A Cluster-As-Accelerator approach for SPMD-iree
Data Parallelism

Maurizio Drocco, Claudia Misale, Marco Aldinucci
Computer Science Department
University of Torino
Torino, Italy
{drocco, misale, aldinuc}@di.unito.it

Abstract—In this paper we present a novel approach for
functional-style programming of distributed-memory -clusters,
targeting data-centric applications. The programming model
proposed is purely sequential, SPMD-free and based on high-
level functional features introduced since C++11 specification.
Additionally, we propose a novel cluster-as-accelerator design
principle. In this scheme, cluster nodes act as general inter-
preters of user-defined functional tasks over node-local portions
of distributed data structures. We envision coupling a simple
yet powerful programming model with a lightweight, locality-
aware distributed runtime as a promising step along the road
towards high-performance data analytics, in particular under
the perspective of the upcoming exascale era. We implemented
the proposed approach in SkeDaTo, a prototyping C++ library
of data-parallel skeletons exploiting cluster-as-accelerator at the
bottom layer of the runtime software stack.

Index Terms—skeletons, cluster computing, data-centric, par-
allel programming, skedato, exascale

I. INTRODUCTION

Programming distributed-memory clusters for high perfor-
mance data-centric applications is a big challenge nowadays.
To exploit large-scale clusters massive computational capa-
bilities, user is typically provided with parallel programming
models based on a Single-Program-Multiple-Data (SPMD)
execution model, in which the same program is executed
by different processes (i.e. cluster nodes). Message-Passing
Interface (MPI) [1] has become the de-facto standard for
SPMD programming of distributed environment. In a MPI
application, parallelism is explicit and the programmer is
responsible for designing and implementing applications from
scratch according to MPI constructs.

Algorithmic skeletons [2] have been proposed as an abstrac-
tion aiming at capturing common parallel programming pat-
terns (e.g. ForAll, MapReduce, Divide&Conquer, etc.) making
them available as high-level programming constructs. Skele-
tons abstract all concurrency exploitation, mapping or schedul-
ing aspects, by moving them from the application to tools
runtime level. Several skeleton-based approaches targeting
distributed systems and relying on the SPMD programming
model have been proposed [3], [4].

Further along the road traced by skeletons, tools for big
data analysis such as Spark [5] are gaining popularity, also by
changing the way users implement data-centric applications on
distributed clusters. The key aspect is very simple: expose to

the programmer an abstract datatype on which to apply data-
parallel, functional-style operators while writing sequential
code. Allocations and parallelism execution is completely
hidden and managed by the runtime.

Partially inspired by these frameworks, we propose to
overcome the SPMD programming model by providing a
model in which user has visibility exclusively on the sequential
execution flow defining the sequence of transformations to
be applied, while the parallel execution is managed by an
optimized distributed runtime. This approach results in pure
sequential user codes, endowed with a skeleton library for
applying element-wise kernels to distributed data collections.

Moreover, mentioned high-level platforms typically rely on
heavyweight runtimes, inhibiting them from meeting high
performance requirements. We propose a dual architecture
shaped as a thin stack on top of a lightweight C++ runtime, by
artificially overcoming some well-known C++ limitations. We
furthermore enrich our vision with the idea of using clusters
as external-memory hardware accelerators, which allows both
decoupling the user memory and execution models from the
cluster, and integrating low-level communication libraries (e.g.
MPI, POSIX sockets, libfabric verbs) in form of pluggable
software components. We prototyped the proposed approach
in SkeDaTo, a C++ data-parallel skeletons.

II. RELATED WORKS

Various approaches have been proposed for simplify-
ing distributed-memory systems programming.The Partitioned
Global Address Space (PGAS) model provides a global mem-
ory space, still exposing the underlying memory partitioning
in order to permit locality-based optimizations. Language-
level PGAS formalisms have been proposed in form of either
language extensions (e.g. UPC [6]) or standalone languages
(e.g. Chapel [7], X10 [8]). A notable exception is Global Ar-
rays [9], a Fortran framework providing one-sided primitives
and atomic operations over distributed-shared data structures.

