel for schedule(runtime) num_threads(N)

B. TBB

Intel Threading Building Blocks (TBBs) [8] is a library

that enables support for scalable parallel programming us-

ing standard C++. It provides higher-level abstractions using

generic programming to exploit task-based parallelism without

considering the underlying platform details and threading

mechanisms. The tasks generated by the higher-level abstrac-

tions are then scheduled using a work-stealing policy [9].

The TBB parallel_for and parallel_foreach
methods implement the map pattern so they may be used to

parallelise independent invocation of the elemental function

body of a for loop whose number of iterations is known in

advance. C++11 lambda functions can be used as arguments

to these calls so that the loop body function can be described

as part of the call rather than being separately declared.

The reduction pattern can be accessed via the

parallel_reduce construct. It allows the specification

of an arbitrary combiner function. However, in order for the

result to be computed deterministically the reduction function

needs to be associative and commutative.

The parallel_for splits the half-open range [0, niter)
into sub-ranges and processes each sub-range r as a separate

task using a serial for loop in the code. The range and sub-

range are implemented as blocked_range objects. The

function template parallel_for maps a functor across

range of values. It is provided in several forms, in this paper we

used the range-based algorithm version with C++11 lambda

expressions. As an example of use, consider the following

serial code:

for ( size t i=0; i<N; ++i) B[i] = f (A[i ]) ;

it may be rewritten in TBB using C++11 lambda as follows:

parallel for (blocked range<size t>(0,N),[&](blocked range<size t>r)
{for( size t i=r .begin () ; i!=r .end() ; ++i) B[i]=f (A[i ]) ;}) ;

C. FastFlow
FastFlow1 is a C++ based parallel programming framework

built on top of POSIX threads aimed at providing the parallel

programmer with a set of pre-defined algorithmic skeletons

modelling the main stream-parallel patterns [10], [3].

Together with the sequential code wrapper, it provides two

basic algorithmic skeletons: i) a farm skeleton, applying in

parallel the function modelled by an inner skeleton compo-

sition (the farm worker) to all the items appearing on its

input stream, and delivering results to its output stream; and

ii) a pipeline skeleton, applying in sequence the functions

implemented by its inner skeleton compositions (the pipeline

stages) to the items appearing on the pipeline input stream,

and delivering the results to the pipeline output stream. Both

pipelines and farms, when used at the topmost level in the

skeleton composition, support a feedback-channel providing

the programmer with the possibility to move data back from

the output stream directly to the input stream.

The farm skeleton can be instantiated in several different

forms allowing to fully customise the task scheduling and

1FastFlow is an open source project: http://mc-fastflow.sourceforge.net/
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Fig. 1: PARFOR skeleton (left). Example of a parallel loop with 100 iterations, chunk=8 and 3 worker threads (right).

gathering policies. For the implementation of the PARFOR

pattern we used the one in which the Emitter thread (the sched-

uler thread) has been completely programmed to schedule loop

iterations and where farm workers are sequential wrappers

executing chunks of the loop iterations.

III. FastFlow PARFOR

We implemented a set of C++ macros on top of the basic

FastFlow skeletons to ease the implementation of parallel

loops using a skeleton-based run-time. Currently the following

macros have been implemented:

/* parallel for */
FF PARFOR BEGIN(name,index,start,stop,step,chunk,nworkers)

/* loop body here */
FF PARFOR END(name);

/* parallel reduce */
FF PARFORREDUCE BEGIN(name,var,identity,idx,

begin ,end, step ,chunk,nworkers)
/* loop body here */

FF PARFORREDUCE END(name,var,op);

which can be used to parallelize a loop having the form

for(idx=start;idx<stop;idx+=step) and also a

reduce loop with one scalar reduction variable (var), respec-

tively. op may be one of +,*,-,/,&,ˆ,|. chunk is the

grain size; nworkers is the number of threads in the team. 2

The above macros take care of the full set of implementation

details related to efficient parallelism exploitation, in particular

those needed to instantiate the skeleton, create, initialise and

destroy the pool of threads and finally free memory. In order

to avoid these overheads in case the ParallelFor is called

multiple times (for example within to another loop), the

FF PARFOR/REDUCE INIT/START/STOP/DONE macros

have been also defined:

/* initialises the PARFOR name */
FF PARFORREDUCE INIT(name,decltype(var),nworkers);
do {
FF PARFORREDUCE START(name,var,identity,idx,

begin ,end, step , chunksize ,nworkers)
/* loop body here */

FF PARFORREDUCE STOP(name,var,op);
} while (...) ;
FF PARFORREDUCE DONE(name);/* terminates the PARFOR name */

The macros implementation make widely use of C++11

lambda functions. They are a C++11 feature already supported

by several compilers, such as Intel C++ 12.0, GCC 4.5, and

Microsoft Visual Studio 2010. They are unnamed closures (i.e.

2The PARFORREDUCE can be easily extended to support multiple reduc-
tion variables and any associative and commutative user function.

function objects that can be constructed and managed like

data) that allow functions to be syntactically defined where

and when needed. When lambda functions are built, they can

capture the state of non-local variables named in the wrapped

code by value or by reference. This implicitly may require the

use of dynamic memory allocation.

The skeleton implementing the PARFOR is a farm-with-
feedback whose structure is sketched in Fig. 1 (left). Arrows

denote communication channels implemented using lock-free

Single-Producer Single-Consumer queues [11]. The forSched
thread implements the task scheduling policy. A task is simply

a pair of 2 long integers < start, stop > defining a chunk

of loop iterations. Worker threads (Wi) receive tasks “upon

request”, that is, except for the very first(s) task(s), the

scheduler sends a new task to the worker only if completion

of the previous task assigned to the worker has been sent back

through the feedback channel. This simple policy ensures good

work load balancing among worker threads without the need

of implementing more complex and costly techniques.

The scheduling policy currently implemented, works as

follow: loop iterations are divided into equal pieces of size

chunk; contiguous chunks are logically assigned to the same

thread trying to equalise as much as possible the number

of chunks for each thread in the pool; the forSched sends

chunks to workers upon request; during the computation of

the for loop, if the forSched does not have any chunk of

iterations to schedule to the requesting thread, it tries to “steal”

a chunk (if available) from another thread. To implement this

simple policy, a task table containing the number of currently

available tasks and the minimum and maximum iteration

indexes yet to be executed is maintained in the forSched as a

private data structure (see Fig. 1 right-end side).

The main objective of the scheduling policy proposed, is to

try to obtain a good trade-off between workload balancing and

chunk-to-thread affinity assignment. Maintaining as much as

possible loop iterations affinity is an important performance

factor on shared-cache SPMs to increase the probability to

find the data needed for the computation in one of the cache

level hierarchies, thus reducing somehow the communication

overhead incurred by addressing non-local data on SMP

NUMA platforms. The chunk-to-thread affinity assignment

policy, which implements the idea proposed in the early ’90s

of loop affinity scheduling on shared memory multiprocessors

[12], is implemented totally in the forSched using a task table
having one entry for each worker thread.

In the PARFOR implementation, no shared data structure

among threads is maintained in order to avoid locking over-
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heads. The main drawback of using a centralised thread for

iterations scheduling is that it may become a bottleneck when

an high number of worker threads is used. Although this is

not a big issue in principle because multiple scheduler threads

can be used together (for example organised in a tree topology

– exchanging latency with bandwidth), we will see in the

experimental section that the forSched is not a bottleneck for

current state-of-the-art multi/many-core.

