
Università degli Studi di Torino

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

The road towards a cloud-based
high-performance solution
for genomic data analysis

Candidate:
Fabio Tordini

Supervisor:
Prof. Marco Aldinucci

Coordinator:
Prof. Mariangiola Dezani

April 1, 2016

Abstract

Nowadays, molecular biology laboratories are delivering more and more data about
DNA organisation, at increasing resolution and in a large number of samples. So much
that genomic research is now facing many of the scale-out issues that high-performance
computing has been addressing for years: they require powerful infrastructures with
fast computing and storage capabilities, with substantial challenges in terms of data
processing, statistical analysis and data representation.

With this thesis we propose a high-performance pipeline for the analysis and in-
terpretation of heterogeneous genomic information: beside performance, usability and
availability are two essential requirements that novel Bioinformatics tools should satisfy.
In this perspective, we propose and discuss our efforts towards a solid infrastructure
for data processing and storage, where software that operates over data is exposed as a
service, and is accessible by users through the Internet.

We begin by presenting NuChart-II, a tool for the analysis and interpretation of spa-
tial genomic information. With NuChart-II we propose a graph-based representation
of genomic data, which can provide insights on the disposition of genomic elements in
the DNA. We also discuss our approach for the normalisation of biases that affect raw
sequenced data.

We believe that many currently available tools for genomic data analysis are per-
ceived as tricky and troublesome applications, that require highly specialised skills to
obtain the desired outcomes. Concerning usability, we want to rise the level of ab-
straction perceived by the user, but maintain high performance and correctness while
providing an exhaustive solution for data visualisation.

We also intend to foster the availability of novel tools: in this work we also discuss
a cloud solution that delivers computation and storage as dynamically allocated virtual
resources via the Internet, while needed software is provided as a service. In this way,
the computational demand of genomic research can be satisfied more economically by
using lab-scale and enterprise-oriented technologies. Here we discuss our idea of a
task farm for the integration of heterogeneous data resulting from different sequencing
experiments: we believe that the integration of multi-omic features on a nuclear map
can be a valuable mean for studying the interactions among genetic elements. This can
reveal insights on biological mechanisms, such as genes regulation, translocations and
epigenetic patterns.

ii

Contents

Abstract ii

Glossary x

1 Introduction 2
1.1 High-Performance Computing overview 4

1.1.1 HPC architectures . 5
1.1.2 Structured parallel programming 6

1.2 HPC and Bioinformatics . 8
1.2.1 Next-generation sequencing . 9
1.2.2 Capturing chromosome conformation 10

1.3 Contributions of this thesis . 13

2 Background – Parallel Computing 20
2.1 Shared-memory architectures . 23

2.1.1 Memory organisation . 27
2.2 Memory allocation . 34

2.2.1 Memory allocators - Literature review 39
2.3 Blocking and non-blocking algorithms . 41
2.4 Structured parallel programming . 43

2.4.1 Low-level parallel programming 44
2.4.2 Algorithmic Skeletons . 47

2.4.2.1 Stream parallelism . 48
2.4.2.2 Data parallelism . 51

2.4.3 Literature review . 55
2.5 HPC and Cloud computing . 58

2.5.1 Cloud service models . 59
2.5.2 Cloud implementation models . 61
2.5.3 Performance . 62
2.5.4 Existing Cloud platforms . 62

2.6 Discussion . 65
2.6.1 Measuring Performance . 66
2.6.2 Research niche . 69

iv

3 Background – Genomics 72
3.1 DNA exploration overview . 73
3.2 Next-Generation Sequencing . 74

3.2.1 RNA-Seq . 78
3.2.2 ChIP-Seq . 79

3.3 Chromosome Conformation Capture . 80
3.3.1 Normalisation . 85

3.4 State of the art . 87
3.5 Discussion . 89

3.5.1 Visualisation of biological data . 91
3.5.2 Research niche . 92

4 Scalable Chromosome Exploration 95
4.1 Three-dimensional chromosome exploration 95
4.2 Neighbourhood graph construction . 99

4.2.1 Data-parallel BFS-like graph exploration 103
4.2.2 Memory-optimised graph construction 103

4.3 Normalisation . 107
4.4 Experiments . 111
4.5 Discussion . 117

4.5.1 Network Analysis and Statistics 118
4.5.2 Performance . 120

4.6 Concluding remarks . 125

5 NuchaR t: embedding NuChart-II in R 126
5.1 Motivation: efficiency and usability . 126

5.1.1 Hi-C data analysis step-by-step . 128
5.1.2 Parallelism facilities in R . 129
5.1.3 Memory management in R . 132

5.2 NuchaR t . 133
5.3 Discussion . 139

5.3.1 Experiments . 141
5.3.2 Performance . 143
5.3.3 Graph drawing . 146

5.4 Concluding remarks . 148

6 A cloud solution for multi-omics data integration 149
6.1 Motivation: a flood of data . 150
6.2 A bit of background . 151

6.2.1 Cloud for Bioinformatics . 152
6.2.2 The problem of data integration 154

6.3 Methods: a cloud-based task farm approach 155
6.3.1 Three pipelines . 155
6.3.2 Integration and statistical analysis 161

v

6.4 Cloud platform . 162
6.4.1 Set up and communication . 162

6.4.1.1 Task scheduling . 165
6.4.1.2 Partitioned alignment . 168

6.5 Test Case . 170
6.5.1 Results . 170
6.5.2 Computational costs . 174

6.6 Concluding remarks . 178

7 Conclusions 180
7.1 Open issues and future works . 182

vi

List of Figures

1.1 DNA sequencing costs . 10
1.2 A high-performance pipeline . 14

2.1 MIMD system . 21
2.2 Shared-memory system . 23
2.3 Common interconnection networks . 24
2.4 NUMA architecture . 28
2.5 Sequential consistency . 30
2.6 False-sharing . 38
2.7 Memory fragmentation . 39
2.8 A general Pipeline pattern with three stages 49
2.9 Farm pattern . 50
2.10 Pipeline of Farm . 51
2.11 Map pattern . 53
2.12 Reduce pattern . 54
2.13 MapReduce pattern . 55
2.14 A high-performance pipeline . 70

3.1 NGS steps . 76
3.2 3C-based methods . 82
3.3 Hi-C contact map . 86

4.1 Neighbourhood graph . 101
4.2 Normalisation . 108
4.3 Neighbourhood graph for gene TP53 . 112
4.4 Neighbourhood graph for genes ABL1 and BCR 113
4.5 Neighbourhood graph for genes AML1 and ETO 115
4.6 Neighbourhood graph for genes CBFβ and MYH11 116
4.7 Graph growing . 118
4.8 Genome-wide graph: degree distribution 120
4.9 Graph construction speedup . 121
4.10 Normalisation - speedup . 124

5.1 Master/Slave behaviour between R and C++ 134

vii

5.2 KRAB genes cluster . 138
5.3 HLA genes cluster . 140
5.4 Compare NuChart-II and NuchaR t performance on “Paracool” 144
5.5 Compare NuChart-II and NuchaR t performance on “Paranoia” 145
5.6 Genome-wide graph . 147

6.1 Work-flows highlights . 156
6.2 FASTQ split and task scheduling . 157
6.3 Cloud infrastructure . 163
6.4 Task Scheduling . 165
6.5 Tasks states . 167
6.6 Neighbourhood graphs . 172
6.7 Gene Cluster . 173

7.1 A high-performance pipeline . 181
7.2 Core decomposition . 185

viii

Glossary

This short glossary contains some definitions of biology-related terms used throughout
this thesis. It is not intended to give a thorough explanation of the related concepts.

base refers to one of the nucleobases that build DNA and RNA, and that give the helical
structure of DNA and RNA. The primary, or canonical, nucleobases are cytosine,
guanine, adenine, thymine and uracil, abbreviated as C, G, A, T, and U.

basepairs (unit: bp) are the building blocks of the DNA double helix and contribute
to the folded structure of both DNA and RNA. The size of an individual gene or
an organism’s entire genome is often measured in base pairs: the haploid human
genome (23 chromosomes) is estimated to be about 3.2 billion bases long and to
contain 20,000–25,000 distinct protein-coding genes. kb and Mb are often used to
refer to thousands of basepairs (kilo base) and millions of basepairs (mega base).

binding site is a region on a protein, or piece of DNA or RNA, to which ligands (spe-
cific molecules) may form a chemical bond. Binding sites are often an important
component of the functional characterization of biomolecules, as they are respon-
sible for the chemical reaction that transforms a substrate into a product.

chromatin is a complex of macromolecules found in cells, consisting of DNA, protein
and RNA, and plays an active role in maintaining DNA integrity and controlling
DNA replication and gene expression. It is only found in eukaryotic cells (cells
with defined nuclei).

chromosome is a packaged and organized structure containing most of the DNA of a
living organism. It is complexed with many structural proteins called histones,
with associated transcription factors and several other macromolecules.

contact maps record the interactions between different sections of the chromosome in
the form of a weighted adjacency matrix A, where two fragments i and j interact
with frequency Ai,j .

CTCF is a transcription factor that in humans is encoded by the CTCF gene. It is in-
volved in many cellular processes, including transcriptional regulation, insulator
activity and regulation of chromatin architecture.

DNA (deoxyribonucleic acid) is a molecule that carries most of the genetic instructions
used in the development, functioning and reproduction of all known living or-
ganisms and many viruses. Alongside proteins and carbohydrates, nucleic acids
compose the three major macromolecules essential for all known forms of life.

x

DNA polymerases are enzymes that create DNA molecules by assembling nucleotides,
and usually work in pairs to create two identical DNA strands from a single orig-
inal DNA molecule.

DNA replication is the process of producing two identical replicas from one original
DNA molecule. This biological process occurs in all living organisms and is the
basis for biological inheritance.

DNase refers to any enzyme capable of establishing or cleavage any chemical bonds
that link nucleotides.

exon is any part of a gene that codes for a part of the final mature RNA product of that
gene after introns have been removed by RNA splicing.

fasta is a text-based format for representing either nucleotide sequences or peptide se-
quences, in which nucleotides or amino acids are represented using single-letter
codes. The format originates from the FASTA software package, but has now
become a standard file format in bioinformatics.

fastq is a text-based format for storing both a biological sequence (usually nucleotide
sequence) and its corresponding quality scores, which are each encoded with a
single ASCII character for brevity. It has recently become the de facto standard
for storing the output of high-throughput sequencing instruments.

GC-content is the percentage of nitrogenous bases on a DNA molecule, that are either
Guanine or Cytosine. GC ratios within a genome is found to be markedly variable:
such variations within the genomes of complex organisms result in a mosaic-like
formation, with isolated regions called isochores. GC-rich isochores contain many
proteins coding genes, thus supporting the discovery of gene-rich regions in the
genome.

gene is a locus (or region) of DNA that encodes a functional RNA or protein prod-
uct, and is the molecular unit of heredity. Most biological traits are under the
influence of many different genes, as well as the gene–environment interactions.
Some genetic traits are instantly visible, such as eye colour, while some are not,
such as blood type or the thousands of basic biochemical processes that comprise
life.

histones are highly alkaline proteins found in eukaryotic cells nuclei that package and
order the DNA into structural units called nucleosomes. They are the chief pro-
tein components of chromatin and play a role in gene regulation mechanism.

immunoprecipitation is a technique used to isolate and concentrate a particular pro-
tein from a sample containing many thousands of different proteins, using an
antibody that specifically binds to that particular protein.

xi

intron is a nucleotide sequence within a gene that is removed by RNA splicing during
maturation of the final RNA product. Sequences that are joined together in the
final mature RNA after RNA splicing are exons.

isochores are large regions of DNA (greater than 300 kb) with a high degree uniformity
in guanine (G) and cytosine (C): G-C and C-G (collectively GC content).

isoforms are mRNAs that are produced from the same locus but are different in their
transcription start sites (TSSs), protein coding DNA sequences (CDSs) and/or
untranslated regions (UTRs), potentially altering gene function.

locus (plural loci) is the specific location or position of a gene or DNA sequence, on a
chromosome, in the field of genetics.

mappability score of a DNA sequence is the inverse of the number of times that a
read, originating from any position in the reference genome, maps to the genome
itself. It permits to identify those regions that produce reads which map back
unambiguously (and uniquely) to themselves.

mapping generally refers to the alignment of each read — resulting from a DNA se-
quencing process — to the reference genome, in order to computationally identify
where it originated. The primary complication of such process is that a read may
map equally well (or nearly equally well) to multiple positions, because of repeti-
tive sequences in the genome. Short read mapping algorithms try to identify the
best mapping position for each read, that minimizes the number of differences
between the read and the genome, and compute a mapping quality score that
estimates the probability that the assigned location is the correct position.

methylation denotes the addition of a methyl group to a substrate or the substitution
of an atom or group by a methyl group. In DNA sequencing, it modifies the
function of the DNA, typically acting in various contexts, from repressing gene
expression, X-chromosome inactivation and carcinogenesis.

omics is an English-language neologism that informally refers to a field of study in
biology ending in -omics, such as genomics. The related suffix -ome is used to
address the objects of study of such fields, such as the genome.

PCR (polymerase chain reaction) is a technology in molecular biology used to amplify
a single copy or a few copies of a piece of DNA across several orders of magni-
tude, generating thousands to millions of copies of a particular DNA sequence.
Quantitative PCR is an established tool for DNA quantification that measures the
accumulation of DNA product after each round of PCR amplification.

PET (paired-end tags or di-Tags) are the short sequences of a DNA fragment which
are unique enough that they (theoretically) exist together only once in a genome,
therefore making the sequence of the DNA in between them available upon search
or upon further sequencing.

xii

primer refers to a strand of short nucleic acid sequences (generally about 10 base pairs)
that serves as a starting point for DNA synthesis.

reads refer to short sequences of DNA, typically 25–400 bp long. Basically, reads are
raw sequences that come off a sequencing machine.

RNA (ribonucleic acid) is a polymeric molecule implicated in various biological roles
in coding, decoding, regulation, and expression of genes. Like DNA, it is one of
the major macromolecules essential for all known forms of life.

RNA polymerases are enzymes that produce primary transcript RNA, and are nec-
essary for constructing RNA chains using DNA genes as templates, during the
transcription process.

mRNA (Messenger RNA) is a large family of RNA molecules that convey genetic infor-
mation from DNA to the ribosome, where they specify the amino acid sequence
of the protein products of gene expression.

ribosome is a large and complex molecular machine found within all living cells, that
serves as the site of biological protein synthesis (translation). Ribosomes link
amino acids together in the order specified by messenger RNA (mRNA) molecules.

RSSs (recombination signal sequences) are composed of three elements: a heptamer
of seven conserved nucleotides, a spacer region of 12 or 23 basepairs in length,
and a nonamer of nine conserved nucleotides. They play an active role in the
mechanism of genetic recombination that occurs only in developing lymphocytes
during the early stages of T and B cell maturation. The process is a defining
feature of the adaptive immune system.

sam (bam) is a text format for storing sequence data in a series of tab delimited ASCII
columns. Most often it is generated as a human readable version of its sister
BAM format, which stores the same data in a compressed, indexed, binary form.
SAM format data is output from aligners that read FASTQ files and assign the
sequences to a position with respect to a known reference genome.

sonication is the act of applying sound energy to agitate particles in a sample, for var-
ious purposes. Ultrasonic frequencies (>20 kHz) are usually employed, leading
to the process also being known as ultra-sonication.

SRA (sequence read archive) is a “raw data” archive, and also a common format (.sra)
used by the NCBI, EBI, and others for storing reads and read alignments.

TADs (topologically associated domains) can be defined as dense, contiguous regions
of chromatin (bins) that present a high frequency of intra-domain, rather than
inter-domain, chromatin interactions. They are delimited by sharp boundaries
that clearly separate more spatially compact regions with respect to their sur-
rounding regions.

xiii

transcription is the first step of gene expression, in which a particular segment of DNA
is copied into RNA (mRNA) by the enzyme RNA polymerase.

transcription factor is a protein that binds to specific DNA sequences, thereby control-
ling the rate of transcription of genetic information from DNA to mRNA. Tran-
scription factors may attach to specific sequences of DNA adjacent to the genes
that they regulate (DNA binding site), playing a crucial role in the regulation of
gene expression.

transcriptome is the set of all RNA molecules, including mRNA, rRNA, tRNA, and
other non-coding RNA transcribed in one cell or a population of cells.

translocation refers to a chromosome abnormality caused by rearrangement of parts
between non-homologous chromosomes.

xiv

Chapter 1

Introduction

High-Performance Computing describes a set of hardware and software tech-
niques developed for building computer systems capable of quickly execute
large amounts of computation. These techniques have generally relied on har-
nessing the computing power of large numbers of processors working in paral-
lel, either in tightly-coupled shared-memory multiprocessors or loosely-coupled
clusters of PCs. Experience has shown that a great deal of software support is
necessary to promote the development and tuning of applications on parallel
architectures.

Bioinformatics can be broadly defined as the field of science in which biol-
ogy, computer science and information technology merge together into a single
discipline. More precisely, it comprises the set of computing techniques em-
ployed to manage and extract useful information from the DNA/RNA/Pro-
tein sequence data, being generated (at very high volumes) by automated tech-
niques (e.g., DNA sequencing) and stored in large public databases (e.g., EBI1,
NCBI2). Certain methods for analysing genetic data have been found to be ex-
tremely computationally intensive, providing motivation for the use of power-
ful computers.

The work discussed in this thesis has its raison d’être in these two definitions:
there is an increasing demand for powerful applications coming from scien-
tific domains, such as Biology and Genomics. In particular, recent advances

1http://www.ebi.ac.uk/
2http://www.ncbi.nlm.nih.gov/

2

http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/

in Molecular Biology and Bioinformatics techniques brought to an explosion
of the information about the spatial organisation of the DNA in the nucleus:
DNA sequencing has been driving unprecedented discoveries in the life sci-
ences since the emergence of next-generation sequencing (NGS) technologies.
The sequenced genome is the product of an extensive computational process
that transforms hundreds of Gigabytes of raw sequenced output into aligned
genomes, and the sequencing industry has been demanding for increasingly
larger compute and storage resources.

From the hardware perspective, multi-core processors have become the de
facto standard in microprocessors production [14]. For several decades, proces-
sors’ clock speed kept increasing of about 30% per year, until reaching a phys-
ical limit: when clock frequencies exceed 5GHz, the power a microprocessor
could dissipate dramatically rises, causing the chips to melt. This has forced
microprocessor vendors to increase performance by producing chip multipro-
cessors with multiple computing cores: the number of processing units per chip
is doubling with each new generation processor [98], as transistors get smaller
and smaller. Current processors are composed of 4 or more (up to 12) cores
on the same chip, and this number is continuously increasing every year, up to
the point that the term many-cores has been introduced to emphasize the large
amount of cores per chip that some novel devices contain. One such exam-
ple is the Many Integrated Core architecture by Intel, better known as Intel Xeon
Phi. Also GPUs fall in this classification: apart from their 3D-graphics render-
ing capabilities, GPUs have became more and more “programmable” and are
currently used for general-purpose computing.

These technologies are often combined together in high-end heterogeneous
systems, equipped with several multi-core processors on the same board plus
one or more many-core devices, and these computing nodes are tied together
using interconnection networks that link processors and shared memory, result-
ing in larger and more complex HPC infrastructures.

In a scenario with an exponential expansion of biological information, in-
evitable difficulties arise for data storage and analysis: with the amount of data

3

CHAPTER 1. Introduction

growing continuously, it is becoming increasingly daunting for small laborato-
ries or even large institutions to establish and maintain computational infras-
tructures for data processing. Cloud computing is nowadays a consolidated
technology that exploits the full potential of virtualised resources to deliver com-
putation and storage via the Internet [133]: virtualisation techniques enable a
larger resource usage by sharing a given hardware among several users, thus
reducing the required amount of instances of that particular device.

Albeit relatively new, cloud computing holds great promises in effectively
addressing data storage and analysis problems that arise in many scientific dis-
ciplines. For instance, cloud computing is wide-spreading in Bioinformatics,
just because it is a discipline heavily dependent on data and, even more, on
space-consuming and time-consuming data processing tasks.

1.1 High-Performance Computing overview

Parallel programming has long been related to HPC environments, and since
its early introduction it has not embraced much more than low-level commu-
nication and synchronisation libraries. Despite providing a complete control
over the parallel application, in the hierarchy of abstractions it is only slightly
above toggling absolute binary into the front panel of the machine. With the
emergence of cluster and grid computing, and parallel architectures becoming
dynamic and heterogeneous, the possibilities for ad-hoc optimizations are lim-
ited and this programming methodology begun to suffer for the lack of proper
tools to easily implement parallel applications.

By definition, high-performance computing main purpose is “high perfor-
mance”, but FLOPS and speed-up should not be the only measures: human
productivity, total cost and time-to-solution are equally — if not more — impor-
tant [131]. While a big methodological change is required to build applications
that are likely to be designed as parallel programs, existing applications should
be easily ported to multi-cores with moderate effort. In this regard, portability
turns out to be one of the mayor problems to be addressed by a parallel remains
an outstanding problem that a parallel programming model should address:

4

1.1. High-Performance Computing overview

the ability to compile and execute different architectures with none to mini-
mum changes, while making the best possible use of the underlying (parallel)
architecture.

All in all, programs that worsen their performance when ported on different
architectures (i.e., bad scaling, limited speed-up, etc.) must be rewritten, thus
nullifying most of the benefits of code portability. Follows a problem commonly
referred to as performance portability, or the ability to write a single software
implementation that can be targeted to either a CPU or GPU (or a combination
of them) with high performance. This problem remains partially unaddressed,
because it requires an agreed-on functional language specification, while many
of the currently available programming languages adhere to a programming
model that is innately unsuitable for certain architectures.

A high-level approach to parallel programming is perceived by many as the
best solution that can foster performance portability: general-purpose patterns
that allow a featured compiler to produce efficient code for most of the available
computer architectures.

1.1.1 HPC architectures

The growing need of improved performance and the continuing constraints on
power and scalability in multi-core processors, led system designers to look at
heterogeneous solutions that incorporate specialized processing facilities, de-
signed to handle particular tasks. As an example, a heterogeneous design brings
together CPUs and GPUs processing: GPUs, apart from their 3D-graphics ren-
dering capabilities, have become more and more “programmable”, up to the
point that they are currently used for general-purpose computing and are now
exploited for intensive computation over large sets of data. Large HPC systems
are equipped with these relatively inexpensive and powerful devices as a way
of accelerating parts of the applications they are running.

Distributed systems vary widely but share a common characteristic: they
require a communication network to connect inter-processor memory. In a dis-
tributed system, each computing node is usually a shared-memory computer
with its own private memory, which needs to explicitly communicate with other

5

CHAPTER 1. Introduction

connected processing elements through a messaging infrastructure. A well
recognised example of distributed system is called cluster, which is made up
of a collection of commodity platforms connected by a commodity interconnec-
tion network — such as Ethernet or Infiniband.

