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Abstract
In this paper, a highly-effective parallel filter for video denoising is
presented. The filter is designed using a skeletal approach, and has
been implemented by way of the FastFlow parallel programming
library. As a result of its high-level design, it is possible to run
the filter seamlessly on a multi-core machine, on GPGPU(s), or on
both. The design and implementation of the filter are discussed,
and an experimental evaluation is presented. Various mappings of
the filtering stages are comparatively discussed.

Keywords skeletons, fastflow, parallel patterns, multi-core, OpenCL,
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1. Introduction
The ever increasing computing power available from off-the-shelf
processors has allowed researchers to extend the number of applica-
tions in image processing and machine vision. One important step
in any machine vision system is the image restoration phase, which
has attracted the attention of the image processing community, es-
pecially with the increasing importance of real-time analysis of dig-
ital images and videos for video surveillance, etc. Variational meth-
ods, which basically solve optimization problems, are well known
for their effectiveness, but are rarely exploited in image restora-
tion due to their high computational cost and complexity of tuning
[12, 26] .

An efficient variational image restoration template based on
FastFlow technology [4, 21] has been proposed in previous work
[3]. Given a traditional noise reduction filter (e.g. based on adaptive
median, adaptive center-weighted median) the template generates
an efficient parallel variational filter running on both multi-core
and GPUs. The resulting variational filter is edge-preserving and,
compared with the original filter, exhibits a better Peak-Signal-to-
Noise-Ratio (PSNR) and can restore images with higher levels of
noise.

The proposed image restoration schema is organised in two
successive stages: an early outline of an image is first detected and
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then it is denoised. The schema is implemented according to a high-
level pattern-based approach (a.k.a. skeleton approach [15]), and
deployed as a sequence of detect and denoise stages that are defined
according to the map parallel paradigm and the map-reduce parallel
paradigm, respectively.

This paper extends the previous work in two directions:

1. The restoration schema is applied to video streams as opposed
to a single image, and is expressed using pipeline parallelism
between the two stages.

2. The implementation, realised by way of the FastFlow program-
ming framework, is tested on a heterogeneous platform com-
posed of a multi-core equipped with two GPGPU devices.

Thus, this work incorporates the business code of the earlier
work [3]: the difference from the earlier work lies in the nature
of the skeleton framework in which the business code is placed.
Here the sequential composition of stages is replaced by a two stage
pipeline through which a stream of images is directed. In addition,
the FastFlow framework itself has evolved since the earlier work:
now it incorporates the facility to deploy applications onto hetero-
geneous platforms comprising both CPUs and GPGPUs. This has
an interesting implication for the application: originally the sec-
ond stage (denoising) was orders of magnitude slower than the first
stage (noise detection) and so there was no point in parallelising
the first stage. Now, as will be seen, with the denoise stage on a
GPGPU, in some cases we expect it to become faster than the (se-
quential) noise detection stage and so it is worthwhile also to par-
allelise the noise detection stage.

For the sake of simplicity, in this paper impulsive noise (e.g.
salt-and-pepper) is considered. The same approach has been shown
to be effective for several types of noise (e.g. Gaussian). The anal-
ysis of restoration quality for different types of noise is beyond the
scope of the present work.

The structure of the paper is as follows: in the next section the
denoising filter is reviewed by presenting some related work and
its mathematical foundations; also, algorithmic skeleton solutions
are introduced and reviewed. Section 3 shows the performance of
the sequential implementation of the described filter, while section
4 and section 5 present, respectively, the parallel implementation
of the proposed algorithm over heterogeneous architecture and the
experimental results. Finally, in the last section concluding remarks
are provided.

2. Background
In this section the image restoration process will be introduced,
by presenting its mathematical foundations and some related work.



Then an overview of state-of-the-art structured parallel program-
ming frameworks is given, together with an introduction to the
FastFlow framework. Finally, the original FastFlow-based image
restoration application, which is the forerunner of the video de-
noiser, is described.