Skeleton-based frameworks have been proposed targeting
distributed systems. Muesli [4] is a C++ template library
on top of MPI and OpenMP supporting multi-processor and
multi-core. Muesli provides skeletons such as map, fold, scan
and variants, applied as member functions to elements of
distributed data structures such as distributed arrays, matrices,
and sparse matrices. SkeTo [3] is a C++ library based on MPI

and C++ expression templates, providing skeletons for dis-
tributed arrays, matrices, and trees. SkePu [10] is a C++ open-
source skeleton library for multicore CPUs and multi-GPU
systems based on “smart” containers (i.e. vectors and matrices)
providing automatic data partitioning for execution on multi-
GPU systems both with CUDA and OpenCL. Lithium [11]
and its successor Muskel [12] are Java skeleton frameworks
developed at University of Pisa, handling both data and task
parallelism in form of macro-data flow execution.

The Scala/Java big data analytics framework Spark [5]
offers an abstraction for distributed datatypes called Resilient
Distributed Datasets (RDDs), namely a distributed memory
abstraction for in—-memory computations on large clusters,
providing a restricted form of shared memory based on coarse—
grain transformations.

III. SKEDATO PROGRAMMING MODEL

At the highest level, a SkeDaTo program is a piece of plain
sequential' C++ code. By decoupling the programming model
from the runtime execution model, user can exploit all the
available computational resources without being aware of the
underlying parallel execution environment. Dually, the runtime
can be shaped on the underlying platform, thus exploiting
modern heterogeneous architectures (e.g. multi-threaded run-
time for multi-core cluster nodes).

A. SPMD-free data-centric programming

We recognize at a fundamental limitation imposed by
SPMD when used for programming data-centric distributed
applications. The element-wise nature of such computations
is not naturally captured by SPMD, which expresses the
parallelism focusing on the process (i.e. a sequential execution
flow) rather than the datum (i.e. the atomic element of a
collection). The resulting programming model is process-
centric rather than data-centric, thus motivating the proposal
of several data-parallel skeleton libraries (see Section II).

In SkeDaTo, we propose a symmetric approach, namely
allowing users to program just the orchestration logic by
expressing application business code in terms of plain C++
sequential code, with no need to “think in parallel”. Further-
more, in order to support high-level data-centric programming,
user code is endowed with SkeDaTo skeletons for expressing
element-wise computations over distributed collections.

B. The Data-Parallel Collection abstract data type

The core abstraction in SkeDaTo is the Data-Parallel Col-
lection (DPC) abstract data type (ADT), provided in form of
C++ template class. A DPC represents a collection of elements
that can be accessed, transformed and filtered by means of
user-defined data-parallel computations, that in SkeDaTo are
called DLambdas and share the design principles underlying
the skeletal approach for parallel programming.

here and in the following, we use the term sequential for denoting a
piece of code that is run by a single processor in a multi-processor execution
environment, such as a distributed-memory cluster of nodes.

int main() {

skedato: :DLambdaInMap<myPair> mapL (
[1 (myPair x) {

return myPair(x.a, x.a + x.b);

b

//SPMD-free from here

1
2
3
4
5
6
7
8 skedato::init();
9

10 skedato::DPC<myPair> dpc (LEN) ;
n o o...
12 dpc.map_inplace (mapL) ;
13 ..