Advances in biochemistry and biotechnology are placing unprecedented de-
mands on data storage and analysis: as the amount of available data grows con-
tinuously, it is becoming increasingly daunting for small laboratories — or even
large institutions — to establish and maintain computational infrastructures for
data processing. Luckily enough, nowadays the Cloud paradigm has become a
consolidated technology, that exploits the full potential of virtualised resources
to deliver computation and storage via the Internet, enabling a larger resource
usage by sharing a given hardware among several users. Buyya et al. gave a
more formal and widely accepted definition of it [32], and they emphasize that
a Cloud is “a type of parallel and distributed system consisting of a collection
of inter-connected and virtualised computers that are dynamically provisioned
and presented as one or more unified computing resource(s)”.

The picture of a cloud recalls the idea of a pool of resources with some kind
of “undefined borders”, that are made available on-demand to the final user
upon payment. Albeit relatively new, cloud computing holds great promises
in effectively addressing data storage and analysis problems that arise in many
scientific disciplines. For instance, cloud computing is wide-spreading in Bioin-
formatics, just because it is a discipline heavily dependent on data and, even
more, on space-consuming and time-consuming data processing tasks [133].

1.1.2 Structured parallel programming

Many well known sequential languages, such as C or Fortran, use specific state-
ments to define and coordinate multiple execution flows. Libraries like MPI [122],

6

1.1. High-Performance Computing overview

Pthreads [31] and OpenMP [124] provide APIs that help programmers to de-
velop parallel applications by exposing constructs that control the program-
ming model (message-passing, shared-memory, etc.) that the underlying com-
puter systems express. However, these methods are considered “low-level” ap-
proaches, because a programmer needs to orchestrate every aspect of the con-
current execution of programs, including threads (or processes) creation, com-
munication and synchronisation, which also requires a thorough understanding
of the underlying hardware architecture.

Efficient parallel applications normally use a small number of common pat-
terns that model parallelism exploitation forms. Structured parallel program-
ming springs out from this evidence and has been developing into two main
research branches: the algorithmic skeletons community and the parallel design
patterns community.The latter has a software engineering perspective, while
the former pursues an abstraction of the generic patterns of computation and
interaction used in parallel applications. These two communities often reach to
similar results that go for the benefits of both areas.

Structured parallel programming started with the concept of algorithmic
skeletons defined by Cole [38], and has been successfully applied basically to
any possible parallel environment, starting from shared-memory machines [7,
100], to grid and clusters [3, 5], and recently to cloud computing [34, 33]. A pat-
tern (or skeleton) focuses on the parallel behaviour of the application — rather
than on its implementation — which can be expressed in terms of a graph of
computational nodes where data dependencies among nodes represent the par-
allel activity of a given application.

Parallel programming patterns permit to automatically create different par-
allel implementations starting from the high-level description that they encom-
pass, hiding implementation details The parametric nature of the produced
code is able to cope with different parallelism degrees. These points are the
basic building blocks that ensure performance portability on various architec-
tures.

7

CHAPTER 1. Introduction

1.2 HPC and Bioinformatics

It is nowadays acknowledged that the human genome is a complex machine
built on a four-letters (AGCT) language: everything happening within cells de-
rives from this language. Genomic material is folded inside each micrometer-
scale cell nucleus, and genome organization is guided by genes interaction in
and between chromosomes. These interactions reflect the transcription regu-
lation process and guide genes activity: inferring genome organization is cru-
cial for many cellular processes related to gene expression regulation, including
DNA accessibility, epigenetic patterns and chromosome translocation.

More and more data about genome organisation springs out from laborato-
ries, and this data must be processed and analysed in order to extrapolate use-
ful information and obtain a significant interpretation of genomic data. How-
ever, no data analysis pipeline anywhere in any scientific field works as one
monolithic process: different stages of the data analysis process are just fun-
damentally different, and have different parallelism, memory access and data
access requirements. Also, it often makes sense to run the same stage of an
analysis in a number of different ways, to demonstrate the robustness of novel
results (which are not unusual in fields like Genomics and Bioinformatics), or
to tackle different sorts of data, for example one in which a reference genome is
available, compared to one where it is not. Here High-Performance Computing
comes into play: from modelling scientific processes to the use of computers to
obtain quantitative results from these models, it turns a domain science into a
computational activity.

Some examples are worth to mention, where HPC actually led to concrete
benefits. During the early assembly of the human genome, a Bioinformatics
post-analysis of whole sets of shotgun sequencing runs supported by a large
and powerful HPC system permitted to get very close to an unpredictable vic-
tory [156].

Crossbow [96] is software pipeline for whole genome resequencing analysis
that exploits the cloud — and the Hadoop implementation of the MapReduce

8

1.2. HPC and Bioinformatics

pattern — to launch many copies of the short-read aligner Bowtie [97] in paral-
lel. After Bowtie has aligned the reads (in the order of billions for a human re-
sequencing project) to the reference genome, Hadoop3 automatically sorts and
aggregates the alignments by chromosomal region, and launches many parallel
instances of the SOAPsnp4 resequence utility.

Some other efforts have been dedicated to foster usability and availability
of Bioinformatics tools and pipelines: Grendel [80] is a platform and language
independent Web Service-based system for distributed resource management,
and acts as a single access point to HPC infrastructures. Unipro UGENE [120]
was designed as a multi-platform open-source software that integrates widely
used Bioinformatics tools within a common user interface.

More recently, HPC solutions have been massively employed in the study
of the genome architecture: Lieberman-Aiden’s team used GPUs very aggres-
sively while working on the 3-D maps of entire folded genomes [128], and
found a structural basis for gene regulation — which they called a “genomic
origami” — that allows the same genome to produce different types of cells: as
genes specialize in functions, they are actually folding enabling new configu-
rations. Their discovery revealed thousands of hidden switches that enable a
cell to be in one state versus another. The big-data tools created for the study
included parallelised pipelines for HPC clusters, dynamic programming algo-
rithms and custom data structures.

1.2.1 Next-generation sequencing

DNA sequencing permits to determine the exact order of nucleotides present
in a given DNA or RNA molecule. In the past decade, progresses in comput-
ing technology and chemical research have dramatically increased the ability to
sequence DNA and gather information, bearing numerous biological and med-
ical discoveries. The first major effort into DNA sequencing was the “Human
Genome Project”, completed in 2003 using “first-generation” sequencing meth-
ods, known as Sanger sequencing, developed in 1975 by Edward Sanger.

3http://hadoop.apache.org/
4http://soap.genomics.org.cn/soapsnp.html

9

CHAPTER 1. Introduction

Figure 1.1: Trends in DNA sequencing costs for a whole human-sized genome, compared
against Moore’s law. Picture publicly available, taken from http://www.genome.
gov/sequencingcosts/. Updated at January 2016

The high demand for low-cost genomic data has driven the development of
high-throughput technologies, normally referred to as next-generation sequenc-
ing (NGS) techniques. These methods parallelise the sequencing process pro-
ducing thousands (or millions) of biological data. DNA sequencing technology
is outpacing Moore’s law — in terms of cost decrease over years (see Figure 1.1)
— and the cost for a whole genome is likely to soon reach the unprecedented
lower-bound of $1000 USD5. Consequently, each new generation of sequencers
will require more, not simply faster, computing and storage resources.

Although sequencing mainly refers to DNA, NGS techniques are used in
many related genomic researches, such as transcriptome profiling, DNA-Protein
interactions, epigenome characterization, and for the analysis of the chromo-
some conformation inside the nucleus of the cell.

1.2.2 Capturing chromosome conformation

The study of chromosome organization in the nucleus is extremely relevant to
gain insight on biological function at the gene level, as well as the global nu-
clear level, and it will further enable the investigation of pathologies related to

5http://www.genome.gov/sequencingcosts/

10

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/

1.2. HPC and Bioinformatics

genome instability or nuclear morphology [24]. Since 1980s, the predominant
method for determining nuclear organization and chromatin conformation was
FISH, a procedure that locates the positions of specific DNA sequences on chro-
mosomes by using fluorescent probes which permit to identify (and quantify)
the counterpart of the sequence in a biological sample.

Many techniques are now available to evaluate the physical proximity in cell
populations in vivo: Chromosome Conformation Capture (3C) and its deriva-
tives measure the frequency at which two chromosome fragments physically
associate in a three-dimensional (3D) space, both within and between chromo-
somes, based on the propensity for those two locations to become cross-linked
together [46].

Novel approaches, such as 4C, 5C, and Hi-C, combine 3C methodology with
high-throughput sequencing to interrogate the 3C ligation product library more
comprehensively [49, 102], and focus on the analysis of a set of predetermined
loci: according to their coverage (i.e., the genome locations they are able to ex-
amine), 3C-based analyses provide information over increasing domains, reach-
ing a genome-wide scope with Hi-C technique.

Quantifying the number of ligation events between two chromatin frag-
ments gives their “contact frequency” in the examined population of nuclei,
providing a pairwise estimator for their distance. Hi-C methods detect contacts
between groups of loci, per chromosome or genome-wide, which are typically
summarised in a non-negative matrix called “contact map”.

The increasing volume of Hi-C data calls for the development of algorithms
and data structures that can summarize, compress and integrate data sets while
considering issues of time and space complexity. Such a computational ap-
proach can complement physics simulations and provide the necessary frame-
work for large scale studies of the 3D genome architectures and its function.

Data representation is the foundation of our collective scientific knowledge,
as readers’ understanding of a dataset is generally limited to what is presented
in a publication. Noteworthy, scientists customarily process the findings they
have collected and the conclusions they draw into various kinds of visuals, in

11

CHAPTER 1. Introduction

order to represent the data. How to represent knowledge depends largely on
the way reasoning can be done with that knowledge.

Moving to omic sciences, they are data-rich disciplines where knowledge is
stored in a large number of different data sources, which need to be mined and
integrated in such way that high-dimensional data is represented in a lower
dimensional space, preserving the proximity relationship. For example, the
output of a Hi-C process is a list of pairs of locations along all chromosomes,
which can be represented as a square matrix where each element (i, j) of the
matrix indicates the sum of read pairs matching in positions i and j. This
matrix-based representation, called contact matrix, is reliable while looking at
the interactions between two chromosomes, but becomes unsuitable to describe
long-range chromatin interactions or to model a contact based metric of gene
distances.

Another representation that is gaining a lot of success relies instead on graphs,
which are used to provide a better description of the social behaviour of genes:
a network (or graph) has a high level of expressiveness, insofar as nodes repre-
sent the actors of a process while edges identify relationships among the actors.
Structural properties of a network can reveal significant information on how
the actors of the represented process interact, while parallel algorithms can be
employed to operate over a network. Moreover, graph-based representations
of genes inside the nucleus can be very useful to map and re-interpret omics
data, in order to characterize different spatially-associated domains [162] while
providing an interpretation of genomic information by mean of complex, dy-
namical structures that organize items in an integrated way.

Indeed, sequencing results from expression profiles, methylation patterns
and chromatin domains are analysed only from the 1D genome sequence view-
point. Nonetheless, an increasing number of experiments highlights the im-
portance of co-localization and co-expression of genes: there is an undeniable
need for software solutions that permit the integration and the interpretation
of multi-omics features on a nuclear map, capable of representing the effective
disposition of genes in the three-dimensional space.

12

1.3. Contributions of this thesis

1.3 Contributions of this thesis

As genome sequencing technology is outpacing Moore’s law, molecular biol-
ogy laboratories are delivering more and more data about DNA organisation,
at high resolution and in a large number of samples. So much that genomic
research is now facing many of the scale-out issues that high-performance com-
puting has been addressing for years: they require powerful infrastructures
with fast computing and storage capabilities, with substantial challenges in
terms of data processing, statistical analysis and data representation.

From these premises arises our main research question: how can Computer
Science and the HPC community support Bioinformatics on its increasing and forth-
coming computing requirements?

With this broad commitment in mind, we shrank our investigations to a con-
crete use case, and we outlined a number of criteria that we believe a Bioinfor-
matics tool should meet: performance, usability and availability. Given the inter-
disciplinary nature of the problem, we could better formulate specific research
questions that encouraged our investigations:

• how can we address performance needs in Bioinformatics applications,
whose execution is strongly affected by memory requirements due to the
considerable size of the data they work on.

• how can we address usability needs in Bioinformatics applications, con-
sidering that they are going to be used by a wide and heterogeneous range
of scientists, with extremely varied backgrounds?

• how can we make our solutions quickly available to the scientific commu-
nity, considering the increasing need for storage and computational power
required to perform genomic data analysis?

In this Thesis we propose a high-performance solution for the analysis and
interpretation of heterogeneous genomic information: moving from a novel tool
for Hi-C data analysis, we will deploy a cloud solution that provides a solid
hardware infrastructure for data processing and storage, while software tools

13

CHAPTER 1. Introduction

IaaS, PaaS

SaaS

DaaS

shared-memory
architectures

algorithmic
skeletons

tools
libraries

next-generation
sequencing

3C-based
techniques multi-omic

data

genetics
biology

parallel
computing

 data
integration
omics

visualisation
statistics

NuchaRt

cloud
services

Figure 1.2: A high-level view of our approach for heterogeneous genomic information process-
ing and interpretation

employed for different Bioinformatics pipelines are exposed as services and ac-
cessible by users through the Internet. Figure 7.1 depicts the overall schema
of our workflow: Genetics and Biology laboratories churn out more and more
data every day, which is available by means of web repositories that can easily
be accessed by everyone. For this whole lot of data to be useful, it must be pro-
cessed and analysed in order to extrapolate significant information. Here Com-
puter Science comes in handy, providing hardware, software tools and meth-
ods for making these analyses fast and accurate. The Cloud, with its on-demand
paradigm, has the potentials for being an effective solution to host computing
power, storage resources and software services and make them available to the
scientific community.

The background Chapters give a broad account on both HPC technologies
and those genomic and biological aspects of interest, from which this work has

14

1.3. Contributions of this thesis

emerged. Inevitable is the emphasis on shared-memory multi-core architec-
tures and structured parallel programming, because they are the natural ground
upon which this thesis has grown. These Chapters also contain a literature re-
view, that serves as a state of the art of the research field where this work ap-
plies.

In Chapter 4 we focus on the re-engineering of NuChart, a prototype written
in the R language, originally designed for the analysis of genomic data resulting
from Hi-C experiments. The presented tool had limits and drawbacks, mostly
concerning poor performance, no parallelism exploitation, poor memory man-
agement and reduced analysis coverage. [148]. We re-worked the whole appli-
cation and produced NuChart-II, written in C++ and built using high-level par-
allel programming patterns and non-blocking algorithms, so that it can fully ex-
ploit the computing capabilities exposed by modern shared-memory multi-core
architectures, with attention to the memory optimisation required to handle a
memory bound algorithm [149, 50]. We also discuss our solution for the nor-
malisation of biases [108] that affect raw sequenced data (Section 4.3). Here we
leverage the approach in the original NuChart prototype and provide a mean
for assessing the probability of spatial proximity between genomic elements.
Nevertheless, performance is of utmost importance in our work, and we dis-
cuss our achievements in Section 4.5.

In Chapter 5 we address the usability requirement: our idea is to rise the
“level of abstraction” perceived by the user, but maintain high performance
and correctness. Here we discuss the re-integration of NuChart-II into the R en-
vironment, that led to the NuchaR t package [150] R facilitates the integration of
exploratory data analysis because it permits to easily move through the steps of
model development, from data analysis to implementation and visualisation.
Moreover, since the tool is mostly targeted to biologists — which are not ex-
pected to be expert C++ programmers — the R environment will make users
more comfortable. Here we also discuss our efforts and ideas for an exhaustive
data visualisation.

In Chapter 6 we present our solution aimed at fostering the availability of
Bioinformatics applications, proposing NuchaR t as the key for the integration
of multi-omic data: we describe a Cloud infrastructure that can be used to

15

CHAPTER 1. Introduction

seamlessly run Bioinformatics pipelines on virtual resources, so that the com-
putational demand of genomic research can be satisfied more economically, by
using lab-scale and enterprise-oriented technologies. In Section 6.3 we discuss
our idea of a task farm for the analysis and integration of heterogeneous data:
by mapping data resulting from RNA-Seq and ChIP-Seq experiments into Hi-C
graphs, we can study the interactions among genetic elements that can reveal
insights on biological mechanisms, such as genes regulation, translocations and
epigenetic patterns. We tested our solution by comparing it against the work
of Shen et al. [142], which presents associated RNA-Seq, ChIP-Seq and Hi-C ex-
periments on the same samples of laboratory mouse (Section 6.5). Here we also
discuss performance and benefits resulting from our cloud infrastructure.

Organisation of the Thesis

The work described in this thesis has the following organisation:

Chapter 2 provides a background on parallel computing, describing relevant
architectural features of shared-memory multiprocessor systems. After
introducing hardware concepts of parallel systems, some related topics
are discussed, such as synchronisation techniques and memory manage-
ment. Finally, a brief overview of current tools for parallel programming
is given, with emphasis on structured parallel programming.

Chapter 3 presents an overview of methods used in molecular biology and
computational biology to explore and analyse the DNA. High-throughput
sequencing technologies for DNA exploration are introduced and discussed,
together with 3C-based methods for capturing the organization of chro-
mosomes with emphasis on the Hi-C technique and analytical approaches
to detect and correct biases resulting from such experiments.

Chapter 4 describes our approach for developing a fast and scalable tool aimed
at facilitating the analysis of chromosome conformation using a graph-
based representation of genomic data. Here we propose NuChart-II, a
software that allows to visualize and integrate genomic features involved

16

1.3. Contributions of this thesis

in the chromosome spatial organization, built on top of the FastFlow struc-
tured parallel programming framework.

Chapter 5 discusses the integration of our C++ application into the R environ-
ment, an important step toward our objective of augmenting the usability
of Bioinformatics tools by rising the level of abstraction while maintain-
ing performance and scalability. Here we also compare our approach to
other available parallel facilities in R, motivating our choices, and briefly
examine memory management in R. A discussion about issues in graph
visualisation and proposed solutions is presented.

Chapter 6 gathers all previous efforts in building a fast and usable tool for ge-
nomic data analysis and presents a cloud infrastructure where tools for
genomic data analysis are provided as services. Here we describe a task
farm designed to integrate heterogeneous genomic data into a chromo-
somal map, by mean of NuChart-II. The whole infrastructure is charac-
terised by a coarse grain parallelism among services and a finer grain that
exploits the computing power of shared-memory multi-core architectures.

Chapter 7 concludes the thesis and discusses possible steps forward into the
use of high-performance computing solutions for Bioinformatics.

17

CHAPTER 1. Introduction

List of relevant publications by the author

• F. Tordini, M. Drocco, C. Misale, P. Liò, I. Merelli, M. Aldinucci: “NuChart-II:
the road to a fast and scalable tool for Hi-C data analysis,” in International
Journal of High Performance Computing Application, 2015. (submitted)

• F. Tordini, I. Merelli, P. Liò, M. Aldinucci and L. Milanesi: “NuchaR t: em-
bedding High-Performance Computing in R for augmented DNA Explo-
ration,” in Post-Conference proc. of the 12th Intl. meeting on Computational In-
telligence methods for Bionformatics and Biostatistics (CIBB), LNBI, Springer,
2016. (To appear)

• F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, and M. Ald-
inucci: “Parallel Exploration of the Nuclear Chromosome Conformation
with NuChart-II,” in Proc. of Intl. Euromicro PDP 2015: Parallel Distributed
and network-based Processing, Turku, Finland, 2015

• M. Drocco, C. Misale, G. P. Pezzi, F. Tordini, and M. Aldinucci: “Memory-
Optimised Parallel Processing of Hi-C Data,” in Proc. of Intl. Euromicro
PDP 2015: Parallel Distributed and network-based Processing, Turku, Finland,
2015

• I. Merelli, F. Tordini, M. Drocco, M. Aldinucci, P. Liò, L. Milanesi: “Inte-
grating Multi-omic features exploiting Chromosome Conformation Cap-
ture data,” in FRONTIERS IN GENETICS, 6(40), February, 2015

• F. Tordini, M. Drocco, I. Merelli, P. Liò, L. Milanesi, and M. Aldinucci:
“NuChart-II: a graph-based approach for the analysis and interpretation
of Hi-C Data,” in Post-Conference proc. of the 11th Intl. meeting on Compu-
tational Intelligence methods for Bionformatics and Biostatistics (CIBB), LNBI,
Springer, Cambridge, UK, 2014.

• F. Tordini: “Memory Management on Heterogeneous Architecture,” in
Proceedings of the Work in Progress Session held in connection with Intl. Eu-
romicro PDP 2014: Parallel Distributed and network-based Processing, 2014

18

1.3. Contributions of this thesis

• M. Aldinucci, F. Tordini, M. Drocco, M. Torquati and M. Coppo: “Parallel
stochastic simulators in systems biology: the evolution of the species”, in
Proc. of Intl. Euromicro PDP 2013: Parallel Distributed and network-based
Processing, 2013

• F. Tordini, M. Aldinucci and M. Torquati: “High-level lock-less program-
ming for multicore,” in Proceedings of the Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES) —
Poster Abstracts, Fiuggi, Italy, 2012.

19

Chapter 2

Background on parallel computing

In recent years, parallel and distributed architectures have become more and
more available, thanks to a substantial improvement in computer and network-
ing technology. This revolution not only affected large-scale, high-end systems,
but also personal computing facilities and small clusters benefit from these
hardware advances. Moreover, the fast and wide spread of multi-core proces-
sors among microprocessors designers strongly contributed to this change, that
inevitably impacted also the programming model scenario: parallel comput-
ing needs to be constantly supported by efficient, reliable though handy paral-
lel/distributed programming paradigms.

In this chapter, we provide a background on parallel computing, describing
relevant architectural features of shared-memory multiprocessor systems. Then
walking through some related topics, such as synchronisation mechanisms and
memory management, a brief overview of the current tools for parallel pro-
gramming is given, with emphasis on structured parallel programming.

Parallel computing systems

Parallel systems are categorized according to the number of instruction streams
and data streams they can simultaneously manage: SIMD (Single Instruction
Multiple Data) or MIMD (Multiple Instructions Multiple Data). SIMD architec-
tures are specifically oriented to optimal data-parallelism support and mostly

20

processing
element

0

processing
element

1

processing
element

n-1

interconnection
network

Figure 2.1: MIMD system: processing elements (commodity computers or multiprocessors) are
connected through an interconnection network, that serves as a physical mean for
communication.

target fine-grained arithmetic operations. Common SIMD architectural imple-
mentations are array processors, vectorization facilities for CPUs and Graph
Processing Units (GPUs). MIMD architectures are the most widely adopted
high-performance machines, and range from low-to-medium parallelism (i.e.,
shared-memory servers, PC/workstation clusters) to high-end massively par-
allel platforms. In these systems, parallel programming methodologies may be
applied to the process (or thread) level, in order to exploit parallelism.