The pseudo-code executed by the generic worker W and by

the forSched threads may be stated as follows:

// worker pseudo−code
void *svc(void *t ) { /* t is a task coming from the forSched */

auto task = ( task t *) t ;
res = F(task−>start,task−>end, threadid); /* calling lambda */
return t ; /* returns the task to the forSched thread */

}

// forSched pseudo−code
void* svc(void *t ) { /* t is the result task coming from workers */

if ( first time ) { /* t=nullPtr at the very beginning */
for ( int i=0;i<nw;++i) { /* nw is the number of workers */

if ( get task ( i , &task)) { /* gets a new task for worker i */
send to( i , task ) ; /* sends to worker i the new task */
update task table ( i ) ; /* updates i−entry in the table */

} else
send eos to( i ) ; /* terminates worker i */

return GO ON; /* returns and gets a new task from workers */
}
if (−−totaltasks == 0) return NULL; /* end of computation */
wid = get sender () ; /* getting the id of the sender worker */
id = wid;
for ( int cnt=0;cnt<nw;++cnt) { /* trying to get a new task */

if ( get task ( id , &task)) {
send to(wid); /* sends the task to the worker with id wid */
update task table ( id ) ;
return GO ON;

}
/* no tasks available , try to steal a task fron another wid */
id = ( id+1) mod nw;

}
if (! pending task[wid]) send eos to(wid); /* terminates wid */
return GO ON;

}

IV. EXPERIMENTS

To evaluate the FastFlow PARFOR implementation we

performed a set of experiments using 2 simple synthetic

micro-benchmarks and 3 benchmarks: standard dense matrix

multiplication algorithm, inner product computation and the it-

erative Jacobi computation. We compared our implementation

against OpenMP 3.1 [4] (using Intel icc 13.0.1 and gcc 4.8.1)

and Intel TBB (from Intel Composer XE 2013 suite). For both

compilers we used the optimisation flag -O3. All tests have

been repeated 5 times then the the average value considered.

As target architectures we considered the many-core Intel

Xeon Phi 5110P (hereinafter Intel Phi) featuring 60 cores

running at 1056 Mhz interconnected by a bi-directional ring

bus. It is a SMP computing node connected to the host domain

through a PCI Express (PCIe) bus. It runs an embedded

Linux x86 64 OS that provides basic functionalities such as

process/thread creation, scheduling and memory management.

Intel Phi cores run independently of each other, having support

for 4-way HW multi-threading being able to execute 4 threads

by interleaving instructions. Each core has a 32 KB L1 data

cache and a 512 KB L2 cache and 512 bit-wide vector unit

used to execute single/double precision SIMD instructions.

The total amount of memory is 8 GB (GDDR5) comprising 8

memory controllers.
The second architecture we considered is a standard dual-

socket NUMA Intel multi-core Xeon E5-2630 Nehalem micro-

architecture (hereinafter Intel Nehalem) running at 2.30GHz

featuring 12 cores (6+6) each one 2-way Hyperthreading. Each

core has 32KB private L1, 257KB private L2 and 16MB shared

L3. The operating system is Linux 2.6.32 x86 64 shipped with

Red Hat Enterprise 6.3.
On the Intel Phi platform, all OpenMP tests have been exe-

cuted enabling thread affinity using the environment variable:

KMP AFFINITY=“granularity=fine,scatter”. In the following

we use the notation “OMP sched” to denote the OpenMP

version in which sched is the scheduling policy selected using

the OMP SCHEDULE environment variable. On the Intel

Nehalem platform, OMP PROC BIND has been set to true

for the 2 micro-benchmark and in the inner product example.
For TBB, on both platforms, we found that, for the tests

considered, the best result is obtained by using the affin-
ity partitioner, so we used the notation TBB-ap for TBB runs.

For the FastFlow PARFOR, we use the notation “FF
chunk” where chunk is the chunk size used for the considered

test. All FastFlow tests have been compiled on both platforms

with the flag “-DNO DEFAULT MAPPING” except for the

2 micro-benchmarks tests on the Intel Nehalem where the

default thread pinning policy was enabled.
As a performance metric, together with the overall execution

time, we used also the speedup, measured as S (n, sz) =
Seq(sz)/T (n, sz) where Seq(sz) is the sequential execution

time and T (n, sz) is the parallel execution time using n worker

threads and keeping fixed the problem size, sz.