2.1 Variational Image Restoration: Related Work

In the past fifteen years a large number of methods have been
proposed to deal with salt and pepper noise (and, more generally,
impulse noise) from digital images [5]. Most of these methods
employ order statistic filters that exploit the rank-order information
of an appropriate set of noisy input pixels. The median filter is the
most popular non-linear filter for removing impulse noise, because
of its good denoising power [8] and its computational efficiency
[22], but it affects image detail while removing noise. This issue has
generally been addressed by filtering techniques based on median
filter modifications[25, 36]. However, the performance of median
filtering based approaches is unsatisfactory in suppressing signal-
dependent noise [35] when the noise percentage is high (more than
50%). To achieve a good compromise between the image-detail
preservation and the noise reduction, an impulse detector must
be used before filtering. Several types of impulse detectors exist:
the most famous is the progressive switching median (PSM) [33].
Machine learning approaches have also been widely used in recent
years, e.g. approaches relying on Bayesian networks [19], fuzzy
logic [34] and neuro-fuzzy [37]. The filtering is then selectively
applied to the noisy regions detected by the noise detector. To the
best of our knowledge, one of the most effective algorithms for
edge preservation in salt and pepper denoising has been proposed
by Nikolova in [26]: it applies a variational method for image detail
preservation that is based on a data-fidelity term related to the
impulse noise. Based on this approach Chan et al. in [12] (called
for simplicity Chan’s method) proposed a powerful filter capable of
removing salt and pepper noise as high as 90%. Similar approaches
to Chan’s method, aimed at improving the noisy detection step
and at reducing the processing times, are those proposed in [9–
11, 14, 19].

2.1.1 Detection of Outliers for Salt-and-Pepper Noise

Let ŷ be the map of noisy pixels (obtained by applying the adaptive
median filter classifier to the noisy image) which has a 1 in the cor-
responding position for a noisy pixel, and a 0 for an uncorrupted
pixel. Hence the set of noisy pixels N (to which the restoration
algorithm has to be applied) consists of the overall pixels of the
original image y whose values in the ŷ map are equal to 1, i.e.:
N = {(i, j) ∈ A : ŷi,j = 1}

The set of all uncorrupted pixels isNc = A\N , where A is the
set of all pixels. Note that, since pixels with colour different from 0
and from 255 are uncorrupted, the AMF filter [23] can be modified
to exclude them with significant benefits in term of performance
and false positive rate.

2.1.2 Variational Denoising

The problem of image restoration for edge preserving is an inverse
problem solved by using regularization, where the restored image
u is obtained by solving the following optimization problem re-
stricted to the set of the noisy pixels N .

min
u∈N

F (u) = α

∫
R(u) + β

∫
D(u, d) (1)

where d is the image corrupted by the noise; D(u, d) is the data-
fidelity term which is related to the kind of noise and provides a

measure of the deviation between d and the output image u; and
R(u) is a regularization term that uses a-priori knowledge for en-
forcing the solution and should be represented by a function that pe-
nalizes/removes only irregularities due to the affecting noise, thus
ignoring high-level discontinuities (edges). β and α are the reg-
ularization parameters that balance the effects of both mentioned
terms. Among the functionals F (u) (see [13]) for edge preserv-
ing proposed during the last fifteen years, we have selected the one
proposed in [12] which has been shown to be very effective for
Salt-and-Pepper noise. The same performance might not be guar-
anteed for a different type of noise. However, it is crucial to note
that substituting F (u) by a different functional does not require
rewriting of the code, since the whole parallel denoising process is
a higher-order function where F (u) is a parameter. In the present
case:

Fd|N (u) =
∑

(i,j)∈N

[|ui,j − di,j |+
β

2
(S1 + S2)] (2)

where

S1 =
∑

(m,n)∈Vi,j∩N

2 · ϕ(ui,j − dm,n) (3)

S2 =
∑

(m,n)∈Vi,j∩Nc

ϕ(ui,j − um,n) (4)

where N represents the noisy pixels set, Nc the set of uncorrupted
pixels, and Vi,j is the set of the four closest neighbours of the pixel
with coordinates (i, j) and d is the corrupted image. As in [12], we
have used the following ϕ function that provides the best trade-off
between edge preserving and denoising: ϕ(t) = |t|α ϕ(t) = |t|α
with 1 < α ≤ 2. The values of α and β were, respectively, set to
1.3 and 4 in order to guarantee the trade-off between noise removal
and edge preservation provided by the function ϕ.