SIMD architectures have always been used in computer architectures as spe-
cial purpose interfaces (such as network devices or audio/video interfaces). The
last decade saw the strong emergence of accelerators explicitly developed to
increase the performance of some classes of applications, namely data paral-
lel programs where data are split among processors and the same sequence of
instructions is performed over each data item. Only in the last decade Graph-
ical Processing Units (GPUs) have attracted more attention for being used in
general purpose computing (GPGPU) and have become more and more “pro-
grammable”. Standard APIs for GPU programming have quickly emerged —
NVIDIA CUDA, OpenCL and OpenACC among the others — thus qualifying
GPUs as a specific class of many-core architectures.

Porting applications from CPU to GPUs does not necessarily bring remark-
able performance results, and usually requires substantial rewriting of the ap-
plication’s kernel code. Plus, GPUs do not allow general interaction patterns

21

CHAPTER 2. Background – Parallel Computing

among control flows (threads), so only specific parallel patterns can be instan-
tiated. We will not go into greater detail about GPUs, as it lies outside of the
scopes of this thesis.

MIMD systems have a number of independent processing elements which
can be general-purpose commercial computers or CPUs with a local memory
and some I/O resources (see Figure 2.1). In this simplified view, two main
classes of MIMD systems can be distinguished: shared-memory systems (or
multiprocessors) and distributed-memory systems (or multicomputers). Multi-
processor systems are normally composed of two or more processing elements
(PEs) in a single machine, where each PE features two or more (up to 12) pro-
cessing units (PUs) on the same chip, with each PU implementing a 2-way or
4-way simultaneous multi-threading, allowing the concurrent execution of up
to 4 threads. Each PU has access to its own memory hierarchy, from private
registers and caches to a shared physical memory space. Multicomputers are
composed of many complete computers that can cooperate via I/O.

An interconnection network connects all processing elements and permits
inter-process communication: in a shared-memory system the interconnection
network implements shared-memory accesses and memory hierarchy manage-
ment, while it provides message passing among processing elements in a mul-
ticomputer system. Current most common architectures in high-performance
computing are multicomputer systems whose processing elements are “multi-
core” machines, arguably couples with a number of SIMD accelerators. 6 (see
Figure 2.2).

6In the rest of this work, we will use the term core to refer to a processing unit within a pro-
cessor’s circuit die. In this regard, a multi-core implements multiprocessing in a single physical
processor package.

22

2.1. Shared-memory architectures

PE0 PE1 PEn-1

shared main memory

PU0 PU1

L1 cache
(private)

(or mem hierarchy)

interconnection
network

PU2 PU3 PUk-2 PUk-1

Figure 2.2: Shared-memory system: processors address every part of the main memory and
might physically share parts of the memory hierarchy (e.g, L2 caches). The intercon-
nection network enables inter-process communication

2.1 Shared-memory architectures

In a shared-memory multiprocessor system, any processor is able to address
every part of the main memory, with the possibility of physically share in-
formation and cooperate with other processors. Some important characteris-
tics, like interconnection networks, cache management, synchronization mech-
anisms, memory organization and memory consistency mechanisms, have to
be examined when discussing shared-memory systems.

Interconnection networks

Processors and shared physical memory are linked through an interconnec-
tion network that enables data exchange among processing elements and con-
sequently influences latency and speed of inter-process communication. Two
well-known interconnection network topologies are crossbar and bus. A cross-
bar (Figure 2.3a) represents an all-to-all connection and has the advantage of
keeping the latency fixed, but becomes impractical with a large number of pro-
cessing elements, because the number of links is equal to n2, with n being the
number of nodes. The bus (Figure 2.3b) is generally pictured as a single link
to which each node is connected. Buses are not suitable for highly parallel sys-
tems, due to their limited scalability and significant latency, proportional to the
number of linked nodes. These two solutions can be seen as two extremes for in-
terconnection network topologies: highly parallel architectures normally find a
compromise on the number of connections each processing element has, so that

23

CHAPTER 2. Background – Parallel Computing

(a) Crossbar (b) Bus (c) Fat-tree

(d) Mesh (e) Toroid

Figure 2.3: Common interconnection networks

each processing element is directly connected to only a small subset of neigh-
bour nodes. A fat-tree (Figure 2.3c) is widely used in large-scale systems, be-
cause it minimizes conflicts in the network but provides very high bandwidth:
a key feature in fat-tree interconnections is that the link bandwidth increases
from leafs to root, while each layer has the same aggregate bandwidth. Mesh
and Torus (Figure 2.3d, 2.3e) are topologies with nodes arranged in a rectilin-
ear array of n = 2, 3, . . . dimensions, with processors connected to their nearest
neighbours and to corresponding processors on opposite edges of the array.

While bus and crossbar are not suitable for connecting large numbers of pro-
cessing elements, the other topologies become interesting as the number of pro-
cessing elements increases, because higher bandwidth and fault tolerance are
better preserved.

Caches and locality of reference

Caches play a role of utmost importance in shared-memory systems: they are
small, high-speed buffer memories that temporarily hold those portions of the
contents of main memory which are (believed to be) currently (or shortly) in
use, and permit the execution rate of the machine to be substantially increased.

A multiprocessor structure is normally composed of multiple processing
units (or cores) on a single chip. Every multi-core processor includes a local

24

2.1. Shared-memory architectures

cache hierarchy, and according to vendors’ choices some cache levels might be
shared among processing elements: a quite common configuration sees sepa-
rated private L1 caches for data and instruction, while L2 is unified and could
be shared among cores or kept private for every processing unit. Some archi-
tectures provide also a shared L3 cache. Cache sizes at each level are different
for each processor, and mostly depend on manufacturer design.

Cache memories are pervasive in today’s computer systems, so that it is dif-
ficult to imagine processors without them. Cache memories, together with vir-
tual memory and processor registers, form the so called memory hierarchy, that
embroils the principle of locality of reference. Most applications exhibit tempo-
ral and spatial localities among instructions and data. Spatial locality refers to
those situations in which memory locations that are “near” to the currently ref-
erenced address (i.e., near in terms of address), will likely be referenced in the
near future. Temporal locality supposes that the currently referenced address
will likely be referenced again in the near future. Most likely referenced items
are supposed to be kept in the fastest devices – the smaller the memory size, the
shorter the access time.

Cache coherence

Memory hierarchy implies that shared resource data is stored in multiple copies
in local devices. This improves performance but has a counterpart: consistency
of shared resources must be maintained and caches must be kept updated. This
is usually accomplished implementing some automatic coherence mechanism,
which guarantees that when a memory location is read it returns the latest value
written in that location. Snooping and directory-based cache coherence are the
most widely used protocols [129, 99]. Snoopy protocols exploit the intercon-
nection network to maintain coherence of data: each cache line is associated
with a state, and every memory access operation is notified to each processor in
the system by broadcasting anyone any change of states associated with cache
lines. This approach, despite being simple and efficient with a bus interconnec-
tion, has a limit in the number of processing elements that can be connected to
the bus, making this solution better suit for small-scale multiprocessor systems.

25

CHAPTER 2. Background – Parallel Computing

Large-scale multiprocessor and distributed systems use more complex inter-
connection mechanisms, and normally adopt a directory-based cache coherence
protocol: a directory with main memory units maintains the coherence between
caches. To each cache block corresponds a directory entry, and the entry keeps
track of shared copies or the identification of the processor that contains modi-
fied data. When a processor wants to load an entry from the primary memory
to its cache, it sort of asks for permission to the directory: if the entry has not
been modified, a copy is sent to the requesting processor’s cache, and the direc-
tory entry is updated to reflect the existence of a shared copy. When an entry is
changed, the directory either updates or invalidates other caches with a copy of
that entry. This approach minimizes traffic in the interconnection network, but
has an increased memory access latency and its performance is affected by the
number of shared blocks and the number of copies of individual shared blocks
that must be kept in memory.

Synchronisation

In a shared-memory architecture, multiple processing elements often operate
on modifiable shared data. Such operations must guarantee that shared data
is kept in a consistent state, which is achievable only if no concurrent manip-
ulation is allowed and a supposed read-modify-write sequence of operations on
a shared variable is an atomic action. This synchronisation problem is called
mutual exclusion, and is a basic requirement to prevent race conditions in con-
current environments. It is recognised at the application level, as well as at
run-time support and at firmware architecture level.

Atomic operations on a shared variable are often enforced using well known
primitive operations named lock and unlock, whose semantic reflects that of
a semaphore and imposes a wait condition on a shared variable (the semaphore)
when it assumes a supposed red value, while it allows to proceed the execu-
tion when this value changes to green. At the run-time level, the use of atomic
instructions (such as test-and-set or compare-and-swap) on the shared
variable ensures the mutual exclusion.

26

2.1. Shared-memory architectures

Lock-based synchronisation mechanisms have a considerable impact on par-
allel applications performance, inasmuch they have a limiting effect on scalabil-
ity and bring a consistent overhead in terms of memory accesses and memory
congestion. Some techniques have been studied to address this problem [90].
For example, lock-free data structures permit to solve the mutual exclusion prob-
lem without locking mechanisms, while transactional memory has been pro-
posed as an architectural mechanism that exploit cache coherence support to
execute memory operations in an atomic way and obtain efficient lock-free syn-
chronisation [72]. These techniques will be examined in Section 2.3

2.1.1 Memory organisation

A traditional classification of memory organisation takes into account the rela-
tive distance between processing elements and shared main memory, thus con-
sidering the shared-memory access time. When the shared-memory access time
is equal for every processing element in the system, we have a Uniform Memory
Access (UMA) system. Often referred to as SMP (Symmetric MultiProcessor)
organisation, a UMA system normally has a low number of cores and a sin-
gle main memory interface interleaved among processing elements. Figure 2.2
shows a simple shared-memory architecture with a (limited and small) number
of processing elements, each equipped with two processing units. All process-
ing elements are directly connected to the shared main memory through the
interconnection network, all having equal access time.

When the shared-memory access time is not equal for every processing el-
ement, but depends on the relative main memory location distance, we have
a Non Uniform Memory Access (NUMA) system. The main memory interface is
thus the union of all local memory modules and every processor can address
both its own local memory and any other (remote) module memory (see Fig-
ure 2.4): access time to local memory will be much lower than access time to
remote memory modules. This is because accesses to remote memory utilize
the interconnection network, which is clearly slower than the dedicated links
inside a processor. With NUMA, maintaining cache coherence across shared
memory has a significant overhead, and trying to keep a consistent memory

27

CHAPTER 2. Background – Parallel Computing

interconnection
network

node0

PU0 PU1

m
e
m

o
ry

L2 cache
(shared)

L1 cache
(private)

PE0

node3

PU6 PU7

m
e
m

o
ry

PE3

node1

PU3PU2

m
e
m

o
ry PE1

node2

PU5PU4

m
e
m

o
ry PE2

Figure 2.4: A NUMA system organized with four computing nodes, each equipped with a pro-
cessing element featuring two computing units. Each node has its own memory hi-
erarchy: private L1 caches (L1d, L1 i), shared L2 cache and local memory. Through
the interconnection network, any processor can address any other node’s memory
(remote memory), with different latency and access times

image when more than one cache stores the same memory location may exacer-
bate the inter-processor communication infrastructure.

In this respect, cache coherency is not for free: it largely affects synchronisa-
tion costs and may require expensive performance tuning that largely increases
programming complexity. Assuming a cache-coherent NUMA architecture (cc-
NUMA), data structures allocation in memory should depend on how they are
placed and moved across the system.

Memory ordering and memory consistency models

Memory ordering describes the order in which Load and Store memory oper-
ations are performed. For instance, with an in-order behaviour a processing
element computes instructions in the same order they are specified in a pro-
gram (program order). A system that reflects this behaviour is said to have a
sequential consistency memory model. If data dependencies are respected, mem-
ory ordering might be changed, either as a result of compiler optimisations,
or as a consequence of dynamic optimisations performed at run-time by the

28

2.1. Shared-memory architectures

processor. An out-of-order behaviour caused by compile-time or run-time opti-
misations may not be an issue on programs running on single-core machines,
and it allows to better exploit CPU resources, with a notable improvement of
the computation’s service time. A system that reflects this behaviour is said to
have a relaxed consistency memory model, which enables the use of optimiza-
tions to eliminate some of the constraints that sequential consistency places on
the overlap and reordering of memory operations.

On some concurrent executions, the memory ordering must be guaranteed:
such condition can be achieved by forcing every running process to wait for all
running memory operations to complete, before executing a Store operation.
A memory barrier is a special instruction that enforces an ordering constraint on
memory operations, and guarantees that instructions issued prior to the barrier
are performed before instructions issued after the barrier.

A consistent memory wants the entire shared memory accessed by all pro-
cessors to be identical. For this requirement to be effective, a memory system
should always return the last value written in each location, including caches or
local data copies. This clearly defines an order in which operations performed on
shared memory should be made visible to individual processors in a multipro-
cessor system. At the same time, a sequential semantic for memory operations
allows the programmer to assume that all memory operations will occur one
at a time, in the sequential order specified by the program (i.e., program order).
In simpler terms, consistency defines the temporal order in which two memory
operations, either from a single thread or from different threads, will have their
effect on memory locations.

A memory model not only influences many aspects of system design, but
also bridges the gap between the behaviour expected by the programmer and
the actual behaviour of the program. Furthermore, a memory model affects the
design (and complexity) of programming languages, compilers and the under-
lying hardware.

In cache-based systems, a coherency protocol ensures the serialization of
write operations and subsequent read or write accesses to update data. These

29

CHAPTER 2. Background – Parallel Computing

updates are propagated to remote sites, and the coherency protocol is respon-
sible of keeping multiple copies of cache’s blocks consistent to all processors.
With this view of a cache coherence protocol, a memory consistency model de-
cides when a new value can be propagated to any given processor [2].

Sequential consistency provides a simple view of the system to program-
mers, while imposing two strict requirements: memory operations executed by
each individual processor must follow the order specified by its program, and
a single sequential order among operations from all processors is also enforced.
This concept extends the uniprocessor behaviour to shared-memory multipro-
cessor models, and was first formalised by Lamport in 1979 [95].

For example, sequential consistency could be implemented on a multitask-
ing uniprocessor, where a single sequential processing element allows one pro-
cess at a time (not in any specific order) to execute its instructions. Thus a pro-
cess pi runs until a context switch to another process occurs. On every context
switch, any outstanding memory operation must be completed before switch-
ing to the new thread.

P1 P2 P3 PN

memory

switch

Figure 2.5: Sequential consistency implementation: each processorPi performs its next memory
operation in its program order; the switch selects one processor at a time and allows
it to complete one memory access.

Figure 2.5 shows an abstraction of the sequential consistency model, as it
could be implemented on a set of processors Pi: every processor performs mem-
ory accesses following its program order. The switch randomly selects one pro-
cessor and allows it to complete its memory access, then repeats this process as

30

2.1. Shared-memory architectures

long as requests exist.
Although appealing conceptually, sequential consistency can result in very

poor performance on modern processing systems. If program order must be
ensured, an acknowledgement message from memory must be generated every
time a write operation has completed. When cache-coherency is also enforced,
invalidate or update messages for all cached copies will be generated for each
write to memory. The second requirement for sequential consistency, conve-
niently defined as write atomicity, enforces a single sequential order among all
operations. In a cache-based system this means that writes to the same memory
location must be serialized, and the written value can only be made available
after it has become visible to all processors, forcing all other operations to wait
for the acknowledgement message before continuing. In both cases, the perfor-
mance of these implementations does not scale up with increasing core count: a
large amount of communication is needed to maintain consistency, while write
operations ideally orchestrated by a single switch (Figure 2.5) become a real
bottleneck.

If performance and correctness are not to be touched, some optimizations
enable a reordering of read and write operations without violating sequential
consistency. Optimisation techniques, either by hardware or compiler, are ap-
plicable to sequentially consistent systems with hardware support for cache
coherency. These techniques allow the overlapping of memory operations to
improve performance and tolerate memory access latencies [145].

One common hardware technique that potentially boosts performance com-
bines prefetching of values that would otherwise be delayed due to consistency
model constraints, and a speculative execution that allows a processor to sched-
ule read instructions that appear later in program order (e.g., a branch predic-
tion), overlapping their execution with operations preceding them. Values of
later references are loaded into cache and are kept coherent until the processor
actually performs the instructions [62]. In order to be effective, this technique
requires a memory system with coherent caches, so that the results returned
by the speculation is guaranteed to be correct. Sequential consistency is main-
tained insofar as reads and writes are performed in program order: in this re-
gard, the prediction performed by the processor has to be correct. In case a

31

CHAPTER 2. Background – Parallel Computing

cache line gets invalidated or updated before the operation has been issued,
the instruction is rolled back and reissued. Also, compilers can detect mem-
ory operations that can be reordered and perform simple optimisations, such
as register allocation, sub-expression elimination, loop unrolling or software
pipelining, without violating sequential consistency.

These techniques permit to hide memory access latencies by buffering and
pipelining instructions, without violating sequential consistency constraints,
but actual gains in terms of performance are to be assessed for each case, and
might not reach performance gains obtainable using relaxed consistency mod-
els. For a detailed description of these techniques we refer to the referenced
literature.

Relaxed consistency models

Relaxed consistency models enable latency tolerant memory optimizations by
reducing ordering constraints, that is, relaxing the ordering among reads (R)
and writes (W) performed by a single processor to the same address. We recall
that the order enforced by a consistency model can be presented in terms of
when an operation is allowed to execute: a read (or load) operation is consid-
ered performed when the return value is bound (i.e., assigned) and can not be
modified by other write operations. Similarly, a write (or store) is consid-
ered performed when the written value is visible to all processors.

Two widely implemented memory consistency models are total store order
(TSO) and processor consistency (PC): they both allow a read to be reordered with
respect to previous writes to the same address, but differ in their “strictness”
because TSO lets a read to only return the value of its own processor’s write,
while PC lets a read to return the value of any write to the same address. Re-
laxing the program order from a write followed by a read can substantially
improve performance at the hardware level by effectively hiding the latency of
a write operation. The partial store ordering model (PSO) further relaxes the pro-
gram order requirements, by eliminating ordering constraints between writes
to different locations. Just like in TSO, PSO allows writes not yet serialized to

32

2.1. Shared-memory architectures

be read in advance by the same processor, but prohibits to read the value of an-
other processor’s write before the written value is visible to all other processors,
in order to maintain write atomicity.

More relaxed memory consistency models seek to preserve only the orders
that programmers “require”, but facilitate higher performance by allowing more
hardware and software optimizations — performed by the compiler and the
runtime system, respectively —, with the drawback of adding complexity and
a higher risk of coding errors. All program order requirements can be relaxed
(i.e. between all operations to different locations), so that memory operations
following a read may be overlapped or reordered with respect to the read it-
self, hiding the consequent latency by implementing non-blocking reads in the
context of in-order or out-of-order processors.

Weak Ordering (WO) is the seminal relaxed consistency model; Release Con-
sistency (RC) is an extension of WO. In a WO model, program order between
two operations can be maintained using synchronization operations (i.e. fences
or memory barriers) [51]. Between synchronization operations, the order of ac-
cesses does not have to be preserved, but the synchronisation mechanism guar-
antees that instructions issued prior to the barrier are performed before instruc-
tions issued after the barrier. In this mechanism, operations that are not labelled
as a synchronization can be arbitrarily reordered between synchronization op-
erations. The RC model further relaxes WO model and splits synchronization
operations into acquires and releases [63]. An acquire is a read operation that
is performed to gain access to a set of operations or variables. A release is a
write operation that grants permission to another processor to gain access to
some operations or variables.

Relaxed consistency models provide considerable reordering freedom to hard-
ware and compiler: memory requests ordering are related to synchronisation
points in the program that guarantee correctness and consistency. The majority
of modern processors support at least one of the relaxed memory consistency
model.

33

CHAPTER 2. Background – Parallel Computing

2.2 Memory allocation

Memory allocation has a significant influence on data cache miss rates of ap-
plications, substantially affecting overall performances. This problem widens
with multi-core architectures, that often exhibit a cache-coherent Non-Uniform
Memory Access (cc-NUMA) and weak memory consistency models (e.g. To-
tal Store Ordering or Weak Ordering) [2], where many threads request memory
chunks and free used memory. The growing need of improved performance
and the continuing constraints on power and scalability in multi-cores, led sys-
tem designers to look to heterogeneous architectures, that incorporate special-
ized processing capabilities to handle particular tasks, bringing together CPUs
and hardware accelerators such as GPUs. When several different co-processors
are put together, memory management becomes a dramatic bottleneck, that
severely limits program scalability, robustness and overall performance. The
non-optimized access to memory space can become a serious issue, especially
in fine-grained parallelism where data structures allocation and their mapping
onto physical memory is a key issue for offloading computations onto hardware
accelerators.

Memory affinity in shared-memory architectures

UMA and NUMA architectures basically differ on the way shared memory is or-
ganised and distributed among processing units. Also, the “size” of the parallel
architecture characterises both systems: parallel machines with a small number
of processors have a simple interconnection network (such as bus) that links
processors and shared memory, typical of a UMA architecture; more complex
networks are required to efficiently connect a large number of processors, often
resulting in decentralized organisations typical of NUMA configurations (as in
Figure 2.4). In the latter case, the distance between a processor and the shared
memory strongly affects the memory access time, thus having a significant im-
pact on applications’ performance, so much that they would not be comparable
against the same application run on a UMA architecture. For this reason, when

34

2.2. Memory allocation

dealing with NUMA architectures the concept of memory affinity assumes a fun-
damental role: each running process (or thread) should favour the use of the
nearest (local) memory and limit the traffic towards other (remote) memories.

For memory affinity to be effective, two main aspects should be properly
managed: where memory for an application is allocated (i.e., data structures
allocation), and how processes (or threads) are assigned (pinned) to computing
units. In UMA architectures memory affinity is not required to obtain good per-
formance results: the physical address space is interleaved among processing
elements, that can exploit the aggregate bandwidth of the whole memory.

Traditional data mapping strategies used by most operating systems to allo-
cate memory in NUMA architectures are first-touch and next-touch. A first-touch
strategy allocates memory on the NUMA node closest to the processor that gen-
erated a page fault exception (i.e., the first processor that “touches” the page).
This strategy would be optimal in a NUMA system, if it was safe from data
races and thread migrations. When these events happen, the first-touch allo-
cation policy provides non-optimal results: in many parallel applications one
thread initializes the data and forces page allocation on a single NUMA node,
leading to an increased number of memory accesses (either local or remote) to
that node. This strongly affects also the performance of other threads, because
memory pages are not migrated during execution. Another drawback with this
behaviour is that performance gain is valuable only when the applications have
a regular data access pattern. When using next-touch, pages are migrated be-
tween nodes according to memory accesses to them. However, if the same page
is accessed from different nodes, next-touch leads to excessive data migrations.
In case of thread migrations between nodes this issue is even amplified.

