
Memory-Optimised Parallel Processing of Hi-C Data

Maurizio Drocco, Claudia Misale, Guilherme Peretti Pezzi, Fabio Tordini and Marco Aldinucci
Computer Science Department, University of Turin, Italy

[drocco, misale, peretti, tordini, aldinuc]@di.unito.it

Abstract—This paper presents the optimisation efforts on
the creation of a graph-based mapping representation of gene
adjacency. The method is based on the Hi-C process, starting
from Next Generation Sequencing data, and it analyses a huge
amount of static data in order to produce maps for one or more
genes. Straightforward parallelisation of this scheme does not
yield acceptable performance on multicore architectures since
the scalability is rather limited due to the memory bound nature
of the problem. This work focuses on the memory optimisations
that can be applied to the graph construction algorithm and its
(complex) data structures to derive a cache-oblivious algorithm
and eventually to improve the memory bandwidth utilisation. We
used as running example NuChart-II, a tool for annotation and
statistic analysis of Hi-C data that creates a gene-centric neigh-
borhood graph. The proposed approach, which is exemplified
for Hi-C, addresses several common issue in the parallelisation
of memory bound algorithms for multicore. Results show that
the proposed approach is able to increase the parallel speedup
from 7x to 22x (on a 32-core platform). Finally, the proposed
C++ implementation outperforms the first R NuChart prototype,
by which it was not possible to complete the graph generation
because of strong memory-saturation problems.

I. INTRODUCTION

The Hi-C method for genome-wide chromatin 3D con-
formation is widely used to understand the genome physical
conformation and allows the investigation of the interaction of
genomic elements [1]. The basic Hi-C process, starting from
Next Generation Sequencing data, creates a list of pairs of
locations along the chromosome which is represented by a
matrix, called contact map. By this representation it is easy
to identify interactions between two chromosomes, but the
description of their physical adjacency or, more in general,
the spatial neighborhood of two or more genes is not easily
obtainable. Hi-C data, by providing a three-dimensional infor-
mation of the whole examined genome, naturally takes to the
representation of such adjacency by a graph-based mapping
and visualisation. By having a graphical visualisation, it is
possible not only to have a visual characterisation of the
different spatially associated domains of other omics-data, but
also it permits to have a more impressive and immediate view
about how genes are related and connected among each other.
In addition to state-of-art statistical analysis and contact map
creation, more statistics can be applied to the obtained graph,
such as social network analysis for interactions within genes
discovery, clustering or cliques detections.

The construction of such graphs and, in general, contact
maps, is based on the exploration of static data. By static
data we refer to the genomic DB represented in fig. 1, that
is, data that can be considered constant in different graphs
creation. In contrast, Hi-C reads files (fig. 1) can be considered
as dynamic data, that is, data that can change while keeping
the same genomic DB to fulfill different analysis. Accordingly,

static data structures, possibly common to all stages of a
hypothetical analysis tool, would be entirely loaded at the
beginning of the analysis for sake of simplicity during the
implementation process. The possibility of simplifying the
implementation process and reduce at minimum the effort, can
lead a programmer to use the same data structure across the
whole pipeline, increasing dramatically the amount of used
memory and inducing an artificial memory-bound nature that
can be avoided. By reducing or optimising the working set
(that is, the collection of information referenced by a process
during the execution) and by applying memory optimisations,
it is possible to dramatically improve overall performance.

Given this rationale, in this work we will show how to
apply these optimisations by having as a use case NuChart-
II [2], a tool for Hi-C data analysis that provides a gene-
centric view of the chromosomal neighbourhood in a graph-
based manner. Starting from the first C++ implementation
of this tool, we realised an efficient and optimised version
that can also exploit parallelism in the graph exploration.
We also propose and discuss issues about the first GPGPU
implementation of a kernel for finding chromosome fragments
enclosing a single gene.

This paper is organised as follows: Sec. II presents the
related work on Hi-C data analysis tool. Sec. III gives a
background on graph-based exploration of Hi-C data and
presents the parallel algorithm. Sec. IV presents performance
issues of this process and an approach to overcome them.
Sec. V presents results and performances obtained by different
levels of optimisations applied and describes the GPGPU
implementation. Finally, in Sec. VI we show final thoughts
and also some future work.