14}

Listing 1. A sample basic SkeDaTo application

1) Data-parallel skeletons: In SkeDaTo, operations over
DPC collections are expressed in terms of functional
data-oriented computations. Let map f[ag,a1,...a,—1] =
[f(ao), f(a1),...f(an—1)] and reduce & [ag, a1, ...an_1] =
ag®a1P...an—1, where f : T — T is the elemental function,
@ : T xT — T the combinator (i.e. a binary associative
operator) and a = [ag, a1, ...a,—1] € T™ an array of atomic
elements having type T'. They are well-known examples of
data-parallel patterns, since the elemental function of a map
can be applied to each input element independently from the
others, and the combinator is applied to different pairs in
the reduction tree independently, thus naturally inducing a
parallel implementation. The operations that complement the
ADT definition of DPC collections are classical data-parallel
skeletons (e.g. map, stencil, reduce).

2) DLambdas: A data-oriented application is characterized
by manipulations performed on input data. In functional terms,
element-wise functions (i.e. the parameters of data-parallel
skeletons) represent the business code of the application. In
SkeDaTo, element-wise functions are template C++ functors
called DLambdas. They can be either dynamic — taking the
element type as template argument and any functor as argu-
ment of the class constructor — or static — taking both element
type and a global function as template arguments. Dynamic
DLambdas offer more flexibility at the cost of some runtime
overhead, while static DLambdas offer the best performance
at the price of a slightly more verbose user interface.

C. A sample SkeDaTo application

Listing 1 shows the C++ code of a sample SkeDaTo appli-
cation. The application creates a fixed-length DPC collection
of integer pairs and applies the transformation g({(a,b)) =
(a,a + b) to each pair. Main components of SkeDaTo are
shown, namely: the first section of the main function is the
definition of a dynamic DLambda object (representing the
element-wise transformation g), SkeDaTo runtime is initialized
by calling skedato::init function, a collection named
myDPC with fixed length LEN is created via DPC constructor
(line 10) and transformed by applying the in-place transforma-
tion DPC: :map_inplace with argument mapL (line 12).

IV. SKEDATO ARCHITECTURE

We implemented SkeDaTo in such a way that it is easy to
maintain a clear separation among all components involved.
Moreover, this modularity — together with the intrinsic compo-
nent decoupling provided by cluster-as-accelerator design — led
to the creation of a framework in which low-level components
can be easily replaced with different architecture-dependent
implementations. SkeDaTo architecture is a stack of five
layers: 1) User-level layer, 2) Runtime as user-level DPC
manager, 3) Virtual Accelerator as interface to the cluster, 4)
Stub for Virtual Accelerator tasks offloading and 5) Remote
cluster accessible via workers Stubs. In the following we
describe each level of the architecture more in detail.

1) User-level code, the first level of abstraction: This layer
is the only one exposed to the programmer. As illustrated in
section III, the programmer writes sequential code describing
the sequence of transformations applied to the dataset.

2) Runtime, a user-level interface to the accelerator: the
runtime purpose is to make the upper layer see the cluster as
a black-box. As intermediate layer, the runtime has the main
responsibility of accepting requests coming from the user level
and redirecting them to the cluster via the Virtual Accelerator
primitives. Requests are issued by operations applied to DPC
collections declared and called by user’s source code.

3) Virtual Accelerator, the front-end to the Cluster-As-
Accelerator: The Virtual Accelerator layer is responsible for
both DPC data partitioning and effectively offloading tasks
to the cluster. It takes requests from the runtime via a light
interface offering offload and get results routines. The VA
has the complete knowledge about how dataset is partitioned
among cluster executors, hence it can issue tasks execution to
workers with messages sent through the Stub.

4) Stub, an object for communication logic: Object re-
sponsible for communication between the runtime and the
cluster, From the cluster side, there exists a Stub for each
worker, acting as the backend that gathers requests from the
VA. Therefore, the Stub is responsible for: 1) Initiating the
communication towards the cluster nodes, 2) Sending VA
messages parametrized with both the task to execute and the
DPC partition, 3) Marshall and unmarshall outcoming and
incoming messages, and 4) Informing the VA that the remote
call is completed.

5) Cluster-level, the last layer of the stack: As partially
described, executors in the cluster communicate with the VA
(as well as with the runtime) by means of messages mediated
by the Stub.

