
University of Pisa and Torino, Italy - REPARA FP7 EU-STREP project

Reengineering and Enabling Performance And poweR of Applications (REPARA) and FastFlow

What
The whole computer hardware industry embraced
parallel platforms, such as multicore, GPGPUs, and
cloud. For these platforms, the extreme optimisation of
sequential algorithms is no longer enough to squeeze the
real machine power. Parallel Patterns provide a
mechanism to express parallelism at a high level of
abstraction and to make easier the transformation of
existing legacy applications for parallel environments.

In the long term writing parallel programs ought to be as
efficient, portable, and correct as it has been to write
programs for sequential computers. By definition, the
raison d’être for parallel computing is high performance,
but speed-up need not to be the only measure. Human
productivity, total cost and time to solution are equally, if
not more important.

How
FastFlow is a C++ parallel programming framework
advocating high-level, pattern-based parallel programming. It
chiefly supports streaming and data parallelism, targeting
heterogenous platforms composed of clusters of shared-
memory platforms, possibly equipped with computing
accelerators. The FastFlow run-time efficiently supports fine
grain parallelism via non-blocking multi-threading with lock-
less synchronisations zero-copy messaging and asynchronous
accelerator offloading.

Almost any x86-64, Arm, PPC system with a C++11 compiler
is supported, e.g. Linux, MacOS, Windows. GPGPUs are also
supported via either OpenCL or CUDA.

FastFlow: a layered architecture

The REPARA FP7 EU-STREP project aims to help the
transformation and deployment of new and legacy applications
in heterogeneous platforms while maintaining a balance between
performance, energy efficiency and code maintainability.

• Exploits C++11 attributes to introduce parallelism in
sequential code

• Supports heterogeneous platforms (multi-core, GPGPUs,
FPGAs, DSPs)

• Methodology: Sequential code ➡ Annotations ➡ Refactoring
➡ Parallel run-time for multiple CPUs and accelerators

• Objectives: boost performance, reducing power and energy,
enhancing time-to-solution

• Partners: University Carlos III Madrid, HSR Rapperswil,
Tech. Univ. Darmstadt, Univ. Pisa, Univ. Torino, Univ.
Szeged, EVOPRO Innovation, IXION

From C++11 Attributes to Parallel FastFlow Code
Automatic generation of efficient parallel code by using REPARA attributes and the FastFlow run-time

30%

50%

90%

noisy restored

Signal filtering
A high-performance filter for real-
time video restoration though
variational methods.

• Two-stage pipelined filtering:
detection and correction

• Correction phase using variational
method

• Successfully restoration of up to
extreme levels of impulsive and
gaussian noises

• Seamless portability to nVidia
CUDA K-xx GPGPUs

 0

 4

 8

 12

 16

 20

 24

 28

 32

SRR502198 SRR078586 SRR072996

S
p

e
e

d
u

p

Dataset

Bt2
Bt2-int
Bt2FF

Bt2FF-pin
Bt2FF-pin+int

A T T G C G A A T C

G T A G C G C A T G

 | | | | | |
 | | | | | |

The Bowtie2 and BWA, which are
among the fastest and most used
alignment tools for genome analysis.

Bowtie2, BWA and several other
parallel alignment tools exhibit the
same concurrency exploitation
pattern (pool of threads working on
independent tasks).

• They can be all ported to
FastFlow by exploiting the task-
farm pattern

• Only few lines of code changed
• Higher performance with

decreased development effort

DNA alignment (Bowtie2 & BWA)

Pipe-Loop rule

OpenMP code
Annotated C++

code with REPARA
attributes

Tranformation
Analisys

Source-to-source
tranformation

Target run-time transformation rules

GPGPU

multi-core

FPGADSP

and much more …
• High-performance deep packet inspection
• High-frequency streaming applications
• High-Performance Haplotype assembly
• Parallel C4.5 classification
• Parallel bzip
• Parallel Smith-Waterman
• Large graph building and analysis
• Video stereo matching
• Parallel Gillespie simulation
• Parallel Numerical Algorithm (Cholesky, LU)
• Parallel C++ memory allocator

Cilk code
TBB code

FastFlow code

struct stream_t {
 stream_t(const std::string &filepath,
 Image &img) :
 filepath(filepath), img(img) {}
 std::string filepath;
 Image img;
};

struct FirstStage: ff_node_t <stream_t > {
 FirstStage(fileNameIterator &fit):fit(fit) {}
 stream_t *svc(stream_t *) {
 std::string filepath;
 while(fit.getNext(filepath)) {
 ReadImage(filepath ,img);
 stream_t *t = new stream_t(filepath ,img);
 ff_send_out_to(t);
 }
 return EOS; // End-Of-Stream
 }
 fileNameIterator fit;
 Image img;
};

struct Combine: ff_node_t <stream_t > {
 stream_t *svc(stream_t *task) {
 Image &img = task ->img;
 ApplyFilter1(img);
 ApplyFilter2(img);
 return task;
 }
};

struct LastStage: ff_node_t <stream_t > {
 stream_t *svc(stream_t *task) {
 std::string &filepath = task->filepath;
 Image &img = task ->img;
 WriteImage(filepath ,img);
 delete task; return GO_ON;
 }
};

int main(int argc, char *argv[]) {
 InitializeMagick(*argv);
 auto s= &argv[1];
 auto nWorkers =32;
 fileNameIterator fit(s);
 std::string filepath;
 Image img;
 // builds a vector of farm’s workers
 std::vector<std::unique_ptr<ff_node> > W;
 for(size_t i=0;i<nWorkers;++i)
 W.push_back(make_unique <Combine >());
 // farm instance
 ff_Farm <stream_t ,stream_t > Farm(std::move(W));
 // pipeline instance
 ff_Pipe <> Pipe(make_unique <FirstStage >(fit),
 Farm, make_unique<LastStage>());
 // on-demand task scheduling
 Farm.set_scheduling_ondemand();
 if (Pipe.run_and_wait_end()<0) error("pipe");
 return 0;
}

REPARA code FastFlow code

rules

rule application

Open source software under LGPLv3
http://mc-fastflow.sourceforge.net/

rules

int main(int argc, char *argv[]) {
 InitializeMagick(*argv);
 auto s = &argv[1];
 auto nWorkers =32;
 fileNameIterator fit(s);
 std::string filepath;
 Image img;
 [[rpr::pipeline,
 rpr::stream(filepath ,img)]]
 while(fit.getNext(filepath)) {
 [[rpr::kernel,
 rpr::in(filepath ,img),
 rpr::out(img)]]
 ReadImage(filepath , img);
 [[rpr::kernel,
 rpr::farm(nWorkers),
 rpr::in(img),
 rpr::out(img)]]{
 ApplyFilter1(img);
 ApplyFilter2(img);
 }
 [[rpr::kernel,
 rpr::in(filepath, img)]]
 WriteImage(filepath, img);
 }
 return 0;
}

rpr::pipeline
rpr::stream
rpr::farm
rpr::kernel
…

Credits: M. Danelutto,
M. Torquati, M. Aldinucci

Univ. of Pisa and Torino, Italy

Core patterns
pipeline, farm, feedback

High-level patterns
parallelFor, FFPipe, stencilReduce,…

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