Operating Systems now provide special kernel-level system calls specific
for managing and customising memory allocation and thread placement on
NUMA architectures. Additional support is given by libraries that wrap ker-
nel’s system calls and separately manages placement of threads to CPUs and
placement of memory [12, 29, 89]. These approaches permit to define specific
memory policies that combine allocation strategies and thread scheduling to meet

35

CHAPTER 2. Background – Parallel Computing

the different access patterns during the applications computation stages: lib-
numa and hwloc allow developers to apply memory policies to specific mem-
ory ranges, whereas numactl applies one memory policy to the whole applica-
tion. Memory management policies include a strict allocation (bind) into a given
node, round-robin memory allocation among and non-strict (preferred) binding
to a node.

Several works try to address this problem, often proposing profile-guided
page allocation for parallel programs [44, 105] (i.e. obtain an approximate mem-
ory access trace by executing and analysing an application’s memory access pat-
tern), or by proposing page migration techniques aimed at obtaining a trade-
off between remote access latency and the migration overhead [83, 114]. Mi-
nas [126] is framework for cc-NUMA platforms that provides either automatic
or explicit memory affinity management. The explicit tuning is based on an
API called MAi, that exposes simple functions to manage allocation and data
placement, extending those functionalities proposed by libnuma and other O.S.
specific system calls. Minas ANSI C functions describe a set of custom memory
policies designed for optimised array and matrix allocation on cc-NUMA plat-
forms. Each set of policies affect the way memory pages are placed on physical
memory blocks.

Experiments conducted with Minas showed modest performance gains with
respect to first-touch policy or against other implementations based on the above
discussed libraries: when applying different data mapping policies, allocated
data structures are sliced among memory interfaces, leading to unbalanced
memory accesses among interfaces (i.e., all memory controllers handle differ-
ent numbers of memory accesses). In this context, it gets difficult to exploit the
aggregate memory bandwidth. However, no mapping policy solution is suit-
able to maximise performance of all applications in all NUMA architectures,
but memory affinity and memory access locality remain the most important
metrics for performance improvements [47].

Thread pinning means to “attach” a thread to a specific processing unit (or
core), so that the O.S. scheduler is guaranteed to maintain the mapping during
the execution. In presence of a parallel program executed on a NUMA sys-
tem, the thread-to-core pinning policy may affect performance because of the

36

2.2. Memory allocation

shared level of cache present in multi-core chips: sharing a cache may reduce
the performance if the working set of all the threads does not fit into the shared
cache, but may also increase the performance in case of frequent data exchange
among threads, as it can better exploit automatic cache coherence. Pinning also
affects memory performance and plays an important role when combined with
memory allocation policies.

Issues in memory management

Heterogeneous systems present several memory issues, because each diverse
hardware co-processor in use has different memory requirements. Many of
these problems are also present in multi-threaded environments, where a dy-
namic memory allocator should avoid or limit harmful events that would cor-
rupt applications’ performance.

False sharing occurs when threads on different processors modify variables
that reside on the same cache line without actually sharing data (Figure 2.6).
This invalidates the cache line and forces an update, which hurts performance
in parallel applications: the frequent coordination required between processors
when cache lines are marked invalidated requires cache lines to be written to
memory and subsequently loaded. False sharing increases this coordination
and can significantly degrade application performance.

False sharing may be actively or passively induced by the allocator: actively
induced false sharing happens when a single-heap allocator can give many
threads parts of the same cache line; passively induced false-sharing happens
when a number of objects is allocated within a cache line, and then these objects
are passed to different threads, one by one. To avoid false-sharing an allocator
should pad out every memory request to the size of the cache line, but this could
cause a dramatic increase in memory consumption and degrade space locality
and cache utilisation (ex: 8 bytes objects padded to 32/64 bytes of cache line).

37

CHAPTER 2. Background – Parallel Computing

CPU 0

thread 0

CPU 1

thread 1

cache cache

memory
cache line

Figure 2.6: False sharing occurs when threads on different processors modify variables that re-
side on the same cache line, without actually sharing data

Fragmentation happens when storage space is used inefficiently: free mem-
ory is no longer contiguous but becomes fragmented into sparse blocks of mem-
ory of smaller and smaller size, leaving a good percentage of the total mem-
ory unallocated but unusable for most typical scenarios (see Figure 2.7). This
reduces capacity and leads to allocation errors. Fragmentation can be distin-
guished in internal, external and data fragmentation. Internal fragmentation oc-
curs when the unusable memory is contained within the allocated region: al-
located memory may be slightly larger than requested memory; this size dif-
ference is internal to a partition, but not being used. Internal fragmentation is
difficult to cope with: usually the best way to remove it is with a design change.
For example, memory pools drastically cut internal fragmentation by spread-
ing the space overhead over a larger number of objects. External fragmentation
happens when a dynamic memory allocation algorithm allocates some memory
and a small piece is left over that cannot be effectively used. Data fragmentation
occurs when a collection of data in memory is broken up into many pieces that
are not close together. It is typically the result of attempting to insert a large
object into storage that has already suffered external fragmentation.

Blow-up can be seen as a particular kind of fragmentation, where the quan-
tity of unavailable memory dramatically increases. It can be either unbounded

38

2.2. Memory allocation

allocated memory

internal fragmentation

external fragmentation

Figure 2.7: Memory fragmentation: allocated regions are spaced out by small blocks of memory
unsuitable for being reused

or can grow linearly with the number of processors. On systems with virtual
memory, large allocations only need to be contiguous in virtual address space,
not in physical address space. Thus the problem of fragmentation is reduced.

2.2.1 Memory allocators - Literature review

Many relevant works address the problem of dynamic memory allocation for
multi-threaded systems, but none of them are designed to manage dynamic
memory in heterogeneous systems, nor they specifically address memory issues
in NUMA architectures.

The Hoard memory allocator [25] is designed to meet the requirements for
a scalable concurrent memory allocator. The allocation is done using multi-
ple per-processor heaps, which avoids false-sharing and reduces the synchro-
nization overhead. Each heap contains one or more superblocks, where each su-
perblock handles blocks of one size class. Memory requests are mapped to the
closest matching size in a fixed set of size-classes, which bounds internal frag-
mentation. When a processor heap is found to have too much available space,
one of its superblocks is moved to the global heap. To avoid heap blowup, freed
blocks are returned to the heap they were allocated from and empty superblocks
may be reused in other heaps.

Several solutions are loosely based on the Hoard architecture. Michael pre-
sented a completely lock-free allocator [110] that adds immunity to deadlock
and starvation: here each per-processor heap contains one active and at most
one inactive, partially filled superblock per size-class, plus an unlimited num-
ber of full superblocks. Partially filled superblocks are stored globally in per-
size-class FIFO queues. The results showed in [110] demonstrate the efficiency

39

CHAPTER 2. Background – Parallel Computing

of the proposed solution. Tsigas et al. also developed a lock-free allocator
inspired by Hoard [65]. The results of the experiments conducted show that
Hoard-inspired allocators induce very little false-sharing and yield very good
performances in terms of scalability. Streamflow is a locality-conscious, multi-
threaded memory allocator proposed by Nikolopoulos et al. [135], which favours
the exploitation of temporal and spatial object access locality.

The Slab allocator [27] is an object-caching kernel memory allocator designed
as a “loose confederation of independent caches”. An allocation request would
retrieve memory in a best-fit manner; malloc/free operations are fast, constant-
time operations, as they consist of moving a cache object (i.e. a buffer) to or from
a list of caches of different, predefined sizes. It primarily optimizes dynamic al-
location of small objects while using cache-conscious page-block layout. These
optimisations are accomplished using scalable synchronisation mechanisms and
segregated heaps with header-less objects, pretty much like the above-mentioned
Hoard’s and Michael’s allocator.

Intel provides a scalable allocator [93] as part of the TBB framework [82].
This allocator has common roots with Hoard, Streamflow, and other state-of-
the-art concurrent and sequential allocators. But mostly, it is derived from the
scalable transactional memory allocator developed as part of the McRT research
program at Intel [79]. Memory is requested in 1MB chunks, using operating
system primitives like mmap (in Unix-like systems). It ensures that memory is
reused, so that new blocks are requested only when a thread can’t find any free
object in the blocks of its own heap and there are no available blocks in the
global heap. TBB allocator uses thread-private heaps to reduce false-sharing,
provide better scalability and lower the complexity of synchronisations. Like in
many other solutions, heaps use different storage bins (i.e. buffers) to allocate
objects of different sizes, so that memory requests are rounded up to the nearest
object size and internal fragmentation is minimal.

The most popular among GPUs optimized allocators are XMalloc and Scat-
terAlloc. XMalloc [77] uses an approach similar to Hoard, introducing superblocks
from which memory requests are satisfied, and uses atomic CAS operation for
reducing synchronisation costs, as suggested by Michael [110]. XMalloc stores
freed blocks in lock-free FIFOs, and tries to serve allocation requests from FIFO

40

2.3. Blocking and non-blocking algorithms

queues before asking for new memory. XMalloc introduces a SIMD optimiza-
tion, where memory requests are grouped together within a warp, thus elimi-
nating the SIMD-level memory contention. ScatterAlloc [146] expands XMalloc
by reducing simultaneous accesses from different threads to the same mem-
ory region: using a multiplicative hash function, it scatters memory requests to
multiple pages. Concurrent accesses to the same memory region are drastically
reduced and the allocation process is faster. FDGMalloc [161] further amelio-
rates XMalloc and ScatterAlloc. It also takes inspiration from Hoard, as it uses
a superblock shared by all threads in a warp, but it does not use any header
data for the superblock, except for one pointer to the next free chunk within the
superblock. A voting algorithm is used to determine which thread has to be
declared the worker thread, that is the one committed to execute the allocation
request.

2.3 Blocking and non-blocking algorithms

In modern shared-memory multi-core architectures the efficiency of synchro-
nization mechanisms is the cornerstone of performance and speedup of fine-
grained parallel applications. The traditional way to implement concurrent
data structures in multi-threaded applications makes use of mutual exclusion
(lock/unlock) as a synchronization mechanism to ensure the correctness of
concurrent updates. This approach has a number of disadvantages and typi-
cally involves various sources of overhead, which have a significant impact on
performance as the parallelism degree increases [121]:

• mutual-exclusion can cause the whole system to come to a halt if circular
dependencies exist. In such a case, every job is stalled waiting for another
job to complete: this situation is called deadlock;

• mutual-exclusion can cause lower priority jobs to take precedence over
higher priority jobs: this situation is referred to as priority inversion;

• mutual exclusion can needlessly restrict parallelism by serialising non-
conflicting updates. Even using fine-grained locks to mitigate such effect,

41

CHAPTER 2. Background – Parallel Computing

cache performance may become a problem, along with the extra cost of
acquiring and releasing these locks;

• lock contention limits scalability and adds complexity.

Non-blocking synchronization techniques are a valid alternative approach
to lock-based synchronisation mechanisms, which have been designed to limit
or avoid lock disadvantages: a non-blocking synchronization guarantees that
even if a process (or thread) that is using a shared object stalls, fails, or even
dies, some other process can use that object to make progress in a finite amount
of time. This property is normally referred to as lock-freedom. This is a very
different approach to that taken by lock-based mechanisms, in which a process
will either spin or block until the contending operation is completed.

A stronger non-blocking guarantee of progress is called wait-freedom, which
ensures that every process will make progress within some finite time [70]. This
condition guarantees that no operation can experience permanent livelock. In
practice, algorithms obeying the strict definition of non-blocking are not always
necessary, considering also that obtaining efficient wait-free algorithms has a
high cost in code complexity.

An alternative, weaker non-blocking condition is called obstruction-freedom,
that guarantees progress for any thread that eventually executes in isolation [71].
A thread is considered to execute in isolation if it can run long enough without
encountering a synchronization conflict from a concurrent thread. Like wait-
freedom and lock-freedom, obstruction-freedom synchronization ensures that
no thread can be blocked by delays or failures of other threads.

These techniques have been designed using a hardware-implemented class
of atomic read-modify-write synchronization primitives provided by most mod-
ern architectures. Among them, compare-and-swap (CAS) takes three argu-
ments in input: a memory location, a value that is expected to be read from
the memory location, and a new value to write in the given memory location
if the expected value is found. When using a CAS for synchronization, some
computation is performed on the read value, and then a call to CAS writes the
modified value while ensuring that the value read has not been changed in the
meantime.

42

2.4. Structured parallel programming

An early paper by Herlihy demonstrates that these atomic primitives are
powerful enough to achieve wait-free (or lock-free) implementations of any
linearizable data object [73, 74]. Unfortunately, these operations are not inex-
pensive, since they might fail to swap operands when executed and may be
re-executed many times, thus introducing other sources of potential overhead,
especially under high contention [121].

The most effective use of non-blocking synchronization has been the direct
implementation of data-structure-specific algorithms. Michael and Scott [109]
reviewed a number of such implementations for several common data struc-
tures. They concluded that where direct non-blocking implementations exist,
they generally out-perform locking implementations in all cases. Lock-based
implementations out-perform non-blocking constructions when processes do
not experience long delays such as page-faults, context switches, or failures.
Of course, the non-blocking constructions enjoy the advantages not related to
performance, such as fault tolerance and freedom from deadlock.

2.4 Structured parallel programming

Parallel programming has always been related to HPC environments, where
programmers write parallel code by mean of low-level libraries that give com-
plete control over the parallel application, allowing them to manually optimize
the code in order to exploit at best the parallel architecture. This programming
methodology has become unsuitable with the fast move to heterogeneous ar-
chitectures, that encompass hardware accelerators, distributed shared-memory
systems and cloud infrastructures, highlighting the need for proper tools to eas-
ily implement parallel applications.

For this reason novel parallel programming tools have been introduced in
the last decade, both by the academic and by the industrial world. To the cur-
rent state of the art, a proper rewrite of the program is necessary if we want to
exploit parallelism on heterogeneous architectures. In this case, a proper mix of
ease of use and performance is still the main concern of researchers. It is widely

43

CHAPTER 2. Background – Parallel Computing

acknowledged that the main problem to be addressed by a parallel program-
ming model is portability: the ability to compile and execute the same code on
different architectures and obtain the same top performance [43]. A high-level
approach to parallel programming is the right way to go if we want to address
this problem, so that programmers can build parallel applications and be sure
that it will perform reasonably well on the wide choice of parallel architectures
available today [144].

Attempts to raise the level of abstraction and reduce the programming ef-
fort date back to at least three decades. Notable results have been achieved by
the skeletal approach [37, 38] (a.k.a. pattern-based parallel programming), that
has gained popularity after being revamped by several successful parallel pro-
gramming frameworks. Despite some criticisms – mostly related to the limited
amount of patterns that might not be sufficient to allow a decent parallelization
of most algorithms – algorithmic skeletons success has been determined by the
several advantages it has against traditional parallel programming frameworks.
For instance, correctness and efficiency of parallel applications are guaranteed
by the skeleton framework designer, as well as portability on different target
architectures. In general, skeletons’ higher abstraction level and parallel pro-
gramming simplification have attracted more and more.

We briefly discuss here how parallel programming is commonly addressed
by general-purpose programming languages, at a rather low-level, where the
programmer has to actually deal with synchronisation and communication chal-
lenges. Following sections will focus on high-level parallel programming pat-
terns, with an analysis of structured parallelism and a literature review.

2.4.1 Low-level parallel programming

Parallel programming languages are usually extensions to well-established se-
quential languages, such as C, Java or Fortran, where the coordination of mul-
tiple execution flows is either obtained by means of external libraries, linked at
compile time to the application source code (e.g., Pthreads, OpenMP, MPI), or
enriched with specific constructs useful to orchestrate the parallel computation
(as in Java).

44

2.4. Structured parallel programming

POSIX Threads (or Pthreads) [31] are one of the most famous low-level par-
allel programming APIs for shared-memory environments. They can be found
in every Unix-like operating system (Linux, Solaris, Mac OS X, etc.) and other
POSIX systems, giving access to OS-level threads and synchronization mecha-
nisms. Since Pthreads is a C library, it can be used in C++ programs as well,
though there have been much improvements in the C++11 standard aimed at
facilitating shared-memory parallel programming. Considering that C++ is
constantly being updated and maintained, novel C++ releases provide better
parallelism facilities, with solutions clearly inspired by the structured parallel
programming paradigm (e.g., execution policies and data parallel patterns in
C++177).

Message Passing Interface (MPI) [122] is a language-independent commu-
nication protocol used for programming parallel computers, as well as a message-
passing API that supports point-to-point and collective communication by mean
of directly callable routines. Many general-purpose programming languages
have bindings to MPI’s functionalities, among which: C, C++, Fortran, Java
and Python.

Mainly targeted at distributed architectures, it offers specific implementa-
tions for almost any high-performance interconnection network. At the same
time, shared-memory implementations exist, that allow the use of MPI even on
NUMA and multi-processors systems.

MPI permits to manage synchronisation and communication functionalities
among a set of processes, and provides mechanisms to deploy a virtual topol-
ogy of the system upon which the program is executing. These features, sup-
ported by a rich set of abilities and functions, clearly require high programming
and networking skills: MPI has long been the lingua franca of HPC, supporting a
substantial majority of all supercomputing work scientists and engineers have
relied upon for the past two decades. Nonetheless, MPI is at a very low level
of abstraction for application writers: MPI means programming at the transport
layer, where every exchange of data has to be implemented through sends and
receives, data structures must be manually decomposed across processors and

7http://en.cppreference.com/w/cpp/experimental/parallelism

45

http://en.cppreference.com/w/cpp/experimental/parallelism

CHAPTER 2. Background – Parallel Computing

every update of the data structure needs to be recast into a flurry of messages,
synchronizations, and data exchange.

OpenMP [124] is considered by many the de-facto standard API for shared-
memory parallel programming. It is an extension that can be supported by
C, C++ and Fortran compilers and defines an “accelerator-style” programming,
where the main program is run sequentially while code is accelerated in specific
points, running in parallel, using special preprocessor instructions known as
pragmas. Compilers that do not support pragmas can ignore them, making
an OpenMP program compilable and runnable on every system with a generic
sequential compiler.

While Pthreads are very low-level and require the programmer to specify
every detail of the behaviour of each thread, OpenMP allows to simply state
which block of code should be executed in parallel, leaving to compiler and
run-time system the responsibility to determine the details of the thread be-
haviour. This feature makes OpenMP programs simpler to code, with a risk of
unpredictable performance that strongly depend on compiler implementations
and optimizations.

OpenCL [88] is an API designed to write parallel programs that execute
across heterogeneous architectures, and allows the users to exploit GPUs for
general purpose tasks that can be parallelised. It is implemented by different
hardware vendors such as Intel, AMD and NVIDIA, making it highly portable
and allowing the code written in OpenCL to be run on different hardware ac-
celerators. OpenCL represent an extension to C/C++ but must be considered
a low-level language, focusing on low-level features management rather than
high-level parallelism exploitation patterns. It has the capability to revert to
the CPU for execution when there is no GPU in the system, and its portability
makes it suitable for hybrid (CPU/GPU) or cloud based environments.

Java provides multi-threading and RPC support that can be used to write
parallel applications for both shared memory and distributed memory archi-
tectures [119]. However, while being a high-level sequential language, parallel
support is given in a very low-level fashion, possibly lower than OpenMP. Fur-
theromore, its sequential performance is usually lower than languages like C or
Fortran and is therefore rarely used in high performance parallel programming.

46

2.4. Structured parallel programming

Berkeley Unified Parallel C (UPC) [53] uses a partitioned global address
space to extend the shared-memory model to a distributed memory setting: any
processor can directly read and write variables on the partitioned address space,
while each variable is physically associated with a single processor. Threads
partition is subdivided into a local portion and a shared portion. Local data
can be accessed only by the thread that owns the partition, while data in the
shared portion are accessible by all threads. As in a shared-memory model,
threads access shared memory addresses concurrently through standard read
and write instructions, rather than through message passing. This program-
ming model is still a low-level shared-memory environment, and uses barriers
and locks to synchronize the execution flow. UPC extends the C language by
adding synchronization primitives and a memory consistency model to operate
over a shared address space.

2.4.2 Algorithmic Skeletons

A parallel paradigm can be thought of as a well-known pattern of parallelism
exploitation. A single paradigm can be used to describe just a small part of
an application, while multiple paradigms can be merged together to describe
more complex constructs. This idea is at the core of structured parallel pro-
gramming: expressing the parallel code as a composition of simple “build-
ing blocks”. Following this approach, the application programmer defines the
application, while a parallel programmer builds the parallel implementation
of each building block (or their composition) according to the parallelism ex-
pressed by the application. Parallel paradigms can thus be divided into two
conceptually different classes, depending on the way parallelism is exploited
inside the pattern: i) stream-parallel paradigms and ii) data-parallel paradigms.

Algorithmic skeletons capture common parallel programming paradigms (e.g.
Map+Reduce, ForAll, Divide&Conquer, etc.) and make them available to the
programmer as high-level programming constructs equipped with well-defined

47

CHAPTER 2. Background – Parallel Computing

functional and extra-functional semantics [6]. Ideally, algorithmic skeletons ad-
dress the difficulties of parallel programming (i.e., concurrency exploitation, or-
chestration, mapping, tuning) moving them from the application design to de-
velopment tools, by capturing and abstracting common paradigms of parallel
programming and providing them with efficient implementations: an example
is a toolkit of code generation techniques and a pre-optimized run-time sup-
port. Differences between algorithmic skeletons and parallel design patterns
lie mainly in the motivations leading to these two apparently distinct concepts
and in the research environments where they have been developed: the parallel
programming community for algorithmic skeletons and the software engineer-
ing community for parallel design patterns. Despite working disjointly, these
two communities often reach to similar results that go for the benefits of both
researches.

2.4.2.1 Stream parallelism

Patterns in this class exploit the presence of independent data items available
as a stream (a sequence) of input elements to be processed concurrently, using
a series of sequential or parallel stages. Streams processed in a stream parallel
application are usually generated and consumed outside the application itself,
but there are some cases where streams to be processed may also be generated
inside the application. Input elements in a stream parallel program are said to
be consecutive, meaning that they might not all available at the beginning of the
computation (as it would be the case with traditional containers such as vec-
tors). Rather, they appear at different moments in time, with item xi appearing
at time ti, item xi+1 appearing at time ti+1, and so on, with ti < ti−1. Clearly, the
rate at which streaming items can be computed cannot be higher than the rate
they arrive with. This characteristic could limit the parallelisation achievable
and would obfuscate the benefits of a concurrent execution if the set of input
elements is small.

In terms of performance, a stream-parallel pattern is effective in improving
the throughput of the application, but results ineffective when the time needed
to execute each single element of the stream (the latency) strongly dominates

48

2.4. Structured parallel programming

r1xk-1 p = rk rk-1p = f(x)ii r = g(q)i i
x1xk p = q = z(p) ii

Figure 2.8: A general Pipeline pattern with three stages

the application performance. Stream parallel applications are present in many
computing environments, from video processing (streams of frames) to network
filtering (streams of packets), signal processing (streams of signal samples) and
so on.