A. Micro-benchmark tests
Micro-benchmarks mimic a real ParallelFor in which a

synthetic computation is performed on each loop iteration. The

objective is to evaluate the basic run-time overhead associated

with iterations scheduling. We devised two simple micro-

benchmarks, each one having one single ParallelFor:

parfor1, in which the number of iterations N is kept fixed

(N=10 × 105) and during each iteration a nested loop with a

variable number of iterations M, uniformly distributed in the

half-open range [0, 1000), is executed; parfor2, in which the

number of iterations per thread is constant (10×104 iterations),

during each iteration only a simple assignment of the loop

index to the corresponding array element is executed. The

pseudo-code of the 2 micro-benchmarks is reported in the

following:

parfor1 : parfor2 :
for ( int i=0;i<N;++i) for ( int i=0;i<(K*nth);++i)

for ( volatile int j=0;j<M;j++); V[i]=i ;

Figure 2 to 4 sketch the execution time varying the number

of worker threads, obtained by running the 2 benchmarks on

the Intel Phi platform (Fig. 2 is related to the Intel Phi, while

in Fig 3 and Fig. 4 are related to the Intel Nehalem using the

Intel icc and the GNU g++ compilers, respectively).
For these tests we consider a fixed user-defined grain size

equal to 1000 loop iterations, and for OpenMP the scheduling
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Fig. 2: parfor/parfor2 (left/right) benchmarks execution on Intel Phi many-core.Benchmarks compiled with Intel icc 13.0.1
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Fig. 3: parfor/parfor2 (left/right) benchmarks execution on Intel Nehalem. Benchmarks compiled with Intel icc 13.0.1.
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Fig. 4: parfor/parfor2 (left/right) benchmarks execution on Intel Nehalem. Benchmarks compiled with GNU gcc 4.8.1.

policy considered are: static, guided and dynamic. As a refer-

ence value, we also tested the OpenMP static scheduling case

in which the grain size is N/#threads (this case is reported

in the figures as N/P ). In almost all cases, the FastFlow
PARFOR shows a lower run-time overhead in particular when

an high number of worker threads is used. The execution time

increment of the FastFlow PARFOR when all the available

cores/contexts are used, more evident in Fig. 3 and in Fig. 4

for the parfor2 benchmark, is mainly due to the non-blocking

run-time support of the framework. In fact, the total amount of

threads implementing the PARFOR is #worker thread + 1
and when #worker threads = #cores the extra thread

used (which performs busy-waiting during synchronisation),

introduces non negligible overhead especially in fine grain

computations.

B. Standard matrix multiplication

The first application benchmark is a kernel computing the

standard dense matrix multiplication algorithm (C = A× B)

for square N ×N matrices storing double precision elements.

The pseudo code of the algorithm is the following:

void matmul(double *A,double *B, double *C) {
for (long i=0;i<N;++i)

for (long j=0;j<N;++j)
for (long k=0;k<N;++k)

C[i*N+j] += A[i*N+k]*B[k*N+j];
}

For this test, we selected both relatively small matrices

N = 512, so that the different run-time support overhead

becomes more evident due to the finer grain computation,

and also bigger matrices N = 2048, in order to analyse the

speedup on the considered platforms. The Intel icc compiler

is able to auto vectorize the innermost loop simply inserting

the #pragma ivdep just before the for loop.

Fig. 5 and Fig. 6 report the execution time and the speedup

obtained on the Intel Phi and Nehalem, respectively.

In the OpenMP tests we used the auto scheduling policy

because it allows to obtain the best performance (we tried

many combinations between static, dynamic, guided and grain
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Fig. 5: Matrix Multiplication performance on the Intel Phi. Matrices size: N = 512 (left) and N = 2048 (right).
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Fig. 6: Matrix Multiplication performance on the Intel Nehalem. Matrices size: N = 512 (left) and N = 2048 (right).

size). For the FastFlow PARFOR we used a chunk size of 8

for both platforms.