II. RELATED WORK

3C-based techniques used to characterise the nuclear organ-
isation of genomes and cell types took the scientific community
to the designing of a number of systems biology methods
to analyse such data. Particular attention is given to the
detection and normalisation of systematic biases. The first
step consists generally of Hi-C data processing from raw
sequence to contact matrices, in order to detect and normalise
biases coming from sequencing and mapping. The second step
consists of interpretation and visualisation of corrected data.
In this section, a description of tools for Hi-C data analysis is
provided.

HOMER [3] is a suite of tools for Hi-C, ChIP-Seq, GRO-
Seq, RNA-Seq, DNase-Seq data analysis, based on the creation
of contact maps and exploiting Principal Component Analysis
and hierarchical clustering. HiTC [4] is a R/Bioconductor
package that facilitates the exploration of high-throughput 3C-
based data. It provides a set of features to manipulate high-

pipeline

Hi-C

graph

exploration analysis

Genomic

DB

Hi-C

reads

Fig. 1 – A pipeline schema for Hi-C data processing.

throughput C data and is suited for visualisation and basic
transformations of 5C and Hi-C data. HiBrowse [5] is a web-
based analysis server for 3D genome statistical analysis, pro-
viding a set of tools based on state-of-the-art statistical meth-
ods utilising Monte Carlo and analytic methods, in addition to
a range of tools for visualisation and hypothesis-generating
investigations. FisHiCal [6] is an R package that performs
an iterative FISH-based Hi-C calibration by exploiting the
information coming from both these methods. It is the first
tool that integrates FISH and Hi-C data, and operates over
these information to calibrate the direct measure for physical
distance provided by FISH experiments and the genome-wide
capture of chromatin contacts obtained by Hi-C experiments.

NuChart [7] is an R/Bioconductor package that allows the
annotation and statistical analysis of a list of input genes with
information relying on Hi-C data, integrating knowledge about
genomic features that are involved in the chromosome spatial
organisation. NuChart is the first analysis tool that works with
the aim of creating gene-centric neighbourhood graphs on
which multi-omics features can be mapped. We recall that
NuChart-II, the first C++ implementation, is the case study
used within this paper.

III. GRAPH-BASED HI-C DATA ANALYSIS

The process of working on Hi-C data for interpretation and
visualisation purposes, can be seen as a two-stage pipeline, as
shown in fig. 1.

The first stage (the exploration phase) takes as input a static
database containing genomic data (e.g. human genome) and a
file containing Hi-C double-ended reads. Hi-C reads expose
the spatial information exploited by the process in order to
build topological-oriented structures, such as contact maps and
gene-centric graphs. The basic mechanism in the exploration
stage consists of looping over Hi-C reads and, for each input
read r, searching for couples of genes connected by r. The
graph exploration is iterated in a BFS fashion, starting from
a gene (the starting node of the graph) until all the nodes
have been visited (i.e. fix-point is reached). The output of the
exploration stage is a structure representing a relation between
genes. In such case, the first stage can be basically regarded as
a Breadth-First Search (BFS) and the output is a graph G =
(V,E) where V is a set of genes and an edge e = (g, g′) ∈ E

Algorithm 1 Sequential BFS procedure

1 BFS(GeneDB : Array<Gene>, HiCReads : Array<Read>, root : Gene) {
2 Set<Gene> V
3 Queue<Gene> Q
4 V <− Q <− {root}
5 while (not Q.empty()) {
6 g <− Q.pop()
7 // find reads . . .
8 for each ({r ∈ HiCReads | r.chr1 = g.chr}) {
9 // find genes . . .

10 for each({g′ ∈ GeneDB | g′.chr = r.chr2}) {
11 if (not g′.visited) {
12 Q.push(g′)
13 V = V ∪ {g′}
14 g′.visited = true
15 }
16 E = E ∪ {(g,g′)}
17 }
18 }
19 }
20 }

is an unordered couple of neighbour genes. An edge exists
if there is a single Hi-C read encompassing g and g′, thus
putting these neighbour genes in a (binary symmetric) relation
of spatial neighborhood.