Pipeline

A pipeline represents the canonical stream. The pipeline pattern represents a
functional partitioning of the sequential code, that is divided into multiple pieces
executed concurrently8 (see Figure 2.8). It is typically used to model computa-
tions expressed in stages, and in the general case a pipeline has at least two
stages. Given a sequence x1, . . . , xk of input tasks and the simplest form of a
pipeline with three stages, the computation on each single task xi is expressed
as the composition of three functions f , z and g, where the second stage (func-
tion z) works on the results of the application of the first stage, z(f(xi)), and
third stage applies the function z on the output of the second stage: g(z(f(xi))).

The parallelisation is obtained by concurrently executing all the stages onto
different consecutive items of the input stream. In the general form, a pipeline
with stages s1, . . . , sm computes the output stream

sm(sm−1(. . . s2(s1(xk)) . . .)), . . . , sm(sm−1(. . . s2(s1(x1)) . . .))

The sequential code has to be described in terms of a composition of functions,
where the output of each stage is sent to the next one, respecting the function
ordering. The number of functions limits the maximum degree of parallelism of
the application, meaning that with a 3-stages pipeline will exploit at most three
processors. The semantic of the pipeline paradigm ensures that all stages will
execute in parallel.

8Tasks can start, run, and complete in overlapping time periods. This does not mean they
will necessarily be running at the very same instant.

49

CHAPTER 2. Background – Parallel Computing

x1 y1xk-1 yk yk-1emitter collectorxk

f(x)i

f(x)i

f(x)i

f(x)i

s1 s3

s2

Figure 2.9: A simple Farm pattern with an optional collector stage, whose stroke is dashed.
Background light-gray boxes show that a farm pattern can be embedded into a three-
stages pipeline

Farm

The farm pattern represents a functional replication of a code segment, to be in-
tended as a replication of the business logic of the application (see Figure 2.9). A
farm is often used to model embarrassingly parallel computations, and is gener-
ally considered “simple” to exploit, as it does not require to rewrite the original
code and allows for optimal task concurrency. The application programmer that
uses a farm pattern only has to take care of a proper load balancing among the
function replications, and should select an appropriate degree of parallelism9 that
does not lead to inefficiencies but fully exploits the available hardware paral-
lelism.

Given a function f that represents an application’s business logic, and given
a sequence x1, . . . , xk of input tasks, the farm computes the output stream

f(xk), f(xk−1), . . . , f(x1)

The basic idea is similar to the pipeline: computing more input elements at the
same time. For instance, a basic farm pattern can be embedded into a two (or
three) stages pipeline, where the first stage applies some function to the input
streams items and then emits tasks to a pool of workers, that would compose
the second stage. A possible third stage (a collector) gathers workers’ output
and rebuilds a final result. More complex combinations of both patterns are

9The number of active threads (or processes) that actually execute at the very same time

50

2.4. Structured parallel programming

x1 y1xk-1 yk yk-1xk E C

W

W

W

W

s1

1 1

1

1

1

11

E C

W

W

W

W

s2

2 2

2

2

2

2

Figure 2.10: A combination of pipeline and farm patterns, where each stage of a two-stage
pipeline is a farm. In this figure, subscripts in farms components are used to dis-
tinguish the two farms

possible, such as a pipeline of farms, where each stage of the pipeline is, in fact, a
farm (as in Figure 2.10).

Task parallelism consists of running the same or different tasks on different
executors (i.e., cores, machines, etc.). Tasks are concretely performed by threads
or processes, which may communicate with one another as they execute. Com-
munication usually takes place to pass data from one thread/process to one or
many others. Task parallelism does not necessarily concern stream parallelism,
but there might be the case in which the computation of each single item in a in-
put stream embeds a parallel nature, that can efficiently be exploited to speedup
the application. The farm pattern is a typical representation of such class of pat-
terns.

2.4.2.2 Data parallelism

These paradigms extract parallelism inside a computation by partitioning the
data structures and exploiting parallelism in the computation of different sub-
tasks resulting from the partition of the input task. In other words, a data-
parallel computation performs the same operation on different items of a given
data structure at the same time. Opposite to task parallelism, which emphasizes
the parallel nature of the computation, data parallelism stresses the parallel na-
ture of the data10.

10We denote this difference by using a zero-based numbering when indexing data structures
in data parallel patterns.

51

CHAPTER 2. Background – Parallel Computing

Formally, a data parallel computation is characterized by partitioning data
structures and function replication: a common partitioning approach divides
input data between the available processors. This partitioning step is often
followed by the replication and execution of some, mostly independent, op-
erations across these partitions. Depending on the algorithm, there might be
the case in which data dependencies exist among partitioned subtasks: many
data-parallel programs may suffer from bad performance and poor scalability,
because of a high number of data dependencies or a low amount of inherent
parallelism.

Data parallelism also supports loop-level parallelism, where successive iter-
ations of a cycle working on independent or read-only data are concurrently
executed on different flows (i.e., threads or processes). In terms of performance,
the more processors available, the finer the data partitioning, thus the higher the
degree of parallelism and possibly the performance obtainable with a data par-
allel pattern. In reality, these conditions might not always be applicable: there
exists a lower bound on the number of partitions, determined by the items that
compose the data structures. Moreover, the smaller the partition the smaller
the computation time per worker: this approach becomes feasible only up to a
certain point.

Here we present two widely used instances of data parallel patterns, namely
the map and the reduce patterns. Other data parallel pattern exists, that basically
permit to apply higher-order functions to all the elements of a data structure.
Among them we can mention the fold pattern and the scan (or prefix sum) pat-
tern. The stencil pattern is a generalisation of the map pattern, and under a
functional perspective both patterns are similar, but the stencil encompasses all
those situations that require data exchange among workers.

Map

The map pattern is a straightforward case of data parallel paradigm: given a
function f that expresses an application’s behaviour, and a data structure X
of known size (e.g., a vector with n elements), a map pattern will apply the
function f , to all the elements xi ∈ X :

52

2.4. Structured parallel programming

f(x)i

f(x)i

f(x)i

f(x)i1x

2x

n-1x
n-2x
n-3x

0x

1y

2y

n-1y
n-2y
n-3y

0y

Figure 2.11: A general representation of a Map data parallel pattern. Input data structure is par-
titioned according to the number of workers. Business logic function is replicated
among each worker

yi = f(xi) ∀i = 0, . . . , n− 1

Each element yi of the resulting output vector Y is the result of a parallel com-
putation.

The degree of parallelism of a map pattern is a critical parameter, and should
carefully be chosen depending on the input data structure’s size and the granu-
larity of the computation: when it is too small, it might hinder the full exploita-
tion of all computing power, resulting in a limited speedup, while a excessive
degree of parallelism may lead to inefficiencies as some parallel workers are
likely to remain idle.

Notable examples that naturally fit this paradigm include some vector op-
erations (scalar-vector multiplication, vector sum, etc), matrix-matrix multiplica-
tion (in which the result matrix is partitioned, the input matrices replicated), the
Mandelbrot Set calculation, and many others.

Reduce

A reduce pattern applies an associative function (⊕) to all the elements of a data
structure. In Figure 2.12, given a vector X of length n the reduce pattern com-
putes

x0 ⊕ x1 ⊕ . . .⊕ xn−1

53

CHAPTER 2. Background – Parallel Computing

1x2xn-1x n-2x n-3x 0x

Figure 2.12: A general Reduce pattern: the reduction is performed in parallel organising work-
ers in a tree-like structure: each worker computes the function ⊕ on the results
communicated by the son worker. Root worker delivers the reduce result

Each worker locally computes a reduce over the assigned partition of the vector,
in parallel, and propagates its result that is used to compute a global reduce. In a
tree-like organization, leaf nodes compute their local reduce and then propagate
results to parent nodes; the root node delivers the reduce result.

The composition of a map step and a reduce step generates the Map+Reduce
pattern, in which a function is first applied, in parallel, to all elements of a data
structure, and then the results from the map phase are merged using some re-
duction function (see Figure 2.13). This is an important example of the compos-
ability allowed by parallel patterns, which permits to define a whole class of
algorithms for data-parallel computation.

The functional composition of these two parallel patterns is at the base of
Google’s MapReduce distributed programming model and framework, which
exploits key-value pairs to compute problems that can be parallelised by map-
ping a function over a given dataset and then combining the results. Likely,
it is the largest pattern framework in use, and spun off different open-source
implementations, such as Hadoop [159] and Phoenix [127].

54

2.4. Structured parallel programming

f(x)i

f(x)i

f(x)i

f(x)i1x

2x

n-1x
n-2x
n-3x

0x

1y

2y

n-1y
n-2y
n-3y

0y

y

Figure 2.13: A Map+Reduce pattern

2.4.3 Literature review

The algorithmic skeletons defined by Cole [38] represent the first approach to
structured parallel programming. He proposed 4 skeletons (Fixed Degree Di-
vide&Conquer, Iterative Combination, Cluster and Task Queue) obtained iden-
tifying particular algorithmic techniques through an analysis of patterns that
could perform well on the specific target machine. From his idea, many re-
searchers focused on finding general and effective patterns that could be pro-
moted to skeleton.

Here we discuss some skeleton libraries that target C/C++ as their execu-
tion language, and mostly focus on parallel programming for multi-core archi-
tectures. This choice, because the work presented in this thesis has been mostly
conducted using C++ on shared-memory multi-core machines. For a broader
survey of algorithmic skeletons, we refer to the survey from González-Vélez
and Leyton [67].

One of the earliest proposals of pattern-based parallel programming was
P3L [40], a skeleton-based coordination language that manages the parallel or
sequential execution of C code. P 3L comes with a proper compiler for the lan-
guage, and uses implementation templates to compile the code into a target
architecture. P 3L provided patterns for both stream parallelism and data paral-
lelism.

SKELib [41] builds upon the contributions of P 3L by inheriting, among

55

CHAPTER 2. Background – Parallel Computing

other features, the template system. It differs from them because a coordina-
tion language is no longer used, and skeletons are provided as a C library. It
only offered only stream-based skeletons (namely farm and pipe patterns).

SkeTo [106] is a C++ library based on MPI that provides skeletons for dis-
tributed data structures, such as arrays, matrices, and trees. The current ver-
sion is based on C++ expression templates, used to represent part of an expres-
sion where the template represents the operation and parameters represent the
operands to which the operation applies.

SkePU [54] is an open-source skeleton programming framework for multi-
core CPUs and multi-GPU systems. It is a C++ template library with data-
parallel and task-parallel skeletons (map, reduce, map-reduce, farm) that also
provides generic containers type and support for execution on multi-GPU sys-
tems, both with CUDA and OpenCL. Smart containers automatically optimize
communication, perform memory management and synchronize asynchronous
calls using operand data flow. Preprocessor macros have been implemented to
simplify the definition of skeleton’s business logic. Eventually, by overloading
operator() it is possible use skeleton functions as functor objects.

SkelCL [147] is a skeleton library targeting OpenCL. It allows the declara-
tion of skeleton-based applications hiding all the low-level details of OpenCL.
The set of skeletons is currently limited to data-parallel patterns: map, zip, re-
duce and scan, and it is unclear whether skeleton nesting is allowed. A limi-
tation might come from the library’s target, which is restricted to the OpenCL
language: it likely benefits from the possibility to run OpenCL code both on
multi-core and on many-core architectures, but the window for tunings and op-
timisations is thus quite restricted.

The Muenster Skeleton Library (Muesli) [36] is a C++ template library that
supports shared-memory multi-processor and distributed architectures using
MPI and OpenMP as underlying parallel engines. It provides data parallel pat-
terns such as map, fold (i.e., reduce), scan (i.e., prefix sum), and distributed data
structures like distributed arrays, matrices and sparse matrices. Skeleton func-
tions are passed to distributed objects as pointers, since each distributed object
has skeleton functions as internal member of the class itself. In Muesli, the pro-
grammer must explicitly indicate whether GPUs are to be used for data parallel

56

2.4. Structured parallel programming

skeletons, if available.
Intel Threading Building Blocks (TBB) [82] defines a set of high-level parallel

patterns that permit to exploit parallelism independently from the underlying
platform details and threading mechanisms. It targets shared-memory multi-
core architectures, and exposes parallel patterns for exploiting both stream par-
allelism and data parallelism. Among them, the parallel for and parallel foreach
methods may be used to parallelise independent invocation of the function
body of a for loop, whose number of iterations is known in advance. C++11
lambda functions can be used as arguments to these calls, so that the loop body
function can be described as part of the call, rather than being separately de-
clared. The parallel for splits the range [0, num iter) into sub-ranges and pro-
cesses each sub-range r as a separate task using a serial for loop in the code.

FastFlow [8] is a parallel programming environment originally designed to
support streaming applications on cache-coherent multicore platforms. It is re-
alised as a C++ pattern-based parallel programming framework aimed at sim-
plifying the development of applications for (shared-memory) multi-core and
GPGPU platforms. The key vision of FastFlow is that ease-of-development and
runtime efficiency can both be achieved by raising the abstraction level of the
design phase. It provides a set of algorithmic skeletons addressing both stream
parallelism — with the farm and pipeline patterns — and data parallelism —
providing stencil, map, reduce pattern, and their arbitrary nesting and com-
position [9]. Map, reduce and stencil patterns can be run both on multi-cores
and offloaded onto GPGPUs. In the latter case, the business code can include
GPGPU-specific statements (i.e., CUDA or OpenCL statements). Leveraging
the farm skeleton, FastFlow exposes a ParallelFor pattern [42], where chunks of
a loop iterations having the form for(idx=start;idx<stop;idx+=step)

are executed by the farm workers. Just like TBB, FastFlow’s ParallelFor pattern
uses C++11 lambda functions as a concise and elegant way to create a function
object: lambdas can “capture” the state of non-local variables by value or by
reference and allow functions to be syntactically defined when needed.

57

CHAPTER 2. Background – Parallel Computing

Libray Programming
Language

Programming
Model

Skeleton
nesting Skeletons

P 3L C MPI limited map, reduce, seq, comp,
pipe, farm, scan, loop

SkeLib C MPI no farm, pipe

SkeTo C++ MPI no map, zip, gather, reduce, scan,
distributed data structures

SkePU C++ shared-memory /
many-cores - map, reduce, map-reduce, farm

SkelCL C / OpenCL shared-memory /
many-cores limited map, zip, reduce and scan

Muesli C++ shared-memory /
many-cores limited map, fold, scan,

TBB C++ shared-memory yes
parallel for, parallel while,
parallel do, parallel pipeline,
parallel sort

FastFlow C++ shared-memory yes pipe, farm, map, reduce,
ParallelFor, stencil

Table 2.1: Algorithmic Skeletons: comparison table

2.5 HPC and Cloud computing

Cloud computing has widespread in the HPC community over the last decade,
simply because it brings clear advantages: it is scalable, on-demand, fast and (sup-
posedly) inexpensive. Such features (or benefits) of a cloud solution should be
evaluated against those of Grid computing, which arose when the academic
community needed to crunch large data sets (such as satellite data, genomic,
nuclear physics, etc.), and it became easier for academic research institutions
to move from large, mainframe-style supercomputers, towards a more scalable
model, using lots of “relatively” inexpensive hardware in large clusters. In fact,
a Grid is a hardware and software infrastructure that has the ability to coordi-
nate resources and services distributed across several control domains, using
standard, open, general-purpose protocols, in order to supply high quality of
services [57, 58].

The picture of a Cloud system is not much far away from that of the Grid,
because it can be described as a pool of virtualized computer resources that
hosts a variety of different workloads, which can be deployed and scaled-out
through the rapid provisioning of additional virtual resources [28]. A key point

58

2.5. HPC and Cloud computing

here, that clearly distinguishes Clouds from Grids, is that a Cloud abstracts
the underlying compute components, which range from hardware infrastruc-
tures to operating systems, to software packages. Computing nodes are virtu-
alized through hypervisor technologies such as VMs, dynamically provisioned
on-demand, as a personalized resource collection [32].

Cloud components are made available based on their usage: the so-called
“pay-as-you-go” billing system, that clearly brings many potential advantages,
especially for scientists who do not require 24/7 accessibility.

In their famous work “A View of Cloud Computing” [13], Armbrust et al.
identified three key features that differentiates a Cloud system from existing
supercomputing facilities:

• hardware provisioning appears to be infinite, available on-demand;

• no up-front commitment by cloud users is required, so that they can in-
crease hardware resources only when there is an increase in their needs;

• pay-for-use of computing resources on a short-term basis, as needed, with
the freedom of release them, as needed.

To these aspects, we want to add that in a Cloud system, users and develop-
ers have sweeping control of their clusters: this is useful when scientists have
applications that require particular pieces of software to be installed at the sys-
tem level. Conversely, when a Cloud provides a full software stack as a service,
scientists never have to install a thing. The Cloud provider installs, maintains,
and optimizes the application while scientists merely conform to a specific API.

2.5.1 Cloud service models

Depending on which service it delivers, a Cloud solution can be classified ac-
cording to one of four categories [39, 153]:

IaaS At the lower level, the Cloud can be seen as a cluster of interconnected
processing elements (either physical or, more often, virtual) that execute
user applications: this includes hardware (e.g., CPUs), data storage and

59

CHAPTER 2. Background – Parallel Computing

networking facilities. In this case we speak of Infrastructure as a Service
(IaaS). A big challenge introduced by HPC applications regards the en-
hancement of flexibility of Cloud platforms for resource management, in
order to satisfy user needs. The most appropriate approach to ensure such
flexibility is via virtualisation, that mainly involves either the generation
of multiple virtual machine instances to partition the physical resources,
or multi-tenancy techniques, which enable users to share application in-
stances and treat them as independent ones.

PaaS At the platform level, Cloud solutions offer development environments in
the form of full computing platforms. This model includes operating sys-
tems, execution runtime environments, databases and development tools.
User applications are rooted in the software tools provided by the plat-
form: in this case we speak of Platform as a Service (PaaS).

SaaS At the application level, the Cloud can be perceived as a set of services
that can be accessed to compute results. We speak of Software as a Service
(SaaS) in this case. For SaaS there is no client-side software requirement
for the user: the services are reachable through an access point, like a web
portal or a visualization tool, eliminating the need for local installation of
a large variety of software tools and periodical updates.

Beside the canonical service models listed above, a further category of Cloud
services can be described, called Data as a Service (DaaS): that fosters data deliv-
ery and accessibility, and concentrates in distributing data on-demand instead
of software applications or hardware resources. It is reasonable to see DaaS as
integrated into a Cloud-based application.

Amazon Web Services (AWS) which provides a centralized repository of
public data sets, including archives of GenBank, Ensembl, 1000 Genomes, Model
Organism Encyclopedia of DNA Elements, Unigene, Influenza Virus, etc. As a
matter of fact, AWS contains multiple public datasets for a variety of scientific
fields, from biology, astronomy, chemistry, etc.11. These datasets are delivered
as services and can be seamlessly integrated into cloud-based applications [61].

11http://aws.amazon.com/publicdatasets

60

http://aws.amazon.com/publicdatasets

2.5. HPC and Cloud computing

2.5.2 Cloud implementation models

The service models presented above can be delivered using four different im-
plementation models: private cloud, community cloud, public cloud, and hybrid
cloud. When building a cloud solution for scientific purposes, they have to be
taken into account.

A private cloud is basically the same as owning and maintaining a tradi-
tional cluster, where the user has total control over the infrastructure and can
configure the machines according to his needs. One big issue in such scenario
is the absence of instant scalability, as the capacity of execution is limited to the
physical hardware available. Moreover, the user is responsible for the energy
consumption of the system and for hardware maintenance.

In a community cloud users are members of one organization, which has
a set of resources possibly connected to resources owned by organizations. A
user from one of the involved organizations arguably has access to the whole
batch. The pay-per-use model may not be applicable to this type of cloud. One
disadvantage here is the amount of available resources: they are limited to the
number of machines that are part of the community cloud.

In a public cloud, the infrastructure is usually provided by a company tha
“owns” the infrastructure: the provider. The advantage in this case is the access
to an (arguably) unlimited number of computational resources, which can be
allocated and deallocated on demand. The pay-per-use billing model permits
to spend money only while using the resources. Access to up-to-date hardware
is fairly guaranteed. There might be some concerns about data privacy, that can
be addressed by a contract regarding data access.

A hybrid cloud can be used to extend the computational power already
available with a connection to an external provider. This model permits to in-
crease computing resources almost instantly, without up-front costs. In certain
scenarios, it is also possible to configure the system to automatically allocate
cloud resources. Data transfer might become a real bottleneck in this model,
because the local cloud is connected to the public cloud through an Internet
connection, where the bandwidth could be limited.

61

CHAPTER 2. Background – Parallel Computing

2.5.3 Performance

A typical public cloud computing environment is a hosted service available on
the Internet. A hypothetical user and the providers cloud manager agree upon
bandwidth and transfer ratio for both data movement to and from the cloud
resources. The Internet connection speed and availability are an issue even
for performance and reliability with a cloud computing service. Virtualisation
and network interconnection play an important role in determining the overall
performance of a cloud infrastructure. If the hypervisor does not have good
resource management, it is possible that the physical resources are under- or
overused. Also, the network interconnection of the VM is a concern: as the net-
work resources are pooled among all the users, the network performance is not
guaranteed.

To evaluate the performance of the cloud solution, it is necessary to compare
it with a traditional system, whose performance must be well known and will be
used as the basis for comparison. For a fair comparison, both the base and cloud
systems need to present similar characteristics, mainly the number of cores (or
PUs) of each system.

Other aspects play a part when evaluating of a cloud computing environ-
ment designed for science services:

• the deployment capability of providers to build solid environments in the
cloud and the capability to execute the workload;

• the economic evaluation, performed to determine if it is better to use a
cloud or to buy regular machines.

2.5.4 Existing Cloud platforms

Several cloud services are available in the market, which offer their services
according to the service models listed in Section 2.5.1. Among them, Amazon
Web Services, Google App Engine, Microsoft Windows Azure, and Open Stack
are some of the most known cloud service providers.

62

2.5. HPC and Cloud computing

Amazon Web Services (AWS)12 has been operating since 2006; it is one of the
most widely known cloud providers and runs a global web platform serving
millions of customers every year. Many different kinds of services are offered,
including storage, platform, and hosting services. Two of the most-used AWS
services are the Amazon Elastic Compute Cloud (EC2) and Amazon Simple
Storage Service (S3). Amazon EC2 is an IaaS model, and may be considered the
central part of Amazons cloud platform. It was designed to make web scaling
easier for users. The interaction with the user is done through a web interface
that permits to obtain and configure any desired computing capacity with little
difficulty.

Amazon S3 is a storage solution for the Internet. It provides storage through
web service interfaces, such as REST and SOAP. Inside the provider, the stored
objects are organized into buckets, which are an Amazon proprietary method.
The names of these buckets are chosen by the user, and they are accessible using
a URL with a regular web browser. This means that Amazon S3 can be easily
used to replace static web hosting infrastructure. One example of an Amazon
S3 user is the Dropbox service, provided as SaaS for the final user, with the user
having a certain amount of storage in the cloud to store any desired file.

