The FastFlow programming framework

Marco Danelutto® Massimo Torquati® and Marco Aldinucci’

° University of Pisa, Italy T University of Torino, Italy

Flexible Layered Design

Fastflow is a C+-+ class library designed as a stack
of three main layers. The different layers have two
main purposes: 1) promoting high-level parallel pro-
grammang, i.e. explicit pattern-based parallel design
of applications, and 2) to be flexible and efficient for
programming multi and many core platforms. The
FastFlow programmer may choose to use the mecha-
nisms provided by the layers which best suit his/her
needs.

FastFlow is a parallel programming framework for multi and many core platforms based upon non-blocking
synchronization mechanisms. The framework is structured as a stack of layers that provide different levels of
abstraction to the application programmer. FastFlow provides the parallel programmer with a set of ready-
to-use, parametric algorithmic skeletons modeling the most common parallelism exploitation patterns.

Building Blocks: This is the lowest level layer. It
comprises: i) the wrapper nodes (the ff node
derived classes) used to embed existing portions

£ of code (C/C++, OpenCL, CUDA) into paral-
lel programs; and ii) the one-to-many, many-to-
one and feedback combinators for connecting
nodes and routing data in different ways. At
this level any asynchronous streaming network
can be built; the semantics is data-flow. Each
wrapper building block has an input and an
output lock-free bounded or unbounded SPSC
queue, and their well-defined semantics pro-

1 Video denoiser pipeline)
ations and

llel Frameworks DNA alignment: Bowtie2-FF (master-worker)

o BmE e Y §
High-level Parallel Patterns: 24 . } \\
N\

v

ParallelFor, Map, Stencil, D&C,
MDF, ParallelSearch, Poal, ...
etc.
4

B S
Core Parallel Patterns: "
\I\ pipeline, task-farm & feedback . B B !
. SPAYIZIEE CRRITAtEL GRRDT23:6
@ L Datasat Numerical kernels Mat: 512x512 blocks:32x32
Buﬂdmg Blocks Mat: 8192x8192, blocks: 256x256 20 "~ IMDF ——
‘! 100 S — PLASMA-S—*—E—

PLASMA-D —— Vg _
ideal speedup ----- §

Spacdup
=
7

GPGPU
offloading

/'/ E
A
L 15 j

(=) N B (o)

logscale
\\.
<
\.

S
ervice Time S
\,

(o)} “‘@/_L —_ —_ —_

% 10 \ 10 g’ ; e : -9 o5)c .
E NJL NG < PO N motes the possibility to automatically refactor
. ° B : - .
s SORNRE Image ng their compositions to better exploit target ar-
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . h' f
D 0 FF’s workers / PLASMA's threads ’deo De on C lteCture eatures.
r = =1 E 0 (\ 0 () 0 — 15 16
| Processes ation .
W Core Parallel Patterns: On top of the Build-
T h ing Block layer, has been implemented the
ass LS {iFastFlow: Modules Ly U < o]
Herearetheclasses,strUCFaStIJEiOW dil Q % Data CIaSS’ﬁcat’on pzpel’&ne and Several forms Of the tG,Sk-fa/rm lm_
2.0.0 2N\ .
0 ff Fonork el e s Mo et | oA roynTig (S memor) Sorting & Searching plement ation skeletons. They can be Composed
PR = Packet filtering and nested in several different ways using also
E)S(ln:lz\ad,[)ata Here is a list of all modules: - the feedbaCk COHlpOIleIlt fOI' I'OUtlIlg ba:Ck data:
ﬁ_aal)loi;tfr [detail level 1 2] D p Pa Cket lnspeCtlon

streams. The task-farm is tully customizable
both in terms of scheduling and gathering poli-
cies. A pipeline of task-farm components, when
nested, may be optimized for reducing the num-
ber of concurrent threads.

