
TheFastFlowprogramming framework
Marco Danelutto◦ Massimo Torquati◦ and Marco Aldinucci†

◦ University of Pisa, Italy † University of Torino, Italy

What
FastFlow is a parallel programming framework for multi and many core platforms based upon non-blocking
synchronization mechanisms. The framework is structured as a stack of layers that provide different levels of
abstraction to the application programmer. FastFlow provides the parallel programmer with a set of ready-
to-use, parametric algorithmic skeletons modeling the most common parallelism exploitation patterns.

How, the FastFlow way

round-robin

broadcaston-demand

user-defined

all-gather

round-robin

user-defined

user code
C++/OpenCL/Cuda

/

-

\

|

-

/

|

pipeline

task-farm/map

torus

master-worker

Video denoiser (2-stage pipeline)

|
detect

denoise

denoise

denoise

GPGPU
offloading

DNA alignment: Bowtie2-FF (master-worker)

Numerical kernels

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

S
e
rv

ic
e
 T

im
e
 (

S
) 

- 
lo

g
s
c
a
le

S
p
e
e

d
u
p

FF’s workers / PLASMA’s threads

Mat: 8192x8192, blocks: 256x256

ffMDF
PLASMA-D

ideal speedup

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
e

rv
ic

e
 T

im
e

 (
m

s
)

FF’s workers / PLASMA’s threads

Mat: 512x512 blocks:32x32

ffMDF
PLASMA-S

Deep Packet Inspection

Sorting & Searching

Image filtering

Video Detection

Data classification

-

Building Blocks

Layered Design

Separation of concerns

Application programmer :

Parallel Applications

Pattern Selection & Composition

System programmer :

the system programmer either uses the low-level building 
blocks to create new patterns or uses and optimizes the 
composition of the existing patterns to build new skeletons 
for the target platform. 

Some possible skeletons

Efficient Building Block Implementation

Processes Simulation

Packet filtering

Bio-analysis

Parallel Patterns

Building Blocks

multi-core, many-core and 
distributed platforms

Core Parallel Patterns:
pipeline, task-farm & feedback

High-level Parallel Patterns:
ParallelFor, Map, Stencil, D&C,
MDF, ParallelSearch, Pool, ...

etc.

Parallel Applications and
Domain Specific Parallel Frameworks

the application programmer is in charge of selecting the 
proper pattern from the ones provided by the framework 
and connecting them in order to create a suitable streaming 
network able to solve the problem at hand.

Flexible Layered Design
Fastflow is a C++ class library designed as a stack
of three main layers. The different layers have two
main purposes: 1) promoting high-level parallel pro-
gramming, i.e. explicit pattern-based parallel design
of applications, and 2) to be flexible and efficient for
programming multi and many core platforms. The
FastFlow programmer may choose to use the mecha-
nisms provided by the layers which best suit his/her
needs.

Building Blocks: This is the lowest level layer. It
comprises: i) the wrapper nodes (the ff_node
derived classes) used to embed existing portions
of code (C/C++, OpenCL, CUDA) into paral-
lel programs; and ii) the one-to-many, many-to-
one and feedback combinators for connecting
nodes and routing data in different ways. At
this level any asynchronous streaming network
can be built; the semantics is data-flow. Each
wrapper building block has an input and an
output lock-free bounded or unbounded SPSC
queue, and their well-defined semantics pro-
motes the possibility to automatically refactor
their compositions to better exploit target ar-
chitecture features.

Core Parallel Patterns: On top of the Build-
ing Block layer, has been implemented the
pipeline and several forms of the task-farm im-
plementation skeletons. They can be composed
and nested in several different ways using also
the feedback component for routing back data
streams. The task-farm is fully customizable
both in terms of scheduling and gathering poli-
cies. A pipeline of task-farm components, when
nested, may be optimized for reducing the num-
ber of concurrent threads.

High-Level Parallel Patterns: This is the top
level layer. To structure his/her parallel appli-
cation, the application programmer, uses the
patterns available at this level and their com-
positions through the pipeline and task-farm
core patterns. This layer is still in evolution:
more patterns will be developed and further op-
timizations will be applied to the current ones.
The high-level patterns currently available are
ParallelFor/Map, ParallelReduce, Stencil, Par-
allelSearch, Macro-Dataflow, D&C, Pool Evo-
lution.

Platforms supported
FastFlow supports Intel, AMD, IMB Power and
ARM general purpose multi-core based platforms.
Recently it has also been ported on Tilera TilePro64
and Intel Xeon PHI such that tasks can be offloaded
on these accelerators. FastFlow-based code may be
compiled with any recent GNU and Intel compilers.

Targeting CPUs+GPGPUs
Mixing the computation on both CPUs and GPG-
PUs is supported in FastFlow via both OpenCL and
CUDA guest code. The OpenCL-based map parallel
pattern may execute tasks on one or more GPGPUs
and in parallel with the available CPUs. Building
complex streaming networks having different parts of
the net running on GPGPUs and part on CPUs is
straightforward and effective.

Distributed Systems
FastFlow supports heterogeneous distributed plat-
forms. For TCP/IP networks, the ZeroMQ library
(www.zeromq.org) is used while for Infiniband net-
works a native RDMA-based library has been im-
plemented. Porting FastFlow applications on a dis-
tributed environment is straightforward!

FP7 Projects using FastFlow

References
Project Home:
→ http://mc-fastflow.sourceforge.net
→ http://calvados.di.unipi.it/fastflow

SVN repository:
→ https://svn.code.sf.net/p/mc-fastflow/code