Google provides its own Cloud platform13, as a set of modular cloud-based
services that cover compute, storage and networking facilities. Google Com-
pute Engine is an IaaS model, because the system provides a robust computing
infrastructure, while the user must choose and configure the platform compo-
nents, and is responsible for administer and monitor the system. Google will
ensure that resources are available, reliable, and ready to use.

Google App Engine (GAE) is Google’s PaaS model, that enables users to
build and deploy their web applications on Google’s infrastructure, taking care
of most of the management of the resources for you. Users need to develop
their application using the supported programming languages, such as Python,
Java and php.

12http://aws.amazon.com/
13https://cloud.google.com/

63

http://aws.amazon.com/
https://cloud.google.com/

CHAPTER 2. Background – Parallel Computing

Microsoft started its initiative in cloud computing with the release of Win-
dows Azure14 in 2008, which initially was a PaaS to develop and run applica-
tions written in the programming languages supported by the .NET framework.
Currently, the company owns products that cover all types of service models.
Online Services is a set of products that are provided as SaaS, while Windows
Azure provides both PaaS and IaaS.

Windows Azure PaaS is a platform developed to provide the user the capa-
bility to develop and deploy a complete application into Microsoft’s infrastruc-
ture. To have access to this service, the user needs to develop an application
following the provided framework. The Azure framework supports for a wide
range of programming languages, including all .NET languages, Python, Java,
and PHP. A generic framework is provided, in which the user can develop in
any programming language that is supported by the Windows OS. Windows
Azure IaaS is a service developed to provide the user access to VMs running on
Microsofts infrastructure.

OpenStack15 is a free and open-source cloud Operating System that con-
trols large pools of compute, storage, and networking resources, providing a
so called “Infrastructure as a Service” (IaaS) remote environment for end users,
where the actual software runs as a service on reliable and scalable servers
rather than on each end-user computer. OpenStack has a modular architecture
and is made up of many different parts, most of which where progressively
added to the platform’s core over the years since its first release in 2010, while
new modules and capabilities are continuously under development. Neverthe-
less, three modules can be identified as the key components of the platform:
compute, storage and networking.

The primary computing engine behind OpenStack, called Nova, is used for
deploying and managing large numbers of virtual resources that handle com-
puting tasks. The storage system for objects and files is called Swift. With
this storage system files are written to multiple disk drives spread throughout
servers in the data center, providing a scalable redundant storage system where

14https://azure.microsoft.com/
15https://www.openstack.org/

64

https://azure.microsoft.com/
https://www.openstack.org/

2.6. Discussion

data replication and integrity across the cluster is maintained via software. neu-
tron is the module responsible for networking capabilities. It helps to ensure
that each of the components of an OpenStack deployment can communicate
with one another quickly and efficiently.

OpenStack APIs are open-source Python clients, and can run on most exist-
ing operating systems, including Linux, Mac OS and Windows. A command-
line interface enables to access the platform’s API through easy-to-use com-
mands that can be included in scripts to automate tasks. Internally, each com-
mand uses cURL command-line tools, which embed RESTful APIs, and use the
HTTP protocol. They include methods, URIs, media types, and response codes.

2.6 Discussion

In this Chapter we discussed some relevant aspects concerning shared-memory
architectures and current trends on parallel programming facilities for such
class of architectures. Given the level of details of certain aspects, it was not
really feasible to introduce and thoroughly describe all of them, also because it
is far from the scope of this thesis. We therefore decided, for the sake of read-
ability, to keep this chapter at an introductory level, referring to cited references
for more detailed analyses.

While an introductory discussion on distributed systems has been omitted,
because again was deemed as out of the scope of this work, in Section 2.5 we
provide an overview on the Cloud computing paradigm and its relations and
use in HPC, presenting also some existing Cloud providers. References pro-
vided throughout the section will help in acquiring a more in-depth analysis of
the field.

We also presented a brief literature review on the skeleton libraries of inter-
est for our purposes, focusing mostly on solutions that target C/C++ language
and the shared-memory computing paradigm (see Table 2.1). This choice was
made because most of the work conducted and reported in this thesis revolves
around the C++ language, on top of shared memory architectures (as discussed
in Chapters 4 and 5).

65

CHAPTER 2. Background – Parallel Computing

2.6.1 Measuring Performance

There are two important objectives pursued when using high-performance com-
puting systems: to have access to more memory and to obtain higher perfor-
mance. It is easy to characterize the gain in memory, as the total memory is the
sum of the individual memories. The speed of a parallel computer is harder to
characterize: in terms of performance, what is generally expected from a par-
allel program is that its execution time when using p processing elements is
about 1/p of its sequential execution time. This optimal case is generally known
as linear scalability. Unfortunately, this is not always true.

A simple approach to define speedup is to run a program on a single pro-
cessor and on a parallel machine with p processors, and to compare execution
times. With Ts being the execution time on a single processor and Tp the time
on p processors, the speedup Sp is defined as

Sp =
Ts
Tp
, Sp ∈ (0, p]

An ideal case wants the speedup to grow linearly with the growing number of
processors to use, but in practice we do not expect to attain that. To measure
how far we are from the ideal speedup, the efficiency can be defined as

Ep =
Sp

p
with 0 < Ep ≤ 1

Several factors impair the possibility of achieving an ideal behaviour: first
of all, using more processors might necessitate more communication, whose
overhead was not part of the original sequential computation. Also, unbal-
anced workloads cause some processors to be idle for some time, again lower-
ing the actual speedup. Finally, not all problems are suitable to be parallelized.
Some problems have been recognized as inherently sequential and will never
benefit from a parallel implementation. In other cases, a problem may con-
tain a substantial fraction of work which is not parallelizable, thus nullifying

66

2.6. Discussion

the performance gain obtainable by parallelising the rest of the work. The Am-
dahl’s law [10] states that the amount of non-parallelizable work in an applica-
tion determines the maximum speedup achievable by parallelizing the applica-
tion [10]. In other words, in an application where f percent of the total work
is inherently sequential, the execution time for that part can not be reduced, no
matter how many processors are available. So if Ts is the sequential running
time, fTs will be spent in the sequential fraction and (1 − f)Ts in the paral-
lel fraction. Using p processing elements, in the ideal case the parallel fraction
becomes

(1− f)Ts
p

and the achievable speedup equals to

Sp =
Ts

fTs + (1− f)Ts

p

If we imagine infinite processing resources (p → ∞), the parallel fraction tends
to zero, and the asymptotic speedup can be written as

lim
p→∞

Sp =
Ts
fTs

=
1

f
(2.1)

Equation 2.1 is the Amdahl’s law and explains that an application having a
certain percentage f of sequential fraction cannot achieve a speedup higher than
1/f .

Amdahl’s law, could even be considered optimistic. Parallelizing a code
will give a certain speedup, but it also introduces overheads – a time loss with
respect to the computation of the parallel application results – that will lower
the speedup attained: the time needed to set up parallel activities is necessary
to implement parallelism. When splitting a loop in a number of parts, each
processor has to deal with a loop overhead related to the calculation of bounds
and the test for completion. And this overhead is replicated as many times as
there are processors performing such loop, so that the said overhead can be
treated as a sequential part of the code.

67

CHAPTER 2. Background – Parallel Computing

Amdahl’s law can be refined in such a way that overhead is taken into ac-
count: the time spent to compute the parallel fraction becomes (Ts/p)+Tc, where
Tc is a constant that takes into account the overhead time. The Amdahl’s law
can thus be rewritten as:

lim
p→∞

Sp = lim
p→∞

Ts

fTs + (1− f)(Ts

p
+ Tc(p))

=
1

f + (1− f)(Tc(p)
Ts

+ 1
p
)

(2.2)

For this to be close to the ideal speedup, we need Tc � (Ts/p) or p � (Ts/Tc).
In other words, the number of processors should not grow beyond the ratio
of sequential execution time and overhead. If the overhead is negligible this
reduces to equation 2.1, otherwise the asymptotic speedup results smaller than
the one obtainable taking into account only the load of the sequential fraction.

Amdahl’s law shows that a larger and larger numbers of processors would
not pay off. In other words, it states that if there is a fixed computation re-
quirement, which gets executed on more and more processors, this limits the
expected speedup that parallelisation can provide, given a fixed data set size.
In practice, normally this is not the case: Gustafson’s law provides a more real-
istic assumption [68], saying that the sequential fraction is independent of the
problem size, thus an increase of problem size can retain scalability with respect
to the number of processors.

Let Fs be the sequential fraction time (the fTs above) and Fp be the parallel
fraction time (the (1 − f)Ts above): we can define the execution time of the
parallel program as

Tp = Fs + Fp

The corresponding time for the sequential program is

Ts = Fs + p · Fp

This gives a speedup of

68

2.6. Discussion

Sp =
Ts
Tp

=
Fs + p · Fp

Fs + Fp

= Fs + p · Fp

= p− Fs · (p− 1)

(2.3)

That is, speedup is now a function that varies linearly with the number of
processors. If Fs is small, the speedup is approximately p. It may even be the
case that Fs diminishes as p increases, together with the problem size. When
this is true, the speedup approaches p monotonically with the growth of p.

Gustafson’s law (equation 2.3) is based on the idea that if the problem size
is allowed to grow monotonically with p, then the sequential fraction of the
workload would not dominate. That is to say, the true parallel power of a large
multiprocessor system is only achievable when a large parallel problem is ap-
plied.

Many applications cannot scale up to meet the time bound constraint due
to physical constraints. In practice, the physical constraint is often the mem-
ory limitation arising with the increasing disparity between CPU speed and
memory data access latency, making applications’ execution time depend on
the memory speed of the system [163].

2.6.2 Research niche

With this Chapter we introduced some of the aspects related to HPC technolo-
gies, namely hardware architectures and parallel programming facilities. In the
core Chapters of this thesis we will extensively work on shared-memory ar-
chitectures exploiting algorithmic skeleton libraries for obtaining best possible
performance on such architectures, while performance portability is guaranteed
by the skeleton libraries.

Most of the work on shared-memory, thread-level parallelism has been per-
formed using the FastFlow library, despite many others provide support for
share-memory multi-core architectures — which is the type of architecture we
have been using for this work. The main reason behind the choice of FastFlow

69

CHAPTER 2. Background – Parallel Computing

IaaS, PaaS

SaaS

DaaS

shared-memory
architectures

algorithmic
skeletons

tools
libraries

next-generation
sequencing

3C-based
techniques multi-omic

data

genetics
biology

parallel
computing

 data
integration
omics

visualisation
statistics

NuchaRt

cloud
services

Figure 2.14: A high-level view of our approach for heterogeneous genomic information pro-
cessing and interpretation

was we were already acquainted and experienced with FastFlow, and largely
enjoyed the possibility to seamlessly parallelise for loops by means of lambda
functions. We also evaluated our solution against TBB- and OpenMP-based im-
plementations, so that we could have a comparison with parallel programming
frameworks created by major industry powerhouses, as opposed to other algo-
rithmic skeleton frameworks developed by academic institutions.

As a matter of fact, we will show that the performance achieved with the
two alternatives we evaluated reached comparable results to those obtained
with FastFlow. Main differences where found mostly in terms of ease of cod-
ing: OpenMP permits to easily achieve the desired result, by simply using the
pre-compiler directives that permit to exploit the loop parallelism. On the other
hand, Intel TBB implementation was not as much straightforward as the above:
the parallel_for pattern needs more tuning and fixes with respect to the

70

2.6. Discussion

FastFlow’s one, and thread-local storage is not as easy to use.
The performance achievements on shared-memory architectures remain ef-

fective when we embed our C++ solution into the R environment, where we aim
at making an application for genomic data analysis, usable by an heterogeneous
range of scientist with different backgrounds, thus not necessarily familiar with
the C++ language and parallel programming principles.

As Figure 7.1 shows, our R/C++ application will then be the key service
for the integration of heterogeneous genomic information, and will be used in
a cloud-based solution (Chapter 6), where the orchestration of various Bion-
formatics software employed in genomic data processing permits to efficiently
exploit a virtualised computing infrastructure: the benefits of this approach
mostly come from the concurrency kept up among software services.

71

Chapter 3

Background on high-throughput
genome sequencing and DNA
exploration

These years witness an incredible explosion of the available molecular biology
information. In particular, the integration and the interpretation of omics data
in a systems biology view is complex, because actual representations rely on
the genomic coordinates, discarding at first gene functional cooperation and re-
nouncing to exploit the real conformation of the DNA16 in the nucleus. In this
view, the organization of the chromosome in the nucleus is extremely relevant
to understand biological functioning — at the gene level as well as at the global
nuclear level. The study of the organization of chromatin in the nucleus has
shed some light on the spatial aspects of gene regulation, and will further en-
able the investigation of pathologies related to genome instability or nuclear
morphology [24].

In this chapter we will provide a broad account of molecular biology tech-
niques employed to gather information about chromosomal organisation, with
literature review of the current state of the art on computational methods for
genomic data analysis.

16A glossary is present in the preface, and is intended to give a definition of most of the
biology-related terms used throughout this thesis.

72

3.1. DNA exploration overview

3.1 DNA exploration overview

Nuclear cell’s organisation was traditionally studied by microscopy, bringing
early knowledge about nuclear conformation, such as discovering large chro-
mosomes at the nuclear periphery and small chromosomes located more interi-
orly, or revealing gene-poor and gene-rich regions within the chromosome ter-
ritory. Fluorescence in situ hybridization (FISH) observations of DNA also sig-
nificantly contributed in revealing valuable information on physical distances
between genomic loci, and suggested a correlation between gene proximity and
expression status [56]. However, FISH data and other microscopy methods are
usually limited to single-cell analyses of gene positioning: on a genome-wide
or cell-population scale they are limited in throughput and resolution.

Over the past ten years, advances in high-throughput molecular biology
techniques have provided insights into chromatin interactions on a larger scale:
in 2002 Dekker et al. developed a strategy called “Chromosome Conformation
Capture” (3C) [46], a novel approach that puts the basis for a large number
of methods that continuously improved the analysis of nuclear organization.
The 3C method was the first to explore the organization of the chromosome in
the cell, by detecting the frequencies of interaction between any two genomic
loci in order to reveal their spatial disposition. New approaches followed, such
as 4C, 5C, Hi-C and ChIA-PET: these methods utilize next-generation sequenc-
ing (NGS) techniques to interrogate the 3C ligation library more comprehen-
sively [167, 49, 102] and with an increased throughput.

Most 3C-based techniques focus on the analysis of a set of predetermined
loci, enabling the exploration of the conformation of the chromosomal regions
of interest. On the other hand, Hi-C allows the characterization of long-range
chromosomal interactions genome-wide [102]: it gives information about cou-
pled DNA fragments that are cross-linked together due to spatial proximity, that
would not otherwise be observable in shorter-ranges interactions, thus provid-
ing data about the chromosomal arrangement in the 3D space of the nucleus.

These techniques allow the description of the nucleus organization at un-
precedented resolution: this is of critical importance for understanding and

73

CHAPTER 3. Background – Genomics

evaluating the regulation of gene expression, DNA replication, repair, and re-
combination. Moreover, using the Hi-C approach, the possibility of comparing
the three-dimensional organization of the DNA in physiological and patholog-
ical conditions is in hand. The capability of describing how diseases reorganize
the chromatin conformation to originate novel co-localized gene clusters of co-
expression would be of primary importance.

3.2 Next-Generation Sequencing

DNA stores biological information used in the development, functioning and
reproduction of all known living organisms. DNA sequencing is thus fun-
damental for basic biological research and in numerous applied fields, from
medical diagnosis to biotechnology: it permits to gain accurate knowledge of
the nucleic acids composition (i.e. the building blocks of DNA) within a DNA
molecule, and includes any method or technology employed to determine the
order of the four bases — Adenine, Guanine, Cytosine, and Thymine — in a strand
of DNA. The advent of novel rapid sequencing methods has greatly accelerated
biological and medical research: genomes of numerous types and species —
including the human genome and other complete DNA sequences of many an-
imals and plants — have been discovered since the early 1970s [125].

In 1977 Frederick Sanger developed a DNA sequencing strategy based on
the “chain-termination” method. Walter Gilbert developed another sequenc-
ing technology based on chemical modification of DNA and subsequent split at
specific bases. Sanger’s method used fewer toxic chemicals and lower amounts
of radioactivity than Gilbert’s one, thus becoming the gold standard for nucleic
acid sequencing during the subsequent two and a half decades. It was adopted
as the primary technology in the “first-generation” of laboratory and commer-
cial sequencing applications. The first automatic sequencing machine based on
Sanger’s method was introduced only in 1987 by Applied Biosystems, with the
name AB370 [103].

74

3.2. Next-Generation Sequencing

Since completion of the first human genome sequence in 200317 [156], the
demand for cheaper and faster sequencing methods has greatly increased. This
demand has driven the development of high-throughput sequencing strategies,
also called next-generation sequencing (NGS) techniques and usually classified
as second and third generation sequencing technologies. This classification
could result quite ambiguous, because there is no consistent definition for each
of these techniques and it is difficult to assign all different instruments to one
or the other category [91]. Second generation techniques generally refer to those
methods that apply a Polymerase Chain Reaction step (PCR) for signal intensi-
fication prior to sequencing, while third generation techniques mostly identify
single molecule sequencing.

Commercially available high-throughput sequencing systems first appeared
in 2005. Among them, the most used are the Roche 454, the Illumina/Solexa HiSeq
2000 and the AB SOLiD systems. Of the three mentioned NGS sequencing sys-
tems, the Illumina HiSeq 2000 provided the biggest output and lowest reagent
cost; the SOLiD system has the highest accuracy and the Roche 454 system has
the longest read length [103].

Each of these approaches uses a different technology to accomplish nucleic
acid sequencing, involving specialised control software and expensive compu-
tational infrastructures. However, the sequencing costs have dramatically re-
duced since the shift from Sanger-based to “second-generation” DNA sequenc-
ing technologies: the National Human Genome Research Institute (NHGRI)
tracks costs associated with DNA sequencing performed at the sequencing cen-
tres [158], and shows that costs reduction, either in terms of “costs per genome”
or in terms of “costs per Megabase of DNA Sequence”, are profoundly out-
pacing Moore’s Law (Figure 1.1).

With more and more organisms being sequenced, a flood of genetic data is
becoming a reality. Consequently, each new generation of sequencers will re-
quire more, not simply faster, compute and storage support. For instance, the
first computational effort is usually the alignment of sequenced reads against a

17As it is the result of a collaborative work of many researchers, we omit all author’s names
in the article’s reference. The full authors list can be found at: http://www.sciencemag.
org/content/291/5507/1304, together with the full article.

75

http://www.sciencemag.org/content/291/5507/1304
http://www.sciencemag.org/content/291/5507/1304

CHAPTER 3. Background – Genomics

reference genome. This is useful to highlight genomic regions involved in ex-
pression and regulation. Alignments are computed using complex algorithms,
normally employing the Burrow-Wheeler Transformation [30], which makes
NGS data analysis a time-consuming, resource-demanding task that requires
parallel, distributed and cloud infrastructures for conducting data analysis and
interpretation.

Figure 3.1: A generic Next Generation Sequencing workflow, adapted from Knief C., 2014 [91]

76

3.2. Next-Generation Sequencing

General methodology

NGS platforms can perform massively parallel sequencing, during which mil-
lions of fragments of DNA from a single sample are sequenced in a single ex-
periment: we discuss here a general methodology used by second generation
sequencing platforms. This choice is driven by the fact that the experiments
analysed in this thesis come from data obtained using such “generation” of
sequencers, which have different characteristics but also share several aspects
of library preparation, library amplification and sequencing process (see Fig-
ure 3.1). A detailed description of next generation sequencing platforms and
principles can be found in dedicated reviews [123, 103, 112] and references
therein.

DNA sequencing methods differ from platform to platform in how sequenc-
ing is actually performed; they anyway rely on a common — or, to some extent
similar — pattern of execution. The cutting-edge idea was to amplify each piece
of genome in a local fashion, and automatically analyse the signal correspond-
ing to each piece of genome in parallel, generating millions of sequencing reads.
Operatively, the addition of one (or more) nucleotide(s) at each sequencing step
results in a local reaction that generates a signal, recorded by the instrument.
Some methods use light to mediate the signal, so a CCD camera is used for
the identification of wells, while in some others a PH variation or an electronic
variation is captured through a semiconductor technology.

An initial library of nucleic acids (DNA or complementary DNA (cDNA)) is
first built by fragmenting the DNA (or cDNA) sample and ligating adapter se-
quences (synthetic oligonucleotides of a known sequence) onto the ends of the
DNA fragments. Once constructed, libraries are amplified (i.e., replicated) using
PCR or similar techniques, in order to increase signal intensity for the sequenc-
ing process. To obtain a nucleic acid sequence from the amplified libraries,
sequencing must be applied. Sequencing is performed in a massively paral-
lel manner for thousands to billions of library fragments, which act as a tem-
plate off of which a new DNA fragment is synthesized. The sequencing occurs

77

CHAPTER 3. Background – Genomics

through repeated cycles of nucleotide addition by a DNA polymerase or lig-
ase (SOLiD), detection of incorporated nucleotides and washing steps. As nu-
cleotides incorporate into the growing DNA strand, they are digitally recorded
as sequence. Due to this iterative procedure, including extensive washing and
flooding steps, sequencing lasts several hours to days.

Most sequencers allow sequencing of library fragments from both ends of a
chromosome fragment: a corresponding reverse read can be assigned to each
individual forward read. Paired-end reads can be used to improve sequence
quality generated reads and can be done for library fragments of up to approx-
imately 800 bp. Since the average size of the library molecules is known, the
distance between forward and reverse read is also known. This gives the ability
to map to a reference (or denovo) genome using that distance information. It
helps to resolve larger structural rearrangements (insertions, deletions, inver-
sions), as well as to assemble across repetitive regions.

Data analysis is a mandatory step to perform once sequencing is complete:
raw sequenced data must be preprocessed to remove adapter sequences and
low-quality reads. A mapping to a reference genome or a brand new alignment
of the sequenced reads is desirable, together with an analysis of the compiled
sequence using wide variety of Bioinformatics assessments, such as detection
of novel genes or regulatory elements, and assessment of transcript expression
levels [66].

3.2.1 RNA-Seq

RNA Sequencing (or RNA-Seq) uses any of a variety of next-generation se-
quencing techniques to reveal a snapshot of RNA presence and quantity in a
genome. RNA-Seq permits to study the transcriptome of a cell (i.e. the set of
all RNA molecules transcribed in one single cell or in a population of cells) and
looks for genes mutations and changes in genes expression. Understanding the
transcriptome is essential for interpreting the functional elements of the genome
and revealing the molecular constituents of cells and tissues [115, 157].