DLambda VTable: The DLambda VTable is an important
piece of the architecture and it is reported in Figure 1. In
order to make all DLambdas accessible by remote workers
within the same executable, just addressing those via function
pointers is not enough because of dynamic relocation. To
overcome this problem, we implemented a class containing a
pair of tables making DLambdas addressable both by an index
and by their names. We called this class DLambdaVtable as
the idea is to emulate virtual tables.

230 double/int DPC collection (4 + 8 = 12 GB)

nodes init (ms) zip (ms) reduce (ms) speedup
sequential implementation

1 6202.60 3102.12 1688.31 1.00
SkeDaTo implementation

1 6705.09 3097.54 1812.16 0.95

2 3474.70 1642.60 962.26 1.81

4 1743.08 822.41 482.44 3.61
native MPI implementation

4 1583.85 82291 481.60 3.81

TABLE I

PERFORMANCE OF DOT-PRODUCT ON THE CLUSTER.

A MPI-based implementation: The current SkeDaTo im-
plementation is based on top of MPI 2-sided communication
primitives. The MPI_Engine is the base class for the runtime
in a SkeDaTo program. In the MPI implementation, after
initializing the MPI environment, the execution is routed into
two flows: 1) the runtime branch, which proceeds to the user
main code (that is, the User Level) and 2) workers branch, in
which processes are redirected to the “cluster dedicated code”,
from which they never exit. In order to exploit the MPI SPMD
execution model, the MPI_Stub acts as the Virtual Accelerator,
instructing workers via MPI communication facilities.

V. EXPERIMENTAL EVALUATION

We performed some preliminary experiments in order to
both showing the scalability of a simple SkeDaTo application
with respect to the number of cluster nodes and — from the
absolute performance perspective — comparing execution times
of SkeDaTo application against a native MPI implementation.

The dot-product of two collections A and B both having
size n is defined as A-B = > | A;B, = AiB +
AsBs + ...+ A, B, and can be implemented by means of
skeletons as a sequence of a zip (i.e. element-wise binary
combination) followed by a reduce skeleton. In particular, we
implemented the elemental functions as static DLambdas for
best performance.

All experiments were conducted on the Paradigm cluster
at the Computer Science department of Torino, a small-scale
representation of widespread massively parallel clusters used
for data processing nowadays. It is composed of 4 low-cost
low-energy nodes, each equipped with an Intel Atom C-2750
@2.40 GHz and 16 GB of main memory with Linux x86_64.

Table I reports the execution time breakdown of the dot-
product application over two DPCs containing 23° double-
precision floating-point and 32bit integer numbers, respec-
tively (i.e. 4 + 8 = 12 GB). Execution times are reported for
both zip and reduce skeletons, plus an init phase, spanning
DPC creation and initialization. Reported times are averaged
over 100 runs, featuring standard deviations in the order
on 10ms. First we compare SkeDaTo execution against a
plain sequential implementation, considering as a performance
measure the speedup, defined as the ratio of sequential to

(DLambda VTable]
D 0: DLambdalnitDPC
1: DLambdaMap

User Level

l dataset.map_inplace(DLMap) J

DLambda VTable (
0: DLambdalnitbPC
1: DLambdaMap

Get DLambda DLMap

DLambda VTable
0: DLambdalnitDPC
1: DLambdaMap

Get DLambda DLMap

g

+ Get DLambdalndex of
) DLMap
Runtime DPC
Management

Stub Stub

dataset
Virtual Accelerator]

Issue Map message on dataset
partitions

\

\

\

\

\

\

Issue Map request on DPC ‘
I [\
\

\

\

\

T

[Stub }

Task-Offload Message

DPC partition 0
DLambdalndex 1

]

\

\

\

\

-) \
Worker Runtime | DPC Partition 0 | ppc partition 1 | Worker Runtime |
\

\

\

\

\

\

\

Cluster Environment Task Offload Message
DPC partition 1

DLambdalndex 1

Fig. 1. SkeDaTo execution example for a Map task.