For small matrices the FastFlow PARFOR obtains a signif-

icant performance improvement with respect to both OpenMP

and TBB on the Intel Phi platform and comparable perfor-

mance results on the Intel Nehalem multi-core. For the bigger

matrix, the maximum speedup on the Intel Phi is 41 using 136

worker threads corresponding to an overall execution time of

417ms. The same test executed on the Intel Nehalem, obtains

a minimum execution time of 730ms using 23 threads and a

speedup of 10.8.

C. Inner product computation

The inner or “dot” product is a simple example of a map

pattern combined with a reduction operation. The map is the

initial pair wise multiplication of vector elements, and the

reduction is the summation of the results of that multiplication.

More formally, given two arrays A and B each with n
elements, the dot product A×B is the resulting scalar given by∑n−1

i=0 A[i]×B[i]. In our test, we considered the possibility to

repeat a number of times (NTIMES) the reduction operation

to study the behaviour of such situations, so the pseudo code

of the benchmark tested is the following:

void dotprod( dounbe *A, double *B)
init vector (A,B); /* init data */

double sum = 5.0;
for ( int z=0;z<NTIMES;++z) {

for (long i=0;i<N;++i)
sum += A[i]*B[i];

}
}

In OpenMP the inner for loop has been parallelised using

the following pragma:

#pragma omp parallel for default(shared) schedule(runtime)
reduction(+:sum) num_threads(nworkers)

The TBB code of the parallel reduce using the standard

template library features and the C++11 lambda closure is:

sum+=parallel reduce(blocked range<long>(0,N),double(0),
[=] (tbb :: blocked range<long> &r, double in) {

return inner product (A+r.begin() ,A+r.end() ,B+r.begin () ,
in , plus<double>(), multiplies<double>());

}, plus<double>(), affinity partitioner () ) ;

finally the FastFlow code is:

FF PARFORREDUCE START(dp,sum,0.0,i,0,N,1, chunksize, nworkers){
sum += A[i]*B[i];

} FF PARFORREDUCE STOP(dp, sum, +);

In terms of conciseness and expressivity OpenMP offers the

best solution among the three, on the other hand, both in TBB

and in FastFlow the parallel code can be written with just few

lines of code, so the programming effort required is minimal.

Figure 7 shows the execution time obtained from the three

versions of the dotprod code on the Intel Phi platform when

NTIMES = 1 and the chunk size is equal to N/P . For this

test, the same scheduling policy and the same chunk size (in

case of PARFOR) are used in both loops. We consider both the

case in which the internal loop executed by each worker thread

is automatically vectorised by the compiler (Fig. 7 left hand

side) and the case in which the auto-vectorisation has been

manually disabled (Fig. 7 right hand side). In both cases, the

best performance is obtained using the FastFlow PARFOR

pattern. It is interesting to note that, with auto-vectorisation

disabled, the PARFOR is much slower than the OpenMP and

TBB version up to 32 worker threads. But thanks to the high
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Fig. 7: dotprod (left) and dotprod without loop vectorization for FF (right). Intel Phi plaform. NTIMES = 1, N = 100×106
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Fig. 8: dotprod (left) and dotprod with parallel arrays initialisation (right) on Intel Nehalem. NTIMES = 10, N = 10× 106

number of cores of the Intel Phi and to the good scalability of

the PARFOR run-time, the FastFlow version is able to obtain

a lower execution time (by using 60 cores the execution time

is almost four times the execution time obtained with the auto-

vectorisation enabled: 43.7ms vs 10.8ms).
Figure. 8 sketches the execution time of the the inner

product application on the Intel Nehalem platform with

NTIMES = 10. Here the performance are almost the same.