Transcription is the first step of gene expression, in which a segment of DNA
is copied into RNA by the enzyme RNA polymerase. Both RNA and DNA

78

3.2. Next-Generation Sequencing

are nucleic acids, which use base pairs of nucleotides as a complementary lan-
guage. The two can be converted back and forth from DNA to RNA by the
action of the correct enzymes. During transcription, a DNA sequence is read by
an RNA polymerase, which produces a complementary RNA strand that can
be translated into a protein during the translation process. The application of
next-generation sequencing techniques allows for increased base coverage of a
DNA sequence, as well as higher sample throughput. RNA-Seq can include
total RNA, small RNA (such as miRNA and tRNA) and ribosomal profiling.

Prior to NGS, transcriptomics and gene expression studies were conducted
with expression microarrays, which contain thousands of DNA sequences that
potentially match complementary sequences in the sample, yielding a profile of
all transcripts being expressed. However, the microarray technique presents a
number of limitations, including reliance on existing knowledge about genome
sequence, high background biases owing to cross-hybridization, and a limited
dynamic range of detection owing to both background and saturation of sig-
nals. Moreover, comparing expression levels across different experiments is
often difficult and can require complicated normalization methods [35].

3.2.2 ChIP-Seq

ChIP-Sequencing (or ChIP-Seq), combines Chromatin Immunoprecipitation tech-
niques (ChIP) — used to determine whether specific proteins are associated
with specific genomic regions — with massively parallel DNA sequencing, in
order to identify those sites where a protein binds to the genome [111, 86]. Im-
munoprecipitation (IP) permits to produce a protein from a solution, using an
antibody that specifically binds to that particular protein. This process can be
used to isolate and concentrate a particular protein from a sample containing
many thousands of different proteins.

ChIP-Seq is generally used to map global binding sites precisely for any pro-
tein of interest, in order to determine how chromatin-associated proteins in-
fluence the mechanisms that regulate the phenotype of a cell. ChIP-Seq first
cross-links bound proteins to chromatin, fragments the chromatin, captures
the DNA fragments bound to one protein using an antibody specific to it and

79

CHAPTER 3. Background – Genomics

sequences the ends of the captured fragments using next-generation sequenc-
ing techniques [20]. Computational mapping of the sequenced DNA identifies
the genomic locations where enzymes, modified histones, chaperones, nucle-
osomes, and transcription factors attach to the DNA, thereby illuminating the
role of those proteins that interact with DNA within the gene expression pro-
cess.

Determining how proteins interact with DNA to regulate gene expression is
essential for fully understanding many biological processes and disease states.
This epigenetic information is complementary to genotype and expression anal-
ysis. The use of NGS provides relatively high resolution, low noise, and high
genomic coverage compared with ChIP-chip assays (ChIP followed by microar-
ray hybridization).

3.3 Chromosome Conformation Capture

The “chromosome conformation capture” (3C) technique was developed by
Dekker et al. more than 10 years ago [46] and is normally used to study the
organization of short genomic regions at high resolution, compared to the reso-
lution of most visual techniques.

To start the 3C procedure, a population of cells is first chemically fixed with
formaldehyde to create covalent bonds between chromatin segments [84, 46].
Next, the fixed chromatin is digested with a restriction enzyme, which cuts the
chromatin at specific sites across the genome and finds points where selected
DNA regions are connected through a protein complex. The digesting enzyme
determines the resolution of the 3C experiment: commonly used restriction en-
zymes (such as HindIII, BglII, SacI, etc.) recognize 4 to 6 base pairs (bp). The
digested DNA fragments are re-ligated under diluted conditions, to promote
intra-molecular ligations between cross-linked fragments pairwise. DNA frag-
ments that result far away on the linear dimension (a one-dimensional (1D) cast
of the 3D nuclear structure) but co-localize in space, can now be ligated to each
other [45]. This step generates unique DNA junctions ready to be analysed by
measuring the number of ligation events between non-neighbouring sites. This

80

3.3. Chromosome Conformation Capture

can be done by several PCR amplification methods, that permit to quantify a
targeted DNA molecule. By comparing the amplification efficiency of different
primer combinations, a matrix of ligation frequencies is established, that serves
as proxies for pairwise interaction frequencies. Figure 3.2 depicts principal steps
in 3C-based techniques. The chromosome conformation capture methodology
is showed on the left side, from top to bottom.

Chromosome conformation capture technique has become the foundation
for a host of related techniques that have been developed to achieve greater
scale, throughput or specificity: from the level of single locus (3C, 4C) to a set of
loci (5C, ChIA-PET), and then genome-wide (Hi-C), it allows to link chromatin
structure to gene regulation, DNA replication and chromatin folding.

4C

The chromosome conformation capture-on-chip (4C) techniques were the first set
of methods designed to improve throughput and resolution of 3C. Each tech-
nique was developed independently, to enable the identification of previously
unknown DNA regions that interact with one specific locus of interest, which
makes 4C especially well suited to discover novel interactions with a specific
region under investigation [143, 167].

The 4C procedure follows the same steps as in 3C, but adds ulterior opera-
tions before the quantification of the fragment of interest: once the 3C library
has been obtained, the restriction fragments are subjected to another round of
restriction digest (see Figure 3.2), this time with a frequent cutter (i.e., an en-
zyme that recognizes 4 base pairs) that will produce smaller DNA circles (pos-
sibly containing also 3C ligation junction). Self-circularization of the DNA frag-
ments is then applied, because they are not bound to other proteins or frag-
ments. Intra-molecular ligation occurs to induce the formation of the circular
fragments, that will become the 4C library: at this point microarrays or high-
throughput sequencing techniques can be used to sequence the 4C library [143].
When used in combination with next-generation sequencing techniques to anal-
yse contacting sequencing, this method is called 4C-Seq.

81

CHAPTER 3. Background – Genomics

Figure 3.2: A graphical description of 3C-based methods, adapted from Fraser et al., 2015 [59].
The phases that deploy the 3C method are depicted on the left, from top to bot-
tom: chromatin interactions identified via the formaldehyde cross-linking are di-
gested using a restriction enzyme and then ligated before reverse cross-linking and
purification. The top panel shows that ChIA-PET and Hi-C methods relate to 3C:
ChIA-PET starts its process from 3C’s formaldehyde cross-linking phase, while Hi-
C differentiates its methods after DNA fragments have been digested. The bottom
window clearly explains that 4C and 5C operate over a 3C library by adding further
experimental steps that lead to higher throughputs and better coverage.

82

3.3. Chromosome Conformation Capture

5C

The chromosome conformation capture carbon copy (5C) method is suitable to
predict the conformation of entire domains or chromosomes. This technique
generates a library of any ligation products from DNA regions that associate
with the target loci, which are then analysed by NGS techniques [49]. 5C is
ideal when great detail about all the interactions in a given region is needed,
for example when seeking for a detailed interaction matrix of a particular chro-
mosome. However, 5C is not truly genome-wide, since each 5C primer must be
designed individually, that makes it best suited to particular regions.

After the construction of the 3C library, the resulting DNA sequence is am-
plified (i.e., thousands to millions of copies of that particular DNA sequence are
generated). Pairs of DNA fragments that correspond to interacting fragments
are juxtaposed on the 3C library and can be ligated together. Resulting liga-
tion products are subsequently amplified simultaneously in a PCR reaction and
sequenced using either microarray or high-throughput sequencing techniques
(see Figure 3.2).

Hi-C

The traditional Hi-C method follows a standard procedure, whose initial steps
are in common with 3C: it first cross-links cells with formaldehyde, resulting in
covalent links between spatially adjacent DNA segments. DNA is then digested
with a restriction enzyme which is filled with a biotinylated residue [102]. The
resulting fragments are ligated under dilute conditions that favour ligation events
between the cross-linked fragments. The ligated chromatin complexes get puri-
fied by pulling down biotin, making them ready for being analysed using mas-
sively parallel DNA sequencing. This whole process will produce a catalogue of
interacting fragments, a genome-wide sequencing library that provides a valu-
able mean for measuring the three-dimensional distances among all possible
locus pairs in the genome.

The resolution of a Hi-C dataset is determined by the restriction enzyme
used. Normally, a Hi-C experiment uses a 6 bp cutting enzyme, which might
however be undesirable and not deep enough to obtain a sufficient number of

83

CHAPTER 3. Background – Genomics

reads and measure specific interactions of a small region. Instead, data can be
binned into various fixed-size genomic intervals, in order to aggregate data and
smooth out noise: data is typically binned into sizes ranging from 40 kb to 1
MB and bin-bin interactions are aggregated by taking the sum of the interac-
tions [94].

The Hi-C technique has recently been extended to create a genome-wide cat-
alogue of chromatin loops at the unprecedented scale of 1 kb [128]: by applying
an in situ Hi-C protocol in which DNA-DNA proximity ligation is performed in
intact nuclei, the chromosome maps obtained comprise over 5 Tb of sequence
data, recording over 15 billion distinct contacts, which is an order of magnitude
larger than all published Hi-C data sets combined together.

ChIA-PET

Hi-C does not provide full information about the nature or the function of
chromatin interactions. The ChIA-PET method (chromatin interactions anal-
ysis by paired-end tag) was developed to extract these information by map-
ping chromatin networks associated with specific proteins, to determine de novo
long-range chromatin interactions genome-wide [60]. ChIA-PET uses a chro-
matin immunoprecipitation (ChIP) step to isolate chromatin interactions iden-
tified via the formaldehyde cross-linking (i.e., step 1 of 3C method, see Fig-
ure 3.2). The fixed cells are sonicated to break-up the chromatin and reduce
non-specific interactions. Then using a specific antibody the protein of interest
is enriched. DNA linkers are next used to connect proximity ligated DNA frag-
ments, and the resulting cross-linked DNA fragments are ligated together intra-
molecularly. The purified DNA is digested using MmeI enzyme and the ChIA-
PET junctions generated by this process are then cut out with restriction sites
featured in the linkers, prior to purification on streptavidin beads and paired-
end sequencing. Each half of the ChIA-PET products is finally mapped to a ref-
erence genome and joined to reveal the location of protein-mediated chromatin
contacts [59].

84

3.3. Chromosome Conformation Capture

3.3.1 Normalisation

DNA sequencing readouts may contain either very noisy or too low signals,
that could lead to false-positives or false-negatives, causing incorrect data in-
terpretation. As this thesis will focus on Hi-C data analysis and interpretation,
we will discuss some potential sources of biases and methods to reduce these
inconveniences.

A common way of representing Hi-C data is a matrix-based representation.
A contact map is a matrix that represents non-overlapping “bins” across the
genome (Figure 3.3). Each entry in the matrix contains a count of read pairs
that connect the corresponding bin pair in a Hi-C experiment. In other words,
each entry in a contact map tells the intensity of the interactions between two
chromosomes or two locus. These bins can be either fixed-size windows or can
correspond to a fixed number of consecutive restriction fragments, and the size
of bins should be a trade-off between resolution and statistical power. Once the
bin size is determined, the resulting raw contact map serves as the input for
the normalization methods. However, several factors may introduce bias and
noise to these measurements: first, the sequence composition of the fragments
can affect the sequencing step. For example, a higher GC content may be associ-
ated with a higher sequencing coverage; the ability to uniquely map a fragment
back to the genome (its mappability) may vary, for example due to repeats or
to the fragment length. Consequently, some fragments may be over or under
represented or wrongly identified. Since different restriction enzymes cut the
genome at different cleavage sites, the fragmentation produced will be different
as well. As a result, contact maps that were generated with distinct restriction
enzymes, may provide a different view for the same region. These confounding
effects ultimately mean that the observed contact frequency between two bins
may provide a biased estimation of their “true” contact frequency. Consider-
ing also the 3C protocol, some contact frequencies may not provide meaningful
spatial information, even after correction.

Normalisation and correction methods for Hi-C data have been developed
to remove these biases. Some of them can be employed when there is a priori
knowledge of the factors that may cause bias in the data: these methods are

85

CHAPTER 3. Background – Genomics

Figure 3.3: Hi-C contact maps of chromosome 8 at 10 kb resolution before and after normaliza-
tion, adapted from [18]

called explicit-factor corrections. Other approaches try to correct all factors that
may cause biases, without explicitly modelling them: these methods are also
known as matrix balancing corrections.

Yaffe and Tanay were the first to discover such factors [164] and developed
an explicit correction procedure that models the probability of observing a con-
tact between two regions, but requires a priori knowledge of the genomic fea-
tures that affect contact counts (i.e., GC-content, mappability, and fragment
length). Hu et al. improved such method providing a significantly faster ex-
plicit correction technique that uses regression-based models [76].

Matrix balancing methods are conveniently defined implicit, and rely on the
assumption that if there were no bias, roughly an equal number of Hi-C reads
should originate from each region of equal size (in terms of base pairs) in the
genome, and each locus in the genome would give rise to an equal number of
reads in a Hi-C experiment. This approach applies a matrix balancing method
that finds a decomposition of the observed contact map, and updates the inter-
action information according to the number of valid interactions the associated
fragment is involved in.

Both implicit and explicit techniques are valuable means to remove biases

86

3.4. State of the art

from 3C-based experiments, and have proved to be highly accurate. These stud-
ies have shown that normalization is essential for Hi-C data, because normal-
ized contact maps are visually smoother than their raw versions, facilitating the
identification of potentially interesting contact patterns. On the other hand, a
significant computational effort is required to perform these corrections, and
this is particularly true for those techniques based on matrix balancing algo-
rithms: with high-resolution data that reach the kilobase level or beyond, Hi-
C interaction matrices are of massive size (O(N2), where N is the number of
genomic regions involved). Normalisation requires expensive computing re-
sources, such as large memory and long computation time. Most current im-
plementations of the normalization methods discussed above cannot directly
handle high-resolution human Hi-C data below 10 or 50 kb. Moreover, when
normalizing Hi-C data using contact maps the sequence information is blurred
and not preserved for subsequent mapping of genomic features.

3.4 Genomic spatial data analysis - State of the art

Sequence aligners map reads against a reference genome, in order to study the
structure and functionalities of sequenced data18. The most common and most
used fast sequence aligners are based on the Burrows-Wheeler transform (BWT)
algorithm [30], that is essentially a string permutation algorithm also applied in
data compression tools.

Bowtie [97] is probably the most famous, BWT-based sequence aligner, de-
signed for aligning short DNA sequence reads with small memory footprint
and possibility to exploit multi-threading. Tophat [151] is a widely used aligner
that performs spliced alignments and works directly on reads from transcrip-
tomic experiments, using the reference genome indexed according to the Burrow-
Wheeler Transformation.

HiCUP [19] is the best known and most used tool for Hi-C data processing:
it mostly focuses on the initial steps of the Hi-C procedure, such as mapping
and filtering. However, it does not provide a normalisation step, but produces

18See “mapping” entry in the Glossary

87

CHAPTER 3. Background – Genomics

summary statistics and quality control at each stage of the pipeline, helping
to identify potential problems and to refine the experimental protocol. HiCUP
outputs paired-end reads in SAM (or BAM) format, that may be used by Hi-C
analysis tools to extrapolate knowledge.

Considering general software for the interpretation of Hi-C data, an inter-
esting package is HOMER [136], which contains several programs and routines
to facilitate the analysis of Hi-C data. Like most of the available applications,
HOMER relies on the creation of contact maps for the interpretation of Hi-C
data, exploiting Principal Component Analysis and hierarchical clustering with
this representation. Several of the HOMER programs support multiple proces-
sors to help speed up the computation, although, at the time of writing this
thesis it only works at the chromosome level.

HiTC [138] has been designed to facilitate the exploration of high-throughput,
3C-based data. It allows users to transform, normalize and visualize contact
maps whose entries correspond to the number of times two restriction frag-
ments in a given genomic region (bin) have been ligated together during the
3C procedure and sequenced as a pair. The HiTC package proposes a list of
options to define the appropriate data visualization, such as contrast, color or
counts trimming.

Fit-Hi-C [17] assigns statistical confidence estimates to mid-range, cis con-
tacts (i.e., intra-chromosomal) by jointly modelling the random polymer loop-
ing effect and previously observed technical biases in Hi-C data sets.

If FISH experiments are available, a good normalization solution is repre-
sented by FisHiCal [139]. This is an R package that performs an iterative FISH-
based Hi-C calibration that exploits the information coming from both these
methods. It is the first tool that integrates FISH and Hi-C data, and operates
over these information to calibrate the direct measure for physical distance pro-
vided by FISH experiments and the genome-wide capture of chromatin contacts
obtained by Hi-C experiments.

Yaffe and Tanay [164] proposed a probabilistic model to correct biases based
on the observation of the genomic features. This approach can remove the ma-
jority of systematic biases, at the expense of very high computational costs, due
to the observation of paired-end reads spanning all possible fragment end pairs.

88

3.5. Discussion

Tool Aligner Normalisation Visualisation Implementation
Language

HiCUP Bowtie /
Bowtie2 - X Perl, R

HiCLib Bowtie2 Matrix balancing X Python

Homer - simpleNorm /
norm X Perl, R, Java

HiTC - normLGF /
normICE X R

Fit-Hi-C - - X Python
Fish-Hi-Cal - - X R

Table 3.1: Software tools for Hi-C data analysis

Hu et al. proposed a tool named HiCNorm [76] that uses a parametric model
based on a Poisson regression to correct technical and experimental biases from
Hi-C readouts. This is a simplified, and less computationally intensive normali-
sation procedure than the one described by Yaffe and Tanay, since it corrects the
systematic biases in Hi-C contact maps at the desired resolution level, instead
of modelling Hi-C data at the fragment end level. The drawback here is that the
sequence information is blurred within the contact map.

Concerning data visualisation, some genome browsers [78, 87, 118] are used
to visualise thousands of data tracks for human, mouse and other organisms.
These browsers are mainly designed for visualisation of one-dimensional sig-
nals and are not easily extensible to visualising two-dimensional Hi-C or any
conformation capture data. Furthermore, Hi-C data provide a 3-D model of
the chromosome, which requires tools not only for two-dimensional, but also
for three-dimensional visualisation. Genome3D [16] is an interesting effort to-
wards this achievement.

3.5 Discussion

3C-based methods have a high capture probability between neighbouring frag-
ments, conforming to their close spatial proximity. Drifting apart from a given
fragment leads to exponential decrease of capture probability, until it reaches a

89

CHAPTER 3. Background – Genomics

baseline level [102, 45]. This means that junctions between two given sites lo-
cated far away on the chromosome, or on different chromosomes, will be rare.
For this reason, the 3C strategy is unsuitable for the analysis of long-range chro-
matin contacts. 4C is currently limited to the description of interactions between
a single restriction fragment and the rest of the genome, but it cannot be used to
predict the conformation of larger regions elsewhere on the chromosome (cis)
or on other chromosomes (trans). Local interactions are not yet readily picked
up due to a lack of resolution [45]. 5C was designed to increase the through-
put and accuracy of 3C and allows the concurrent determination of interactions
between many selected domains.

NC methods give a population-based measure that relies on spatial prox-
imity but does not directly convey a spatial context. Hi-C data add a spatial
context to biological inquires and facilitate the discovery of gene regulation fac-
tors. On the other hand, it cannot measure the dynamics of interactions between
multiple genomic loci, like fluorescent microscopy would do. However, it does
provide the ultimate connectivity between the genomic sequence and the spa-
tial conformation. ChIA-PET reduces the complexity for genome-wide analysis
and is applicable to many different protein factors involved in transcriptional
regulation or chromatin structural conformation, and is dependent on the iden-
tification of sequences that can be mapped to the reference genome [45].

The Hi-C method has been the first to demonstrate that the genome is par-
titioned into numerous domains, even though the 3D architecture of the nu-
cleus was inferred since a late Eighties’ seminal study by Mukherjee et al. [113],
where chromatin looping in the presence of ligase was first detected. Subse-
quent analysis suggested that chromosomes are organized in hierarchical length
scales. From low to high resolution, chromosomes first fold to occupy dis-
tinct territories and positions in the nuclear space defined in part by interac-
tions with nuclear subdomains. Individual chromosomes are then folded into
compartments A (open/active) and B (closed/silent) that preferentially interact
together, respectively. Within compartments, the chromatin is characterised by
the presence of smaller domains, which are in turn partitioned into condensed
structures ∼ 1 Mb in size, called “topologically associated domains” (TADs),

90

3.5. Discussion

largely conserved between cell types and across species. The chromatin is fur-
ther folded into sub-TADs, the topologies of which can vary in a tissue-specific
manner. TADs are identified as densely interacting squares on the diagonal of
the contact map (see Figure 3.3).

In this thesis we investigate a novel approach that permit to render a pic-
ture of the genome organisation and subsequently study the interactions that
occur among genomic entities, which are likely to play a part in many func-
tional and regulatory processes. To achieve this purpose, we will start focus-
ing on Hi-C data processing, because it provides a three-dimensional snapshot
of the chromosome by measuring the number of ligation events between non-
neighbouring sites. Upon this 3D snapshot, we integrate heterogeneous one-
dimensional data coming from different experiments (e.g., ChIP-Seq and RNA-
Seq), that will enrich the information about genome spatial organisation with
additional functional elements.

3.5.1 Visualisation of biological data

Visualisation of genomic data is crucial for both hypothesis generation and de-
tection of potential artefacts. Molecular interaction data that are stored in a vari-
ety of databases are the cornerstone of many computational approaches aiming
to analyse, model, interpret and predict biological phenomena. Interactions are
often thought of as constituting networks, which are used to model molecular
interactions as they were large systems of interacting particles [81, 132].

Despite a small number of interactions might be difficult to understand through
a graph-based representation19, statistical properties relating to all interactions
could contain valuable information: graphs are convenient representations of
molecular interaction networks, and could be treated similarly to large systems
of interacting particles. From these premises emerged network biology [21], a
combination of systems biology, graph theory and computational and statisti-
cal analyses in which the topology of the graphs representing molecular inter-
action networks themselves became the subject of study. Over the past decade,

19While network and graph are two distinct, though related, concepts, they will be used inter-
changeably throughout this work.

91

CHAPTER 3. Background – Genomics

network biology has changed from being a descriptive approach, to a predictive
tool used to discover biologically relevant facts.

It is worth recalling that graphs are structures representing relationships be-
tween pairs of objects. A graph G = (V,E) is composed by a set V of nodes (or
vertices) and a set E of node pairs called edges (or links) that describe the rela-
tionships between pairs of nodes. When two nodes u and v (u, v ∈ V) are linked
(i.e. (u, v) ∈ E), u is said to be a neighbour of v, and vice-versa. A neighbour-
hood graph for a node u is thus the set of all nodes adjacent to u, included u.
In directed graphs, used for modelling non-symmetric relationships, each link
is directed and has a source node (origin) and a target node (destination). The
number of neighbours of a node is called its degree. Weighted graphs normally
describe non-binary relations by associating scalars (or weights) with links. An
induced subgraph G′ ⊆ G is a subset of the nodes of G, along with all links
whose endpoint nodes are both in G .