The second stage (the analysis phase) takes as input the
graph produced by the exploration stage and again the static
database of genomic data. In this phase, some statistical
processing is applied to the edges, in order to assign a weight
to each edge and filter away the noisy ones. Finally, various
types of processing can be performed on the graph, ranging
from simple visualisation to classical statistical and graph
analysis (e.g. connected components and cliques detection), up
to clustering methods (e.g. k-means and Quality Threshold) or
social network analysis techniques.

A. Memory-intensive parallel BFS graph exploration

The pseudo-code of the BFS is reported in Algorithm 1.
Each iteration of the outermost while loop pops an unvisited
gene g and explores all the edges departing from g. For each
discovered edge, if it connects g to an unvisited gene g′, then
g′ is pushed into the working queue Q, as in any typical graph
exploration procedure. Notice that each iteration of the while
loop accesses a subset of the Hi-C reads file – namely the reads
which first end-point falls in the same chromosome as the one
enclosing gene g. Then, for each read r, a subset of (the in-
memory copy of) the genomic DB is accessed – namely the
genes enclosed in the same chromosome as the one enclosing
the second end-point of the read r.

Exploiting the computational capability provided by
widespread multicore platforms, possibly paying low pro-
gramming effort, is an attractive approach for speeding up
the pipeline execution. Since each read in the BFS can be
processed independently from each other, the graph exploration
results into a typical data-parallel procedure, in which any
arbitrary subset of reads can be processed independently from
each other. Ideally, it can be parallelised in a seamless way
just by taking the kernel of the procedure (lines 9–17 in the
pseudo-code) and putting it into a ParallelFor loop pattern,
which semantics amounts to execute in parallel the iterations

Algorithm 2 Parallel BFS procedure

1 BFS(GeneDB : Array<Gene>, HiCReads : Array<Read>, root : Gene) {
2 int level <− 0
3 Set<Gene> V
4 Queue<Gene> Q
5 V <− Q <− {root}
6 while (not Q.empty()) {
7 // explore reads
8 T <− {} // set of tasks
9 while(not Q.empty()) {

10 g <− Q.pop()
11 // find reads . . .
12 for each ({r ∈ HiCReads | r.chr1 = g.chr})
13 T.push((g, r))
14 }
15

16 // works on each read in parallel
17 ParallelFor ({(g, r) ∈ T}, NTHREADS) {
18 for each({g′ ∈ GeneDB | g′.chr = r.chr2}) {
19 if (not Bitmap[g′]) {
20 localQ[tid]. push(g′)
21 localV[tid] = V[tid] ∪ {g′}
22 localBitmap[tid][g′] = level
23 }
24 E[tid] = E[tid] ∪ {(g,g′)}
25 }
26 }
27

28 // reduce
29 for each({0 ≤ tid < NTHREADS}) {
30 Q = Q ∪ localQ[tid]
31 V = V ∪ localV[tid]
32 Bitmap.merge(localBitmap[tid])
33 }
34

35 // reset local structures
36 ++level
37 }
38 }

of the loop, provided they are independent from each other.
High-level parallelisation of BFS exploration has been treated,
among others, in [8].

Nevertheless, following this high-level approach requires
some adjustment to the structure of the BFS procedure. As
discussed in [8], BFS exploration should be organised in a
level-synchronised way. Input genes at level i correspond to the
set genes discovered at level i− 1, taking the root gene as the
input at level 0. Moreover, concurrent write accesses to data
structures shared between worker threads must be managed.
For example, each iteration of the loop should build a local
graph, and some mechanism of graph merging from local
graphs to a global output graph (actually one for each level)
should be provided. Globally, this approach amounts to provide
a reduce phase after each ParallelFor instance, in which per-
thread local structures are merged into per-level global ones.

The pseudo-code of a parallel BFS is reported in Al-
gorithm 2. Here we applied a first simple optimisation by
splitting the reads exploration phase (lines 8–14) and the core
ParallelFor (lines 17–26). This approach aims to avoid mixing
the working sets of the two phases, thus minimising cache
thrashing. The reduce phase (lines 29–33) merges thread-local
structures into per-level global ones, including a Bitmap array
containing, for each gene in the DB, the level at which the gene
has been visited by the BFS procedure. Notice that in the pro-

posed pseudo-code the reduce phase is executed sequentially,
after the end of each per-level ParallelFor instance. Obviously
a further optimisation could consist in designing a parallel
reduce and overlapping its execution with the ParallelFor
phase.