3 FFAxThreadData Applications level This module defines the applications on multi-cores, :
3 FrAllocator many-cores, GPGPUs and distributed platforms of multi-
cores. This is not part of the FastFlow implementation
This is the first level of FastFlow and defines the
high-level patterns to achieve stream parallelism

This levels defines the high-level patterns for shared
3 commTransport memory

9 SWSR_Ptr_Buffer

- High-level patterns
4 Lamport_Buffer

J commPattern High-level patterns for shared memory

4 descriptorl N High-level patterns for distributed memory This levels defines the high-level patterns for distributed

memory

This is the second level of FastFlow and defines the

arbitrary patterns for stream parallelism

9 zmql 1 Arbitrary streaming network for shared memory The arbitrary streaming network pattern of FastFlow for

shared-memory

Arbitrary streaming network for distributed memory The arbitrary streaming network pattern of FastFlow for

distributed-memory

This is the third and last level of FastFlow and defines

- the simple patterns for stream parallelism

3 zmqOnDemand Simple streaming network for shared memory This module contains the implementation of simple
streaming network on the shared-memory architectures

Simple streaming network for distributed memory This module contains the implementation of the
networking and communication patterns used in the v

Separation of concerns

9 descriptorN_1 Arbitrary streaming network (ParaPhrase HAL)

9 zmqBcast
4 zmqgAllGather

Application programmer :

4 zmgFromAn , .
L v Simple streaming network

the application programmer is in charge of selecting the
proper pattern from the ones provided by the framework
and connecting them in order to create a suitable streaming
network able to solve the problem at hand.

4 zmqScatter

High-Level Parallel Patterns: This is the top
level layer. To structure his/her parallel appli-
cation, the application programmer, uses the
patterns available at this level and their com-
positions through the pipeline and task-farm
core patterns. This layer is still in evolution:
more patterns will be developed and further op-
timizations will be applied to the current ones.

The high-level patterns currently available are
ParallelFor /Map, ParallelReduce, Stencil, Par-

allelSearch, Macro-Dataflow, D&C, Pool Evo-
lution.

Parallel Patterns

System programmer :

the system programmer either uses the low-level building
blocks to create new patterns or uses and optimizes the
> composition of the existing patterns to build new skeletons
for the target platform.

pipeline

) B) B) E

torus

master-worker

- Some possible skeletons

)
< B)

) E

task-farm + feedback

N
D task-farm/map
I

pipeline + feedback

0004)@

mixing pipeline task-farm & feedback

Platforms supported

FastFlow supports Intel, AMD, IMB Power and
ARM general purpose multi-core based platforms.
Recently it has also been ported on Tilera Tile Pro64
and Intel Xeon PHI such that tasks can be offloaded
on these accelerators. FastFlow-based code may be
compiled with any recent GNU and Intel compilers.

Building Blocks

user code
I_ C++/OpenCL/Cuda

) &)

Efficient Building Block Implementation

)<

FP7 Projects using FastFlow

one to many
—— shmem SPSC queues —-- (multiple scheduling policies)

|
|
Y * - o)
—)Q—) o o
- o
generic node many to one

(C++, OpenCL, CUDA) (multiple gathering policies)

«{] user-defined

<<] on-demand

—7 I REPARA

PROGRAMME

Targeting CPUs+GPGPUs Distributed Systems

Mixing the computation on both CPUs and GPG-
PUs is supported in FastFlow via both OpenCL and
CUDA guest code. The OpenCL-based map parallel
pattern may execute tasks on one or more GPGPUs
and in parallel with the available CPUs. Building
complex streaming networks having different parts of
the net running on GPGPUs and part on CPUs is
straightforward and eflective.

FastFlow supports heterogeneous distributed plat-
forms. For TCP/IP networks, the ZeroMQ library
(www.zeromgq.org) is used while for Infiniband net-
works a native RDMA-based library has been im-
plemented. Porting FastFlow applications on a dis-
tributed environment is straightforward!

Project Home:
— http:/ /mc-fastflow.sourceforge.net
— http:/ /calvados.di.unipi.it /fastflow

SVN repository:
— https://svn.code.sf.net /p/mec-fastflow /code