A video stream is restored by independently filtering each of
its frames. The restoration of a single frame follows an iterative
process. At each iteration, for all outliers, its value is updated
with the value u which minimizes the functional (1). The iterative
process is stopped in accordance with a quasi-Newton method [7]
using no PSNR variation across successive iterations as fix-point.
The presentation of algorithmic details, which is beyond the scope
of the present work, can be found in [3].

2.2 Algorithmic Skeletons

Algorithmic skeletons have been around since the ’90s as an ef-
fective means of parallel application development. An algorithmic
skeleton is a general-purpose, parametric parallelism-exploitation
pattern [15]. Application programmers may instantiate skeletons
(or compositions of skeletons) to encapsulate and exploit the full
parallel structure of their applications. Business code may be
passed as a parameter to the generic skeleton, thus turning the
generic skeleton into a part of a parallel application.

MPI is often considered as a solution for writing efficient par-
allel applications [27]. The low-level approach advocated by MPI
falls short in supporting performance portability, especially when
hundreds or thousands of concurrent activities are involved and hy-
brid solutions have to be adapted (i.e. MPI+OpenMP). Applica-
tions must often be re-designed or manually tuned for each new
platform by an expert parallel programmer. OpenMP [28] is a pop-
ular thread-based framework for multi-core architectures mostly
targeting data parallel programming (although it is currently be-
ing extended to incorporate stream processing). OpenMP supports,
by way of language pragmas, the low-effort parallelisation of se-
quential programs; however, these pragmas are mainly designed to



map p in pixels do
  while (winsize<MAX) 
    if (homogenous(p,winsize))
      winsize++;
    else if (is_impluse(p))  
      return NOISY;
    return NOT_NOISY;

while (converge_not_reached)
  map u in noisy_pixels do
    z=value_minimizing F(u);
  reduce (u,z) in noisy_pixels do
    convergence(u-z);
     

Pixels in different partitions 
can be independently 
analyzed in parallel. 
Partitions can have any 
size (e.g. 1 pixel).
The median filter adapts the  
halo size to the complexity 
of the image.

Pixels in different partitions 
can be independently 
analyzed in parallel. 
Partitions can have any size.
The variational method 
analyse on a closest 
neighborhood halo. The 
color of pixels in the halo are 
referred to the previous 
iteration.

detect denoisenoisy video restored video

pipeline

Video is processed as a stream of independent frames.

Figure 1. Two-phase denoiser.
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Figure 2. Variational denoiser: architecture and refinement lattice.

exploit loop-level data parallelism (e.g. do independent). OpenMP
does not natively support either farm or Divide&Conquer patterns,
even though they can be simulated with lower-level features. Intel
Threading Building Blocks (TBB) [32] is a C++ template library
which provides easy development of concurrent programs by ex-
posing (simple) skeletons and parallel data structures used to de-
fine tasks of computations. TBB is designed as an application-level
library for shared-memory programming only; furthermore it does
not provide any formal definition of its own skeletons to support
global optimisations of the code.

Programming frameworks based on algorithmic skeletons have
been recently introduced to alleviate the task of the application pro-
grammer when targeting data parallel computations on heteroge-
neous architectures. OpenCL is a parallel API provided for GPGPU
programming, which allows the users to exploit GPUs for general

purpose tasks that can be parallelised [24]. It is implemented by dif-
ferent hardware vendors such as Intel, AMD, and NVIDIA, mak-
ing it highly portable and allowing the code written in OpenCL
to be run on different graphical accelerators. OpenCL is quite low
level, focusing on low-level feature management rather than high-
level parallelism exploitation patterns. It has the capability to revert
to the CPU for execution when there is no GPU in the system.
Its portability makes it suitable for Hybrid(CPU/GPU) or cloud
based environments. In Muesli [18] the programmer must explic-
itly indicate whether GPUs are to be used for data parallel skele-
tons. StarPU [6] is focused on handling accelerators such as GPUs.
Graph tasks are scheduled by its run-time support on both the CPU
and various accelerators, provided the programmer has given a task
implementation for each architecture. SkePU [17] provides pro-
grammers with GPU implementations of map and reduce skeletons



and relies on StarPU for the execution of stream parallel skeletons
(pipe and farm). MCUDA [31] is a framework to mix CPU and
GPU programming. In MCUDA it is mandatory to define kernels
for all available devices but the framework can not make any as-
sumptions about the relative performance of the supported devices.