Under the performance analysis perspective, we remark
that, in the proposed schema, each iteration of the ParallelFor
works on a subset of the DB in order to integrate information
related to genes encompassed by each read end-point. Since
the proposed approach works with an in-memory copy of the
DB, this amounts to transfer all the interaction traffic to the
memory system. This interaction schema, further exacerbated
when running the application in a multithread fashion on a
shared memory platform, can clearly induce heavy traffic on
memory system, thus obtaining a memory bound behaviour.
These aspects will be discussed in section IV.

B. Running Example: NuChart-II

In this work, we use as test-bed the NuChart-II tool, which
is basically a C++ implementation of NuChart, a R/Biocon-
ductor package working on Hi-C data with a gene-centric
graph-based approach. NuChart-II, in the first C++ implemen-
tation, showed inevitable problems of scalability while working
genome-wide on large datasets [2].

The pipeline in fig. 1 can be considered as representative of
the NuChart approach to the Hi-C data analysis. In this work
we consider the optimisation related only to the first stage, that
is, the graph construction and exploration. We implemented
the ideas discussed above, producing a naive-parallel version
of NuChart-II, based on the ParallelFor pattern provided by
the FastFlow skeleton library [9], [10].

FastFlow is a C++ based parallel programming framework
built on top of POSIX threads aimed at providing the parallel
programmer with a set of pre-defined algorithmic skeletons
modelling the main stream-parallel patterns. It provides a set of
high-level, parallel programming patterns, called algorithmic
skeletons, obtained by the composition of two basic algorith-
mic skeletons: a farm skeleton, and a pipeline skeleton. Fast-
Flow provides also a ParallelFor skeleton [11] aimed at filling
the usability and expressiveness gap between the classical data
parallel skeleton approach and the loop parallelisation facilities
offered by frameworks such as OpenMP [12] and TBB [13].

IV. BFS: A MEMORY-OPTIMISED APPROACH

User-defined structures (or classes) are widely used for
describing complex data and nowadays it is very common to
gather several (related) elements in a single data type. This
logical organisation also reflects on how these elements will
be mapped into the physical memory and this - ideally - should
not affect the data access performance. However, current ar-
chitectures are highly optimised for contiguous memory access
and, therefore, extra care should be taken especially when
dealing with arrays of user-defined structures.

The initial BFS implementation relied on existing data
structures, containing additional fields that were used in other
phases but that were not accessed in this specific stage. At
first glance, this approach might not seem to harm the overall
performance - as the extra data is not explicitly loaded - but the

Algorithm 3 Standard struct definition for a Fragment

1 struct Fragment{
2 long start , end;
3 string id ;
4 long r1 , r3 , r5 ;
5 };

actual results show clearly a performance degradation. What
really happens in the background is the loading of (lots of)
unaccessed data into the cache due to proximity. This overhead
can actually saturate the memory bus making it nearly impos-
sible to exploit multiple processors in a multicore system, even
in the case of an embarrassingly parallel application.

This memory problem is very difficult to deal when the
access pattern is completely random, however, in the BFS we
are dealing mostly with linear access, and in this case it is
possible to optimise the memory bandwidth utilisation.

The proposed approach in this work consists in: (1) identi-
fying the memory intensive parts of the program, (2) creating
structures that define the subset of variables that are used in
each stage and (3) duplicating the data using a specific data
structure for each stage. Reducing the working set is the key
for improving the memory bandwidth usage - less unused data
loaded into the cache translates into less cache misses. The
choice of data duplication is preferred in this case because it
can be easily implemented without breaking the application
logic: since the duplicated data has read-only semantics, the
original data structure can still be used in other parts of the
code. In the case where the duplication is not affordable, it
is also possible to optimise data structures but at the price
of making the software more complex and modifying all the
source code where the original structure is used.

In order to illustrate this approach when dealing with a
memory-optimised implementation of the NuChart-II tool, the
original struct definition for a chromosome fragment is given
in Algorithm 3. Suppose we have a huge array of elements
of type Fragments and we wish to retrieve some information
of those who match a given criteria (for example based on
the start and end variables). The most straightforward way
to implement this is using a for loop that will access
the variables start and end of all array elements and, for
the elements matching the criteria, the program will perform
further accesses on the other struct variables.