SkeDaTo total execution times. Speedups, reported for k-
worker SkeDaTo execution with k& = 1,2,4, result to be
almost ideal in all cases. Moreover, reported speedups grow
with almost linear rate with respect to k, thus showing good
scalability. Finally, we compared the SkeDaTo implementation
against a native MPI implementation of the same application.
MPI execution, reported at the bottom of Table I for the 4-
worker case, results to be just slightly faster.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we have proposed a novel approach for data-
centric cluster computing, which contribution is twofold. First,
from a usability perspective, it is based on a sequential SPMD-
free programming model, freeing users from reasoning at the
parallel coordination level and from dealing with performance-
critical aspects such as data partitioning and placing, while
letting them focusing exclusively on business code. Second,
from high performance runtime perspective, it is based on a
cluster-as-accelerator architecture, in which cluster plays the
role of interpreter of user-defined The resulting architecture is
highly modular, in particular the bottom runtime layer can be
implemented on top of different communication libraries (e.g.
MPI or libfabric verbs).

As future directions, we consider exploiting some form of
Just-In-Time (JIT) compilation in order to provide inlining
for a wider class of user-defined functions (i.e. dynamic
DLambdas in Section III-B2) to be executed by the clus-
tered interpreter. A partially related aspect is a more tight
integration with C++11/14 specifications. Finally, SkeDaTo
will be provided with more skeletons and more I/O options
for SkeDaTo collections. In particular, we plan to enrich the
MPI-based implementation by exploiting the improved 1-sided
Remote-Memory-Access (RMA) primitives — introduced since
MPI2 - for implementing data exchange between workers.
This would be useful in e.g. implementing the well-known
stencil skeleton.

ACKNOWLEDGMENT

This work has been partially supported by the EU FP7
REPARA project (no. 609666), the EU H2020 Rephrase

project (no. 644235) and the 2015-2016 IBM Ph.D. Schol-
arship program.

REFERENCES

[1] M. P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[2] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computations, ser. Research Monographs in Par. and Distrib. Comput-
ing. Pitman, 1989.

[3] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, “A library of construc-
tive skeletons for sequential style of parallel programming,” in Proc. of
the Ist Inter. conference on Scalable information systems, ser. InfoScale
’06. New York, NY, USA: ACM, 2006.

[4] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Munster skeleton
library Muesli — a comprehensive overview,” in ERCIS Working paper.
ERCIS - European Research Center for Information Systems, 2009,
no. 7.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI'12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 2-2.

[6] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC: distributed
shared memory programming. John Wiley & Sons, 2005, vol. 40.

[7]1 B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programma-
bility and the chapel language,” I/JHPCA, vol. 21, no. 3, pp. 291-312,
2007.

[8] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-20,
2005, San Diego, CA, USA, 2005, pp. 519-538.

[9] J. Nieplocha, B. J. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Apra, “Advances, applications and performance of the global arrays
shared memory programming toolkit,” IJJHPCA, vol. 20, no. 2, pp. 203—
231, 2006.

[10] J. Enmyren and C. W. Kessler, “Skepu: a multi-backend skeleton
programming library for multi-gpu systems,” in Proceedings of the
Sfourth international workshop on High-level parallel programming and
applications, ser. HLPP *10. New York, NY, USA: ACM, 2010, pp.
5-14.

M. Aldinucci, M. Danelutto, and P. Teti, “An advanced environment
supporting structured parallel programming in Java,” Future Generation

Computer Systems, vol. 19, no. 5, pp. 611-626, Jul. 2003.

M. Aldinucci, M. Danelutto, and P. Dazzi, “Muskel: an expandable
skeleton environment,” Scalable Computing: Practice and Experience,
vol. 8, no. 4, pp. 325-341, Dec. 2007.

(11]

[12]