2.3 The FastFlow Programming Framework

The FastFlow parallel programming environment was originally
designed to support efficient streaming on cache-coherent multi-
core platforms. It is realised as a C++ pattern-based parallel pro-
gramming framework aimed at simplifying the development of ap-
plications for (shared-memory) multi-core and GPGPUs platforms.
The key vision of FastFlow is that ease-of-development and run-
time efficiency can both be achieved by raising the abstraction level
of the design phase. It provides developers with a set of parallel
programming patterns (aka algorithmic skeletons) such as farm, di-
vide&conquer, pipeline, map, reduce, and their arbitrary nesting
and composition is supported [1, 4]. Map and reduce patterns can
be run both on multi-cores and offloaded onto GPGPUs. In the lat-
ter case, the business code can include GPGPU-specific statements
(i.e. CUDA or OpenCL statements).

The latest extensions of the FastFlow framework, aimed at
supporting GPGPUs (via OpenCL) and CPU+GPGPU platforms,
make it possible to easily port the application to heterogeneous
platforms. OpenCL is certainly a suitable solution for programming
hybrid architectures, as its specifications have been implemented
by several hardware vendors, thus making the same OpenCL code
runnable either on different GPGPU devices or on CPUs [30]. More
details on the FastFlow OpenCL run-time can be found in [20].

FastFlow CPU implementation of patterns are realized via non-
blocking graphs of threads connected by way of lock-free chan-
nels [4], while the GPU implementation is realized by way of the
OpenCL bindings and offloading techniques [2]. Also, different
patterns can be mapped onto different sets of cores or accelerators,
thus, in principle, using the full available power of the heteroge-
neous platform. The business code running on a GPU can be fur-
ther hand-tuned by exploiting OpenCL specific features, This kind
of fine-tuning might bring significant performance improvements
but, in general, is difficult to automate at the FastFlow level, since
it is very related to the business code and requires extensive low-
level programming effort.

Note that FastFlow does not provide any automatic facility to
convert C++ code into OpenCL code. Thus any parallel activity
(e.g. a map body) that can be possibly mapped onto a GPGPU
should be coded with OpenCL. FastFlow, however, helps this task
with a number of features including:

• Integration of the same pattern-based parallel programming
model for both CPUs and GPGPUs. Parallel activities running
on CPUs can be either coded in C++ or OpenCL.

• Setup of the OpenCL environment.
• Simplified data feeding to both software accelerators and

hardware accelerators (with asynchronous Host-to-Device and
Device-to-Host data movements) [2].

In this work, we consider the extension of the two-phase image
denoiser to a two-phase video denoiser.

2.4 A High-Level Pattern-Based Approach for Image
Restoration

As we already stated above, the image restoration problem can
be tackled by applying the variational filter independently to each
frame of the image. In order to optimally parallelise this task, we

propose a structured approach using high-level algorithmic skele-
tons.

2.4.1 Two-phase Edge-Preserving Image Restoration

Variational filtering is performed using a two-stage approach:

1. Detect. Accurate detection of the location of noise (the outlier
candidates) using a parallel implementation of the original filter.

2. Denoise. Edge-preserving restoration of outlier pixels by way
of an iterated application of a variational filter up to a global
convergence criterion (e.g. no PSNR increment in the last step).
The full knowledge of the outlier mask at this stage helps in
weighting the optimization function on neighbour pixels.

The detect stage can be implemented by plugging the code of
a standard sequential filter into a FastFlow map template (i.e. a
higher-order parallel pattern implemented as a header-only C++
template), which provides all the additional code to partition the
image; dispatch partitions to a (dynamically) malleable set of work-
ers; and join partial results. The outlier mask is produced as the
difference between the restored and the noisy images. FastFlow
lock-less run-time support ensures minimal coherence traffic and
a close-to-optimal speedup on cache-coherent multi-core.