We then measured the impact of parallel initialisation of the

A and B vectors on the parallel reduce loop. Initialising the 2

vectors in parallel allows to allocate portions of A and B in the

2 NUMA nodes of the platform, thus allowing the subsequent

parallel reduce loop to exploit more memory bandwidth. This

is possible because the standard malloc call just reserves the

virtual address space but does not actually ”touch” the physical

memory. When different threads running on the cores of the

2 NUMA nodes initialise the two vectors, the memory pages

are allocated on the NUMA node on which the thread that

first ”touched” the memory page resides. The results obtained

are shown in Fig. 8 (right) where we can see that all 3

frameworks are able to exploit the “first-touch” NUMA policy’

performance boost. However, for these tests, FastFlow and

TBB obtain slightly better performance than OpenMP.

D. 2-D Jacobi iterative algorithm
Here we consider the program to solve a finite difference

discretisation of Helmholtz equation using the Jacobi itera-

tive method. This is a classical data-parallel 5-points stencil

computation on a grid of m × n points. The source code of

this test is part of the OpenMP Source Code Repository3

3http://sourceforge.net/projects/ompscr/

(c jacobi01.c). We modified only minor things in order to

compile the code with the C++ compiler. The pseudo-code

of the algorithm is the following one:

void jacobi (...) {
while(k<=maxit && error > tot) {

/* 1st par. loop , copy new solution into old array */
for ( int j=0;j<m;j++)

for ( int i=0;i<n;++i) uold[ i+m*j]=u[i+m*j];
/* 2st par. loop+reduction , computes the stencil and residual */
for ( int j=1;j<(m−1);++j)

for ( int i=1;i<(n−1);++i) {
resid = compute resid(f , i , j , uold ,ax,ay) ;
/* updates solution */
u[ i + m*j] = uold[ i + m*j] − omega * resid;
/* accumulates residual error */
error =error + resid * resid ;

}
error = sqrt ( error ) / (n*m); k++;

}
The 2 for-j loops in the pseudo-code above, can be both

computed in parallel at each iteration of the external while

loop. Between the 2 loops there is an implicit barrier.
Figure 9 shows the performance obtained when a large grid

of 10000× 10000 double precision elements is considered on

the 2 platforms. In this test, the FastFlow PARFOR (using a

chunk size of 10 iterations for both loops) is able to obtain

better performance than the OpenMP implementation starting

from 48 worker threads, reaching a maximum speedup of 46.8

using 158 workers and a minimum execution time of 297.8ms.

On the Intel Nehalem the performance obtained by the 3

implementations is almost the same. The minimum completion

time for the FastFlow PARFOR in this case is 437ms using

6 worker threads.
Then, we tested the same code using a relatively small grid

of 2000×2000 elements. The lower overhead of the FastFlow
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Fig. 9: jacobi application performance m× n = 10000× 10000. Intel Phi platform (left). Intel Nehalem multi-core (right).
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Fig. 10: jacobi application performance m× n = 2000× 2000.Intel Phi platform (left). Intel Nehalem multi-core (right).

PARFOR pattern allows to obtain the minimum completion

time both on the Intel Phi and the Intel Nehalem. This test

confirms the results obtained in the matmul tests: when fine

grain computations are considered the FastFlow PARFOR is

able to obtain better performance than OpenMP and TBB ver-

sions on the 2 platforms considered, instead for medium/coarse

grain computations the three parallel implementations obtain

comparable performance results.

V. CONCLUSIONS

This paper presents the ParallelFor skeleton implementation

provided within the FastFlow parallel framework. The pro-

posed skeleton allows to parallelise independent loops with a

moderate programming effort similar to that required by well-

known parallel frameworks such as OpenMP and Intel TBB.

A simple yet effective dynamic tasks scheduling policy has

been studied and implemented. By using a set of benchmarks,

we demonstrated that the ParallelFor implementation proposed

is able to obtain comparable or even better performance results

with respect to those achieved parallelising the same code

using OpenMP and Intel TBB. All tests have been executed

on two different platforms: a Intel Xeon Phi many-core and a

Intel Nehalem 12-core NUMA multi-core.

As future work, we are currently planning to extend the

applicability of the current ParallelFor skeleton implementa-

tion and to study dynamic loop iterations offloading to general

purpose many-core and GPUs.
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