In the case where most of the fragments match the cri-
teria, this approach might yield an acceptable performance.
However, in cases were only a few elements match, many
values will be loaded into the cache even though they are
not going to be accessed by the program. In most of the
current architectures, the cached memory access is optimised
to contiguous consecutive access and the smallest amount of
data that can be fetched is usually larger than one primitive
variable. In our example, explicitly reading start typically
translates to automatically loading into the cache some (or
maybe all) consecutive variables from the same element.

There are several possible ways to avoid this waste of
memory bandwidth, here we propose a solution that min-
imises the modifications on the existing code, by creating

Algorithm 4 Struct definition for describing Fragment positions

1 struct FragmentPosition{
2 long start , end;
3 };

an additional structure that describes the fragment positions
(Algorithm 4). Since all the data in this struct are contiguous
and consecutively accessed, chances are that the underlying
cache optimisation mechanisms will work more efficiently and
less unused data will be loaded into the cache (meaning more
useful memory bandwidth available).

This kind of optimisations can have a huge impact on
the overall application performance, but, currently, it has
to be applied manually and it may require domain-specific
understanding of the problem.

V. EXPERIMENTAL RESULTS

In this section, we will compare performances obtained
by the different levels of optimisations applied to the parallel
BFS graph exploration, part of the first stage (the exploration
phase) of the pipeline shown in fig. 1, running the application
using up to 32 threads. NuChart-II has been tested on an Intel
workstation, equipped with 4 eight-core E7-4820 Nehalem (64
HyperThreads) @2.0GHz with 18MB L3 cache and 64 GBytes
of main memory running Linux CentOS 6.5 x86 64. The Ne-
halem processor uses HyperThreading with 2 contexts per core.
We use up to 32 threads in order to exploit all physical cores
without making use of the second context. Thanks to the inter-
nal structure of the FastFlow ParallelFor, it is possible to use all
physical cores while thread pinning is automatically managed
by the FastFlow library. The used dataset is LiebermanAiden
et al. Hi-C data (SRA:SRR027963) [1] with TP53 as starting
gene for the graph exploration. Considering that the application
is tested on a NUMA (non-uniform memory access) platform,
we executed NuChart-II also using an interleaved memory
allocation policy via numactl linux utility, which can be used
to control NUMA policy for processes or shared memory.

A. Naive approach

Results here exposed are related to performances obtained
with the implementation having no working set optimisations,
that is, without the duplication of only accessed data for the
BFS exploration phase. In fig. 2 it is reported the maximum
speedup obtained by the execution of NuChart-II with inter-
leaved and default memory allocation policy. The memory-
intensive nature induced by this implementation, invalidates
all attempts to gain performances by exploiting parallelism.
One of the easiest optimisation techniques that could be useful
to increase the memory bandwidth utilisation, consists in ap-
plying an interleaved allocation policy. The interleaved policy
permits to allocate memory pages in a Round-Robin fashion
over all nodes in the system. This allocation strategy usually
leads to some advantage in terms of performances because
of spreading the memory load across memory nodes, thus
preventing a single memory node to become the bottleneck
for the memory traffic. As a first result, we can state that
despite in this case the gain is minimal and negligible, more

 0

 4

 8

 12

 16

 20

 24

 28

 32

interleaved default

M
a

x
im

u
m

 S
p

e
e

d
u

p

Memory Allocation Policy

Graph Creation Stage
BFS Exploration Stage

Fig. 2 – Naive implementation of NuChart. The maximum speedup obtained
by the parallel execution of the graph creation and BFS exploration
phases is reported.

effort should be applied on the memory-optimised approach
discussed above.

TABLE I – Execution times (seconds) for the naive NuChart-II implementa-
tion

Default Memory Allocation Interleaved Memory Allocation

#Threads Graph Creation BFS Graph Creation BFS

1 137 1006 133 962
2 83 522 77 502
4 77 310 43 248
8 72 328 31 173
16 68 357 27 138
32 63 331 21 132

Table I refers to execution times obtained by the naive
implementation using up to 32 parallel threads. Each BFS
exploration execution time is the sum of all times needed to
explore the graph at each level, until the fix point is reached, as
explained in section III-A. At each level, the number of nodes
reached is highly unbalanced, taking to have very different
execution times during the BFS exploration.