The denoise stage, computationally more demanding, is imple-
mented as a map-reduce pattern. As we shall see, this stage is im-
plemented in OpenCL in such a way that it can be run on both
CPUs, GPGPUs, and CPUs+GPGPUs. A C++ version of the same
code is used as a baseline for comparison purposes. Also, due to
the fact that the restoring code is almost independent of noise type,
the kernel does not need to be recoded for different filters (possibly
exhibiting different or dynamic convolution kernel stencils).

The two stages can be pipelined to guarantee high or real-time
throughput on video applications and the full utilization of the cou-
pled multi-core+GPU platform. Typically, the detect stage is fast,
orders of magnitude faster than the variational denoise stage. The
GPGPU’s higher computational power naturally balances higher
computational requirements on the second stage. If needed, the
FastFlow run-time is able to dispatch different frames to different
GPU devices dynamically (autonomically) acquiring new devices
during the application execution.

The design of the proposed schema is summarised in Fig. 1.

2.4.2 Effectiveness of Two-Phase Denoiser on Images

The denoising quality of the two-phase image restoration was
tested on standard images of different size. To compare results
with the literature, the results reported in this section are in rela-
tion to two 512x512 8-bit grayscale images: Lena (Fig. 3) featuring
homogeneous regions and Baboon (Fig. 4) characterised by high
activity. These images have been corrupted by 70% and 90% salt-
and-pepper noise.

In [3] has already been demonstrated the good performance
of the restoration algorithm for one single image (for both the
Lena and Baboon images of size 512x512 with 90% of noise a
performance improvement of more than 25x on a Intel 32-core
platform has been achieved using FastFlow).

With respect to the quality of restoration, the low rate of false
positives in the detection of noisy pixels achieved by the adap-
tive median filter brings an overall improvement of the quality
of restoration as non-noisy pixels are not changed by the denoise
phase. We noticed an improvement of both PSNR (Peak Signal-
to-Noise Ratio) and MAE (Mean Absolute Error) with respect to
state-of-the-art results reported in the literature, e.g. Chan’s method



Figure 3. Lena: 70% & 90% of noise and restored version.

[12], Cai’s method [10, 19] , Chen’s method [14] (e.g. 75s for Lena
256x256 with 90% of noise, PSNR=24.42, MAE=8.81). The de-
tailed analysis of the quality of our approach on different test im-
ages of different sizes can be found in [3].

Figure 4. Baboon: 70% & 90% of noise and their restored ver-
sions.

3. Video Denoising: a Skeleton-based Approach
We advocate the simple extension of the application working for
images presented in [3] to video, and to heterogeneous platforms.

We emphasise the word “simple”. In the long term, writing parallel
programs that are efficient, portable, and correct must be no more
onerous than writing sequential programs. To date, however, few
parallel programming models have embraced much more than low-
level libraries, which often require the architectural re-design of
the application. This approach is unable to effectively scale to
support the mainstream of software development where human
productivity, total cost and time to solution are equally, if not more,
important aspects.

3.1 Two-Phase Video Denoiser

The two-phase filter methodology naturally induces a high-level
structure for the algorithm, which can be described as the suc-
cessive application of two filters as described in Fig. 1. The two
phases can operate in a pipeline in the case where the two-phase
denoiser is used on a stream of images (e.g. in a video applica-
tion). In addition, both filters can be parallelised in a data-parallel
fashion. Let map f [a0, a1, . . .] = [f(a0), f(a1), . . .] and reduce
⊕ [a0, a1, . . .] = a0 ⊕ a1 ⊕ . . ., where ⊕ is a binary associative
operator, and [a0, a1, . . .] an array of pixels (e.g. the pixels of an
image).

