
High-level pattern-based parallel programming for C/C++

Data parallelism: ParallelFor, MapReduce, StencilReduce
Data parallel patterns can be easily deployed onto multi-cores and multiple GPGPUs. No additional
programming effort with respect to OpenMP.

Stream parallelism: Pipeline, Farm
Stream parallel patterns can be deployed onto multi-cores, distributed platforms, and clouds (e.g. Amazon EC2).
Stream patterns can be composed to model arbitrary streaming networks, and can be nested with data parallel
patterns. This makes it possible to use the aggregate power of (physical or virtualised) heterogenous clusters of
multicore and GPGPUs. FPGA support is currently experimental.

Motivation
The whole computer hardware industry embraced parallel
platforms, such as multicore, GPGPUs, and cloud. For these
platform, the extreme optimisation of sequential algorithms is
no longer enough to squeeze the real machine power. In the
long term writing parallel programs ought to be as efficient,
portable, and correct as it has been to write programs for
sequential computers. To date, however, the parallel
programming drill does not embrace much more than low-
level communication libraries. In the hierarchy of abstractions,
it is only slightly above toggling absolute binary into the front
panel of the machine. By definition, the raison d’être for
parallel computing is high performance, but speed-up need not
be the only measure. Human productivity, total cost and time
to solution are equally, if not more important.

Material and methods
FastFlow is a C++ parallel programming
framework advocating high-level, pattern-based
parallel programming. It chiefly supports streaming and data
parallelism, targeting heterogenous platforms composed of
clusters of shared-memory platforms, possibly equipped with
computing accelerators. The FastFlow run-time support
efficiently support fine grain parallelism via non-blocking
multi-threading with lock-less synchronisations; zero-copy
network messaging; asynchronous GPGPU offloading.

FastFlow architecture

Projects & partnerships, over 10M€

Core patterns
pipeline, farm, feedback

High-level patterns
parallelFor, parallelForReduce,…

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

MT
process

thr thr

GPU

thr

thr thr

MultiThreaded (MT) process
shared memory channels

thr

MT
process

MT
processthr

thr
thr

Network channels
TCP/IP or Infiniband

distributed mediators
(dnode)

P2P or collective
communications
unicast, broadcast,

scatter, ...

50

100
150
200
300
500

1000

2000
3000

1 4 8 12 16 20 24 28 32
1
4

8

12

16

20

24

28

32

Ex
ec

ut
io

n
tim

e
(s

) -
 lo

gs
ca

le

Sp
ee

du
p

N. of worker threads

Gene LMO2 on SRR400264 L2 - 12360 Edges

TBB
FF
OMP
ideal

3-Dimensional
“social network”
of Chromosomes

 0

 4

 8

 12

 16

 20

 24

 28

 32

SRR502198 SRR078586 SRR072996

S
p

e
e

d
u

p

Dataset

Bt2
Bt2-int
Bt2FF

Bt2FF-pin
Bt2FF-pin+int

30%

50%

90%

noisy restored

A T T G C G A A T C

G T A G C G C A T G

 | | | | | |
 | | | | | |

FastFlow: multicore and GPGPU programming made easy
University of Torino & University of Pisa, Italy ✽ http://sourceforge.net/projects/mc-fastflow ✽ Open source software under LGPLv3

Signal filtering
A high-performance filter for real-
time video denoising. The filter is
composed of two phases: detection
(e.g. classical median filter) and
correction. The filter achieve very
good restoration quality, comparable
to jpeg compression. Unlike
traditional methods, the correction
phase is based on a variational
method and succeeds to restore also
extremely noisy images (up to 90% of
noisy pixels). FastFlow provided
seamless portability to CUDA boards
(e.g. NVidia K-40). This work has
been presented at Nvidia GTC 2014.

Bowtie2 and BWA are among the
fastest and most used alignment tools
for genome analysis in bioinformatics.
In the FastFlow porting, the
concurrency structure has been
redesigned passing from a pool of
thread accessing shared data to a
Farm/Master-Worker equipped with
automatic memory affinity scheduling.
The Fastflow port differs from
original code no more than a dozen
of code lines but gains up to ten
speedup points over the original
parallel, hand-optimised software.

DNA alignment (Bowtie2 & BWA) Next-gen DNA analysis (nuChart-II)
Hi-C data analysis has emerged
as a powerful technique to
understand how the genome is
packaged in cells to control
gene expression. nuChart-II
provides a gene-centric view of
the 3D chromosomal
neighbourhood. Starting from
the sequential C++
implementation, the graph
exploration loop has been
parallelised by using the
ParalleFor pattern provided
by FastFlow, that permitted to
improve the performance with
minimum effort.

FastFlow team
M. Aldinucci, M. Torquati, M. Danelutto
M. Drocco, C. Misale, G. Peretti Pezzi, F. Tordini

Performance
Like other high-level programming frameworks, such as Intel
TBB, OpenMP, Hadoop, FastFlow simplifies the design and
engineering of portable parallel applications. However, it has
a clear edge in terms of expressiveness and performance
with respect to other parallel programming frameworks in
specific application scenarios, including, inter alia:

✔ fine-grain parallelism
✔ streaming applications
✔ coupled usage of GPU
✔ and multi-core
✔ memory-bound problems
✔ recursive, graph-oriented
✔ algorithms
✔ high-frequency problems 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Number of cores

S
p

e
e
d

u
p

 Ideal
FastFlow

TBB

OpenMP

Cilk

High-frequency stream processing (5 µs tasks)

H
ig

he
r i

s
be

tte
r

Platforms and OSes support
Being a plain header-only C++ library, FastFlow
can be used (or easily ported) on any homogenous
or heterogeneous parallel platform. Among the
others, the following platforms are supported:

Intel x86_64 - Linux/MacOS - gcc/clang/icc
Intel x86_64 - Windows 7/8 - MS Visual Studio
Arm - Linux - gcc
Arm - iOS - clang (experimental)
IBM Power - Linux - gcc
Accelerators: NVidia/CUDA/OpenCL, Intel Phi, Tilera Tile64