B. Memory-optimised approach

In this paragraph, we show performances obtained by the
execution of the optimised implementation. We recall that the
working set utilised in the graph exploration has been reduced
by the replication of the subset of data needed by this stage.

It can be noticed how performance improves dramatically,
obtaining a maximum speedup of ∼ 22 starting from a speedup
of ∼ 7 of the naive implementation. The reduction of the
working set permits to better exploit caches and, accordingly,
the algorithm makes fewer requests to main memory to retrieve
data and, thus, speeding up the computation.

Table II refers to execution times obtained by the memory-
optimised implementation using up to 32 parallel threads. Each
BFS exploration execution time is the sum of all times needed
to explore the graph at each level. It can be noticed that the

 0

 4

 8

 12

 16

 20

 24

 28

 32

interleaved default

M
a

x
im

u
m

 S
p

e
e

d
u

p

Memory Allocation Policy

Graph Creation Stage
BFS Exploration Stage

Fig. 3 – Memory-optimised implementation of NuChart. The maximum
speedup obtained by the parallel execution of the graph creation and
BFS exploration phases is reported.

TABLE II – Execution times (seconds) for the memory-optimised NuChart
implementation

Default Memory Allocation Interleaved Memory Allocation

#Threads Graph Creation BFS Graph Creation BFS

1 84 570 107 566
2 63 291 59 289
4 39 141 31 139
8 34 76 17 73
16 31 51 12 44
20 29 50 11 37
24 28 43 11 31
28 29 39 11 27
32 28 38 10 26

total running time of the BFS step in the sequential run is
about twice faster compared to the sequential execution of the
naive implementation (1006 seconds vs 570 and 962 seconds
vs 566), considering both memory allocation policy. The
best performance is achieved by using memory interleaving,
obtaining a maximum speedup of 21.81 by using 32 threads.

C. Implementation on GPGPUs

The usage of GPGPUs for implementing the BFS is pos-
sible, however it is not straightforward due to the dynamic
nature of this application (graph creation and for loops
containing break statement). GPGPUs can handle very well
data-parallel applications, but have limited options when it
comes to dynamic memory allocation on the device.

As a slight variant of the memory-optimised NuChart-
II tool, a preliminary GPGPU version has been designed
by implementing a kernel for finding chromosome fragments
enclosing a single gene. The original CPU code consists in
a for that breaks when the fragment position matches. On
GPUs, however, it is not possible to implement the very same
behaviour as a parallel kernel: there is no guarantee on the
order which the kernels are scheduled on the available cores
and also there is no efficient mechanism to stop remaining
threads when one thread finds a positive match.

One possible solution to address this problem is to divide
the search space into smaller parts and to offload sequentially
each chunk to the GPU: if a match is found, the research can
be stopped making it possible to avoid exploring all the search
space (minimising the waste of GPU resources). Yet, there is a
clear trade off concerning the parallel performance when using
this solution: the chunk size has to be carefully chosen as it
impacts on the number of synchronous calls.

This mechanism has been implemented and, after tuning
the chunk size, a gain of 10% on the overall performance
has been observed on a NVidia GPU K40 (compared to a
sequential CPU version). This is an ongoing work, the results
show the feasibility of a GPGPU version and, even if the
performance gain is quite limited, it represents only a porting
of a small part of the program and there are still a great portion
of code that can be implemented using GPGPUs.