Detect is the first phase of the algorithm, where the Adaptive Me-
dian Filter is applied to the noisy image. Each pixel of the
image is processed independently, provided the processing el-
ement can access a read-only halo of the pixel. The process
is expressed sequentially over the elements of an array: each
pixel of the image is analysed. A set of (candidate) noisy pix-
els is produced. The parallel processing here is exploited by
way of the FastFlow map template, which can be easily added
to the code using a ParallelFor high-level pattern provided by
the FastFlow framework to accelerate for loops [16]. The Par-
allelFor pattern is used on the outer loop traversing the pixel
matrix, which partitions the work on matrix strips. However,
for small frame sizes, as those considered in the experimental
section of this work, the detection phase has a negligible execu-
tion time w.r.t. the denoising phase, so the parallelisation of the
Detect phase is not really necessary.

Denoise is the second phase of the algorithm. The variational
method can be computed independently for each pixel (with
the previous iteration halo). This step is iterated until a con-
vergence criterion is reached. The convergence criterion is a
global propriety of the image, and so it should be computed via
an associative operator by reducing the difference between the
last two iterations according to a given convergence criterion.
The parallel processing is described as a loop of a sequence
(i.e. functional composition) of map and reduce patterns. The
map works with a fixed stencil of eight neighbours for each
outlier pixel (except for borders). The reduce pattern computes
the global convergence criterion, to be checked in the loop exit
condition. Using the OpenCL back-end, it is possible to specify
the way in which the underlying heterogeneous architecture has
to be exploited for the computation.

In the sequential version, the detect stage exhibits linear exe-
cution time with respect to the total number of pixels. However,
the detect phase, typically a simple convolution, is two–three or-
ders of magnitude faster than a single iteration of the second step
(denoise). The second phase shows a computational complexity of
O(n noisy pixels · n iterations), where n noisy pixels is the
number of noisy pixels identified in the first step, and n iterations
is the number of iterations required to reach one of the convergence
criteria. On a fully CPU deployment, a sequential detect stage is
able to sustain the throughput of the parallel denoise stage even
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in a large multicore platform. This is no longer true if the denoise
stage is run on one or more GPGPUs.

4. Experimental Evaluation
All experiments reported in this section were conducted on an Intel
workstation with 2 eight-core double-context (2-way hyperthread-
ing) Xeon E5-2660 @2.2GHz, 20MB L3 shared cache, 256K L2,
and 64 GBytes of main memory (also equipped with two NVidia
Tesla M2090 GPGPU) with Linux x86 64.

Three main families of experiments are reported:

1. Performance for the denoise stage in the OpenCL version on
both CPUs (Fig. 5) and GPU (Fig. 6) on different work group
sizes (i.e. different parallelism degrees).

2. Elapsed execution time for the C++ version on CPUs varying
the number of threads used for the entire application (Fig. 7).

3. Maximum performance on the given platform for different ver-
sions of the code (C++ against OpenCL) and different noise
levels.
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A brief description of the different cases tested using only CPUs
and both CPUs and GPGPUs is reported in Table 1.

In Fig. 5 and Fig. 6 the performance of the denoise stage is
analysed for different sizes of OpenCL working groups. Here, the
farm implementing the denoise stage is set to a single worker, i.e.
no parallelism across different frames is exploited. In this case, the
FastFlow Emitter and Collector (see Fig. 2) have been removed. It
can be noticed that the working group size affects actual perfor-
mance only for low levels of noise, i.e. for small problems. In the
case of deployment on CPUs this leads to very fine grained paral-
lelism and thus a significant synchronisation overhead.

Figure 7 reports the execution time obtained running the FastFlow
C++ version deployed onto CPUs again in the case where the farm
implementing the denoise stage is set to a single worker, i.e. no
parallelism across different frames is employed. The exploited par-
allelism in the denoise stage comes entirely from the map pattern.
The maximum speedup obtained with respect to the sequential
CPU time ranges from 10.8 for 10% noise to 11.4 for 90% noise.



Experiment name Deployment (Fig. 2) Brief description

CPUs C++ À+Ë Detect C++/1CPU, Denoise C++/14CPUs
CPUs OCL À+Ì Detect C++/1CPU, Denoise OpenCL/14CPUs
OCL CPUs+GPGPU(RR) À+Î Detect C++/1CPU, Denoise OpenCL 14CPUs+1GPGPU, Round-Robin scheduling
OCL CPUs+GPGPU(OD) À+Î Detect C++/1CPU, Denoise OpenCL 14CPUs+1GPGPU, On-Demand scheduling
1 GPGPU À+Í Detect C++/1CPU, Denoise OpenCL/1GPGPU
2 GPGPUs À+Í Detect C++/1CPU, Denoise OpenCL/2GPGPUs

Table 1. Description of the deployments tested for the two pipeline stages of the video denoiser application on the considered platform. In
this particular case, being the Detect stage much faster than Denoise stage, not all deployments reported in Fig. 2 have been tested (i.e. ones
including Á, Â, Ã, and Ê).
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Figure 9. Maximum speedup (compared to sequential CPU ver-
sion) for different application deployments and different data sets.

It can be noticed that the executions reported in Fig. 5 and Fig. 7
exploit exactly the same parallelism patterns on the same plat-
form. They are actually the OpenCL and C++ versions of the same
FastFlow application (using OpenCL and C++ as guest languages).
They can therefore be safely compared in terms of absolute per-
formance in the same graph (the CPUs C++ and CPUs OCL bars
in Fig. 8) where the minimum overall execution time for the entire
video denoising is reported. However, the maximum performance
reached by the OpenCL version with sufficient working groups to
saturate all cores is very low (it is comparable with the plain C++
version with parallelism degree 2 for the denoise stage). Such low
performance results were in part expected since the OpenCL code
was optimized for GPGPUs and not for CPUs. As noticed in some
recent research work [29], performance of OpenCL code on CPUs
may be improved tuning several aspects such as: host-to-device and
device-to-host memory copies, increasing the computation gran-
ularity and avoid explicit caching of data through local memory
which introduces unnecessary overhead on multi-core. This tuning
is partly due to currently available OpenCL compiler technology,
which is not yet fully mature.

Figures 8 and 9 compare all versions for maximum perfor-
mance in terms of overall execution time of the whole restoration
pipeline. As expected, mapping the denoise stage onto GPGPUs
greatly accelerates the application. Also, multiple GPGPUs can be
used with almost linear speedup. It is worth noticing that in the
OpenCL case it is possible to deploy the denoise stage on both
CPUs and GPGPUs, actually mapping different workers of the farm
on different devices, thus fully using the aggregate computational
power of CPUs and GPGPUs for the denoise stage. In order to il-

lustrate this case, two different scheduling policies are presented
in Fig. 8: an order-preserving strict round-robin (RR) policy and
the auto-scheduling policy implemented using the on-demand (OD)
FastFlow scheduling pattern. While the order-preserving policy can
perform well on homogeneous environments, in this case it bounds
the performance to the slowest device. On-demand policy manages
to overcome this problem but at the price of some additional over-
head due to frame buffering and reordering. The speed edge be-
tween CPUs and GPGPUs forces either suspension of the dispatch-
ing of frames to GPUs or storage of out-of-order frames in a buffer,
inducing a high dynamic allocation pressure on the system and a
jerky output stream.

It can be argued that, in the case of an ordered stream as the one
produced by streaming frames of a video, the extra tuning effort
needed for a proper deployment of a mixed CPUs and GPGPUs
architecture for the denoising phase is not worth the performance
gain (if any).

5. Concluding Remarks
In this work we have built upon earlier work on single images
to produce a parallel video denoiser for heterogeneous platforms.
The key result here is the ease with which the earlier system
could be extended: in essence we were able simply to lift noise
detection and denoising code from the earlier system and insert it
in a new skeleton framework to turn image processing into vision
processing. The ease with which this could be achieved is testament
to the abstraction powers of skeleton programming.

Moreover, the extension of the skeleton framework – FastFlow–
to accommodate CPUs and GPGPUs has allowed us seamlessly to
migrate the vision processing system to a heterogeneous setting and
easily experiment with various assignments of application compo-
nents to CPU/GPU devices.

From a machine vision perspective, the resulting application
has succeeded to demonstrate the usability of variational denoising,
considered very effective but slow, also for real-time video streams.
The experiments conducted have also highlighted several issues
in development of a unified parallel programming framework for
heterogeneous platforms that are worth further investigation, and
thus can steer further research in the area of parallel programming
models for heterogeneous platforms.
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