VI. CONCLUSION

In this work, we addressed the problem of the optimisation
of data structures and memory allocation in order to exploit
parallelism in a Hi-C data analysis application. In particular,
we used as running example the NuChart-II tool, a C++
tool working on Hi-C data with a gene-centric graph-based
approach. NuChart-II applies this approach by generating and
visiting a graph in which the exploration stage consists of
looping over Hi-C reads and searching for couples of genes
connected by them. The graph exploration is iterated in a BFS
fashion, starting from a gene until all the nodes have been
visited. We started from a naive implementation of NuChart-
II, in which the BSF exploration was based on existing data
structures, containing fields not useful for the exploration. By
keeping these fields during the exploration, we showed that
such extra data lead to overall performance degradation. This
is due to the loading of not accessed data into the cache, that
can saturate the memory bus, thus making it clearly difficult to
exploit multicore systems. Given this rationale, we succeeded
to minimise this performance degradation by reducing the
working set: ad-hoc data structures were created, in which only
the data effectively used in the BFS stage phase are copied. The
consequence of this optimisation is that there is an immediate
improvement of the memory bandwidth and cache utilisation.
In addition to that, we used also an interleaved allocation
policy of all data structures, thus incrementing the memory
bandwidth utilisation. Comparing to the naive implementation
of NuChart-II and the optimised implementation, we obtained
a maximum speedup of ∼ 22 starting from a speedup of
∼ 7. As a future optimisation, it could be helpful to try
to allocate data structures in order to provide threads with
memory affinity and, hence, to get the best memory latency in
accessing effectively used data structures.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the EC-FP7
STREP project Paraphrase (no. 288570), the EC-FP7 STREP
project REPARA (no. 609666) and the Fondazione San Paolo
IMPACT project (ID. ORTO11TPXK).

REFERENCES

[1] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, and
T. e. a. Ragoczy, “Comprehensive mapping of long-range interactions
reveals folding principles of the human genome,” Science, vol. 326, no.
5950, pp. 289–293, 2009.

[2] F. Tordini, M. Drocco, M. Aldinucci, P. Liò, L. Milanesi, and I. Merelli,
“NuChart-II: a graph-based approach for the analysis and interpretation
of Hi-C data,” in Proc. of the 11th Intl. meeting on Computational Intel-
ligence methods for Bionformatics and Biostatistics (CIBB), Cambridge,
UK, Jun. 2014.

[3] V. C. Seitan, A. J. Faure, Y. Zhan, R. P. P. McCord, B. R. Lajoie, E. Ing-
Simmons, B. Lenhard, L. Giorgetti, E. Heard, A. G. Fisher, P. Flicek,
J. Dekker, and M. Merkenschlager, “Cohesin-based chromatin interac-
tions enable regulated gene expression within preexisting architectural
compartments.” Genome research, vol. 23, no. 12, Dec. 2013.

[4] N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C.-J. Chen, E. Heard,
J. Dekker, and E. Barillot, “HiTC: exploration of high-throughput ’C’
experiments,” Bioinformatics, vol. 28, no. 21, Nov. 2012.

[5] J. Paulsen, G. K. Sandve, S. Gundersen, T. G. Lien, K. Trengereid, and
E. Hovig, “Hibrowse: Multi-purpose statistical analysis of genome-wide
chromatin 3d organization.” Bioinformatics, 2014.

[6] Y. Shavit, F. Hamey, and P. Lió, “FisHiCal: an R package for iterative
FISH-based calibration of Hi-C data,” Bioinformatics, vol. 30, no. 18,
2014.

[7] I. Merelli, P. Li, and L. Milanesi, “NuChart: An R Package to Study
Gene Spatial Neighbourhoods with Multi-Omics Annotations,” PLoS
ONE, vol. 8, no. 9, 2013.

[8] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core cpu and gpu,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’11. IEEE Computer Society, 2011, pp. 78–88.

[9] M. Aldinucci, M. Meneghin, and M. Torquati, “Efficient Smith-
Waterman on multi-core with fastflow,” in Proc. of Intl. Euromicro PDP
2010: Parallel Distributed and network-based Processing. Pisa, Italy:
IEEE, feb 2010, pp. 195–199.

[10] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Targeting distributed systems in fastflow,” in Euro-Par 2012 Work-
shops, Proc. of the CoreGrid Workshop on Grids, Clouds and P2P
Computing, ser. LNCS, vol. 7640. Springer, 2013, pp. 47—56.

[11] M. Danelutto and M. Torquati, “Loop parallelism: a new skeleton
perspective on data parallel patterns,” in Proc. of Intl. Euromicro PDP
2014: Parallel Distributed and network-based Processing, M. Aldin-
ucci, D. D’Agostino, and P. Kilpatrick, Eds. Torino, Italy: IEEE,
2014.

[12] L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998.

[13] “Intel Threading Building Blocks, project site,” 2014,
http://threadingbuildingblocks.org.