With a graph-based representation it is possible to apply network analysis
over the resulting graph and study graph metrics to reduce structural properties
of a network to real numbers, facilitating the comparison of different networks.
Topological measures (such as node degree, and path metrics) capture graph’s
structure for nodes and edges and highlight the “importance” of the actors.
Centrality metrics describe the interactions that (may) occur among local enti-
ties while ranking of nodes by topological features (such as degree distribution)
can help to prioritize targets of further studies or lead to a more local, in-deep
analysis of specific chromosome locations. Here studies of functional similarity
can suggest new testable hypotheses [162].

3.5.2 Research niche

To the best of our knowledge, few tools are able to compare, visually or sta-
tistically, two Hi-C contact maps [136, 140], and none of these tools allow the
joint analysis of more than two datasets coming from multiple time points, con-
ditions, or cell types. Also, many of the existing methods do not scale to high-
resolution Hi-C data from large genomes, such as human and mouse. Moreover,
the integration of two-dimensional Hi-C data or three-dimensional chromatin

92

3.5. Discussion

models with the vast quantity of available one-dimensional datasets — such as
replication timing, histone modifications, protein binding and gene expression
— is still rather understudied.

Table 3.1 lists some common Hi-C tools for Hi-C data analysis. The solution
that emerges from our work can be clearly compared to the above, but proposes
a different point of view concerning chromosome structures and interactions:
by leveraging the graph-based representation, our solution permits to analyse
genomic processes with a “social network” point of view, focussing on the fea-
tures that lead to tie formations and that likely foster interactions among ele-
ments. Furthermore, most of the tools listed in Table 3.1 do not seem to account
for performance concerns, mostly because these tools are logically composed
of several different computational stages (such as pipelines), where each stage
has different computing requirements. Notably, those tools that encompass an
alignment phase are able to exploit some multi-processing capabilities during
this phase.

The first NuChart prototype [107] applied Hu et al. solution to normalise se-
quencing biases and estimate a score for each read, identifying half of the Hi-C
contact instead of normalizing the contact map. In this thesis we leverage this
solution, proposing an ex-post normalisation that is used to estimate a proba-
bility of physical proximity between two genes, expressed as a score assigned
to an edge connecting two nodes in the neighbourhood graph. In this way, the
sequence information contained within the read that determined an interaction
between two genes, is preserved, while the simple contact map representation
would hide this information behind the contact frequencies.

Concerning visualisation, all the tools listed in Table 3.1 provide visuali-
sation means to support processing results: normally, Hi-C data is depicted
through heat maps where highly interacting regions are visible at first glance
(see Figure 3.3). In our work, the graph-based visualisation in fostered: differ-
ently from the previous, a graph clearly depicts the actors of the complex system
in use (e.g., genes), and permit to annotate additional features on the graph, or
to customise some visualisation features in order to render a better picture of
the analysed system.

Network visualisation has its drawbacks: in primis, common visualisation

93

CHAPTER 3. Background – Genomics

engines work fine with small-to-medium size networks, but become hard to
read when graph dimensions increase (at least, on common visualisation me-
dia). We will discuss our efforts for an exhaustive representation of the results
we obtain, while in Chapter 7 we discuss open issues and future works, includ-
ing the visualisation problem.

94

Chapter 4

Scalable chromosome exploration:
introducing NuChart-II

In this chapter we describe our approach for developing a fast and scalable
tool aimed at facilitating the analysis of chromosome conformation using a
gene-centric, graph-based representation of genomic data. Here we propose
NuChart-II, a software that allows to visualize and integrate genomic features
involved in the chromosome spatial organization, built on top of FastFlow, a
C++ framework for structured parallel programming.

4.1 Three-dimensional chromosome exploration

A huge amount of information is daily produced in molecular biology laborato-
ries all around the world, but the representation and interpretation of this data
in an effective way is a complex and challenging task. Specifically, sequencing
results from expression profiles, methylation patterns and chromatin domains
are difficult to describe in a systemic view. Also, an increasing number of ex-
periments highlight the importance of studying the spatial organisation of the
DNA in the nucleus, in order to gather insight on the processes ongoing within
a cell: there is an undeniable need for a software that permits the integration
and the interpretation of genomic data on a nuclear map, capable of represent-
ing the effective disposition of genes in the three-dimensional (3D) space.

95

CHAPTER 4. Scalable Chromosome Exploration

Over the last decade, a series of molecular and genomic approaches have
been developed to study three-dimensional chromosome folding at increasing
resolution and throughput [45]; these methods are all based on the Chromo-
some Conformation Capture (3C) technique and allow the determination of the
frequency with which any pair of loci in the genome is in close enough physi-
cal proximity (probably in the range of 10-100 nm) to become cross-linked [46].
A 3D view of chromosomes might reveal that widely separated functional ele-
ments actually result to be in close spatial proximity, and their interaction can
be the key for detecting critical epigenetics patterns and chromosome translo-
cations involved in the process of genes regulation and expression.

Among 3C-based techniques, the Hi-C method exploits next-generation se-
quencing (NGS) techniques to investigate genomic loci that physically interact
in the nucleus [102]. Hi-C gives information about coupled DNA fragments that
are cross-linked together (during the formaldehyde fixation step of the experi-
mental protocol) due to spatial proximity, providing data about the chromoso-
mal arrangement in the 3D space of the nucleus.

The output of a Hi-C process is a list of pairs of locations along the chro-
mosome, which can be represented as a square matrix Y , where Yi,j stands for
the sum of read pairs matching in position i and position j, respectively. This
matrix-based representation, called contact map, gives the contact frequencies
between a group (or groups) of genomic bins. The contact frequency between
two bins relies on their spatial proximity and thus it is expected to reflect their
distance. A contact map is reliable while looking at the intensity of the interac-
tions between two chromosomes, but becomes unsuitable to depict the neigh-
bourhood of a gene (or of a cluster of genes), lacking a possible emphasis on
which actors could play a significant role in the gene regulation process.

On the other hand, a graph-based representation of Hi-C data can be very
useful to create a map where other omics data can be mapped, in order to charac-
terize different spatially-associated domains: a graph has a high level of expres-
siveness, insofar as nodes represent the actors of a process while edges identify
relationships among the actors. Structural properties of a graph can reveal sig-
nificant information on how the actors of the represented process interact, while
parallel algorithms can be employed to operate over a graph.

96

4.1. Three-dimensional chromosome exploration

The construction of such graphs is based on the exploration of static datasets:
raw data resulting from Hi-C experiments are processed through the HiCUP
pipeline [19], which produces millions of paired-end reads (i.e., short DNA se-
quences with start/end coordinates) listed in a .sam file. These reads are eval-
uated against a reference genome and an organism’s list of genes. Static data
structures are constructed from these datasets and are needed throughout the
stages that characterize the genomic data analysis. However, using full data
structures dramatically increases the size of used memory and induces an arti-
ficial memory-bound nature that can be avoided. For instance, not all informa-
tion is needed at every phase of data exploration and data analysis: by reducing
or optimising the working set (that is, the collection of information referenced
by a process during the execution) and by applying memory optimisations, it is
possible to substantially improve the overall performance.

Although several solutions for Hi-C data processing exist, most of them
poorly exploit computing capabilities and optimised memory access in modern
shared-memory architectures. Moreover, the majority of them propose contact
maps for the analysis of the chromosome structure (see Section 3.4), but this
approach flattens the possibilities for data interpretation uncovered by Hi-C ex-
periments to a mere frequency count, while the genomic information — such
as the DNA sequence, mapping quality score, fragment length, gene expres-
sion, etc. — is blurred beneath. We propose an approach that overcomes these
limitations: based on an early R prototype [107] we designed NuChart-II, a C++
application that uses advanced parallel computing techniques (such as lock-free
synchronisation and algorithmic skeletons) and applies memory optimisations
to provide a (gene-centric), graph-based representation of the chromosome or-
ganisation.

The first prototype [107] entirely relied on the R environment, and presented
evident limitations in performance and scalability: its overhead in managing
large data structures and its weaknesses in exploiting the full computational
power of multi-core platforms made the first NuChart prototype unfit to scale
up to larger data sets and highly precise data analysis (which requires many
iterations of graph building process).

97

CHAPTER 4. Scalable Chromosome Exploration

NuChart-II has been designed according to a structured parallel program-
ming approach [15, 4]; in particular, it has been designed on top of the FastFlow
parallel programming framework [8], that provides high-level parallel program-
ming patterns for the C++ language20.

Contributions

The whole application is characterized by four main phases: 1) data retrieval
from static datasets; 2) construction of the graph; 3) weighing of the edges as
a result of the normalisation step; 4) output and statistics. Phases two and three
are suitable for being rewritten in terms of loop parallelism, since their kernels
can be run concurrently on multiple processors with no data-dependencies in-
volved: the construction of the graph and the weighing of the edges. These
two phases constitute by far the most onerous parts of the application in terms
of execution time: particularly when the diameter of the graph increases, these
phases take up the 80% of the whole execution time.

In this chapter we will discuss how these phases have been deployed and
which results we obtained from each step: our efforts have focused either on the
parallelisation of the application for shared-memory multi-core architecture, or
on the design of a fast and reliable tool for Hi-C data analysis. A comprehensive
list of available tools for Hi-C data analysis has been presented in Section 3.4,
together with a discussion on normalisation techniques needed to correct sys-
tematic biases that may arise from sequencing and mapping: we refer to those
pages for a background on omic tools for Hi-C data analysis. An up-to-date
list of such applications is also available from the Omictools website21: some of
them focus more on the initial steps of chromosome conformation studies, such
as mapping and filtering, whereas others focus on normalization, visualization,
and statistical confidence estimation. In our view of a usable mean for Hi-C
data analysis, visualization and statistics assume a dramatic importance. To
the best of our knowledge, no other tool proposes a gene-centric, graph-based
visualization of the neighbourhood of a gene, as NuChart-II does.

20see Section 2.4
21http://omictools.com/3c-4c-5c-hi-c-chia-pet-c298-p1.html

98

http://omictools.com/3c-4c-5c-hi-c-chia-pet-c298-p1.html

4.2. Neighbourhood graph construction

With respect to the normalisation step, the first NuChart prototype [107]
proposed a modification of Hu et al. solution [76] and attempted to estimate a
score to each read, identifying half of the Hi-C contact instead of normalizing
the contact map. In this way, the sequence information contained in the read is
preserved and not blurred within the contact map’s numbers. With NuChart-II
we leverage this solution and propose an ex-post normalisation that is used to
estimate a probability of physical proximity between two genes, expressed as
a score assigned to an edge connecting two nodes in the neighbourhood graph
(see Section 4.3).

Concerning the re-engineering of the application, the FastFlow library has
been our first choice among available algorithmic skeleton frameworks (see Sec-
tion 2.4.3): despite many others provide support for share-memory multi-core
architectures — which is the type of architecture we have been using for this
work — we were already acquainted with FastFlow, and largely enjoyed the
possibility to seamlessly parallelise for loops by means of lambda functions.
We also evaluated our solution against TBB- and OpenMP-based implementa-
tions, so that we could have a comparison with parallel programming frame-
works created by major industry powerhouses, as opposed to other algorithmic
skeleton frameworks developed by academic institutions.

As a matter of fact, performance achieved with the two alternatives we eval-
uated reached comparable results to those obtained with FastFlow. Main dif-
ferences where found mostly in terms of ease of coding: OpenMP permits to
easily achieve the desired result, by simply using the pre-compiler directives
that permit to exploit the loop parallelism. On the other hand, Intel TBB imple-
mentation was not as much straightforward: the parallel_for pattern needs
more tuning and fixes with respect to FastFlow’s one, and thread-local storage
is not as easy to use.

4.2 Neighbourhood graph construction

We recall that a graph G is a formal mathematical representation of a collec-
tion of vertices (V), connected by edges (E) that model a relationship among

99

CHAPTER 4. Scalable Chromosome Exploration

vertices. In this context, vertices represent Genes (e.g., an ordered set of an or-
ganism’s genes) labelled with genes names. Here we define a paired-ends Hi-C
read as a connection c, (c ∈ C), meaning a spatial relationship between two
genes. Follows that two genes g1, g2 ∈ V are connected if there exists a connec-
tion c(g1, g2) ∈ C encompassing both of them. If such a connection exists, then
exists an edge e = c(g1, g2) ∈ E.

The neighbourhood graphNG, NG ⊆ G, can be defined as undirected weighted
graph NG(VN , EN , w) where:

• VN ⊆ V is a set of Genes;

• EN ⊆ E is a set of existing Edges;

• w : E → R+, 0 ≤ w ≤ 1, is a function that assigns a probability of actual
physical proximity for each pair of adjacent genes c(gi, gj) connected by
means of a paired-ends Hi-C read.

The neighbourhood graph is thus the induced subgraph obtainable starting
from a given root vertex v, and including all vertices adjacent to v and all edges
connecting such vertices, including the root vertex (see Figure 4.1). With these
premises, our neighbourhood graph represents a topological map of the specific
nucleus region to which a gene belongs.

Graph construction

A typical Hi-C analysis begins with the pre-processing of FASTQ files with
HiCUP, which produces a SAM file containing millions of paired-end reads.
These reads represent the main input of NuChart-II, because they expose the
spatial information exploited by the process to infer a topological structure of
the DNA.

By refining the algorithm proposed in the original prototype [107], NuChart-II
evaluates reads against a reference genome that contains the coordinated of
chromosome fragments generated by a digesting enzyme, and a list of genes
with their positions (again, coordinates) along the DNA. The basic mechanism
in the exploration stage loops over all wanted genes: for each gene, it looks for

100

4.2. Neighbourhood graph construction

Figure 4.1: Neighbours of a gene in our graph representation. An edge between two genes
exists if they are connected, that is to say, if a paired-end Hi-C read that encompasses
two genes exists, then exists an edge that connects the two genes.

all those paired-ends Hi-C reads (connections ci ∈ C, in our case) whose first
end encompasses the current gene — basically comparing chromosome frag-
ment and gene coordinates. Among found connections, it searches for neigh-
bouring genes that might be located within c’s second end. The reason for
searching adjacent genes in a read’s second end come from the way Hi-C (and
3C-based) experiments are conducted: Hi-C identifies spatially adjacent DNA
segments — in terms of three-dimensional space. If a gene is found on a read’s
first end, a possible gene found in the second end is likely to be spatially adja-
cent, unless of sequencing errors and biases.

If we define the root of our neighbourhood graph to be at level 0, a search at
level 1 yields all the genes directly adjacent to the root. Follows that a search at
level i returns all genes directly adjacent to any gene discovered at level i − 1,
starting from the root. The final graph is returned in form of a list of edges.

Listing 4.1 reports a pseudo-code for the (sequential) graph construction.
Each iteration of the outermost while loop pops an item q from the queue of
unvisited genes and explores the reads dataset to find those reads whose first
end encompasses q (Listing 4.1, row 10). For each discovered read, the algo-
rithm searches for a gene on the second pair of the active read (Listing 4.1, row
13): if a candidate gene g is found, an edge (q, g) is possibly added to the edges
list E (unless it already exists), and g is pushed into the working queue Q, as

101

CHAPTER 4. Scalable Chromosome Exploration

1 BuildGraph (roots, Reads, Genes) {
2 Q = V = E := ∅
3 G := ∅
4 lv := 0
5

6 push roots in Q
7 while (Q not ∅) {
8 pop q from Q
9 for_each (c in Reads, c.FirstEnd.Chr == q.Chr) {

10 if (q overlaps c.FirstEnd) {
11 // find neighbour genes for q
12 for_each (g in Genes, g.Chr == c.SecondPair.Chr) {
13 if (g overlaps c.SecondPair and (q,g) not in E) {
14 add (q,g) to E
15 if(not g.Visited) {
16 add g to V
17 push g in Q
18 }
19 }
20 }
21 }
22 }
23 lv := lv + 1
24 }
25 G := (V, E)
26 }

Listing 4.1: Sequential graph construction

in any typical graph exploration procedure, unless it has already been visited.
When the queue Q is empty, all genes reachable through the given set of reads
have been found: the procedure terminates returning the graph G as a list of
edges. Note that each edge represents a connection between two genes: for
each edge of the graph, the DNA information contained in the Hi-C read is still
available, including mapping quality score, DNA sequence and fragment co-
ordinates. We also keep count of the level of each found gene, intended as its
“distance” from the starting node: the variable lv keeps track of this informa-
tion.

At each iteration, a subset of the Hi-C reads file is accessed — namely, those
reads whose first end falls in the same chromosome as the one enclosing the
gene q (Listing 4.1, row 9). Then, for each read c, a subset of the genes dataset

102

4.2. Neighbourhood graph construction

is accessed — namely, the genes enclosed in the same chromosome as the one
enclosing the second end of the connection c (Listing 4.1, row 12).

4.2.1 Data-parallel BFS-like graph exploration

The graph exploration proceeds according to a Breadth First Search (BFS) strat-
egy: starting from one or more root genes (the starting node(s) of the graph), it
expands the discovered graph one level at a time, until either all the reachable
nodes have been found (i.e. fix-point) or up to a chosen distance from the root.
The BFS-like graph exploration results in a data-parallel procedure, in which
any arbitrary subset of reads can be processed independently from each other,
provided that no data dependency is involved in their manipulation. Ideally, it
can be parallelised in a seamless way by just taking the kernel of the procedure
and putting it into a ParallelFor loop pattern (see Section 2.4.3). High-level
parallelisation of graph exploration has been treated, among others, in [75].

This high-level approach requires some adjustments. For instance, the BFS-
like graph exploration should be organised in a level-synchronised way, and
concurrent write accesses to data structures shared between worker threads
must be managed. For example, each iteration of the loop should build a lo-
cal graph, and some mechanism of graph merging from local graphs to a global
output graph (actually one for each level) should be provided. Globally, this
approach amounts to provide a reduce phase after each ParallelFor instance,
in which per-thread local structures are merged into per-level global ones.

4.2.2 Memory-optimised graph construction

User-defined data structures used for describing complex data often gather sev-
eral (related) elements in a single data type. This logical organisation also re-
flects how these elements will be mapped in physical memory and this — ide-
ally — should not affect the data access performance. However, current archi-
tectures are highly optimised for contiguous memory access, thus extra care
should be taken when dealing with arrays of complex user-defined data struc-
tures.

103

CHAPTER 4. Scalable Chromosome Exploration

1 BuildGraph (roots, Reads, Genes, L_MAX, NTH) {
2 Q = Γ = G := ∅
3 C[NTH] = V[NTH] = E[NTH] := ∅
4 lv := 0
5

6 push roots in Q
7 while (Q not ∅ and lv < L_MAX) {
8 pop q from Q
9 // find Hi-C Reads for q

10 ParallelFor (c in Reads, NTH) {
11 if (q overlaps c.FirstPair and q.Chr == c.Chr)
12 add c to C[th]
13 }
14 // find neighbour genes for q
15 ParallelFor (c in C[th], NTH) {
16 for_each (g in Genes, g.Chr == c.SecondPair.Chr) {
17 if (g overlaps c.SecondPair)
18 add g to V[th]
19 add (q, g) to E[th]
20 }
21 }
22 // level synchronisation
23 Γ := BuildPartialGraph(V[th],E[th])
24

25 for_each (v in V[th], 0 ≤th<NTH) { // next level vertices
26 if (not v.Visited)
27 push v in Q
28 }
29 lv := lv + 1
30 C[th] = V[th] = E[th] := ∅
31 }
32 G := BuildGraph(Γ)
33 }

Listing 4.2: Parallel BFS Graph Construction

104

4.2. Neighbourhood graph construction

The basic BFS implementation of Listing 4.1 relies on full data structures con-
taining a number of fields required in different phases of the application, event
though many of them are not accessed in the graph construction stage. For
example, much of the information concerning genes symbols, DNA sequence,
chromosome name, etc. At a first glance, they might not seem to harm the over-
all performance, but the actual results do not achieve expected performance: us-
ing full data structures simply showed extremely poor scalability results, which
was caused by the loading of (lots of) unused data into caches due to spatial
locality. This overhead can actually saturate the memory bus, making it nearly
impossible to exploit multiple processors in a multi-core system, even in the
case of an embarrassingly parallel application.

The approach we propose here aims at creating data structures that only de-
fine the subset of variables used in each specific part of the program: for each
of these parts, the needed data is duplicated and stored in novel data structures,
so that the memory intensive computations can be performed using a substan-
tially reduced working set. This permits to improve the memory bandwidth
usage and to reduce cache misses. Since the duplicated data has read-only se-
mantics, the choice of data duplication is preferred in this case, because it can
be easily implemented without breaking the application logic: the original data
structures are still usable in other parts of the code (e.g., friendly print output
results). In cases where the duplication is not affordable, it is also possible to
optimise data structures at the price of a more complex software design, with
the need of substantial refactoring of all the source code.

Listing 4.2 presents a pseudo-code with a parallelised implementation of the
graph construction phase, where a ParallelFor pattern is used. Q represents
our working queue, that contains unique genes discovered throughout the cur-
rent iteration. L MAX determines the maximum distance from the root that has
to be reached: in this way we can decide the coverage of our search. C[NTH],
V[NTH] and E[NTH] are used to store per-thread local data, where NTH defines
the degree of parallelism to be used (i.e., the number of threads in use) and
th identifies thread’s own container, such that 0 ≤ thid < NTH. V[NTH] and
E[NTH] contain the found genes and the edges so far identified, respectively,
by each of the working threads. C[NTH] will contain all paired-ends reads

105

CHAPTER 4. Scalable Chromosome Exploration

that each worker thread identifies as encompassing a gene. Γ is used at ev-
ery level synchronisation to store partial graphs (Listing 4.2, row 23), where the
BuildPartalGraph function is responsible for removing duplicate edges and
returns a graph with unique vertices and edges identified so far. The definitive
graph is built at the very end (Listing 4.2, row 32, BuildGraph function).

The algorithm starts searching for those Hi-C paired-end reads whose first
end fragment encompasses the gene in focus. This yields a list of reads (con-
nections) containing only chromosome fragments where neighbour genes may
be located (Listing 4.2, rows 10–13): upon this list the search for neighbours
takes place, using NTH independent threads over the set of connections (rows
15–21). Each thread looks for genes whose coordinates overlap the second end
of the read. When a gene matches the test, the new found gene is added to the
thread-local vertices set, and an edge is created between the considered vertex
and the new one.

At each iteration level, the algorithm first collects all potential connections
for a gene, and then searches for adjacent genes (neighbours), in parallel, over
all the connections. At the end of each level iteration, the parallel execution is
synchronized: at this point thread-local sets are processed and a partial graph
is constructed with unique nodes and edges discovered at the current iteration
level. The definitive graph is built at the end of the execution. The iterations
proceed until all the nodes of the graph have been visited, or preferably up to
the desired level specified through L MAX.

Discussion

Notoriously, when threads access global data structures or shared data struc-
tures, these are potential sources of false sharing, particularly when using a
single-heap allocator that gives to many threads parts of the same cache line
(see Section 2.2). In our implementation we tried to minimise the number of dy-
namic memory allocations performed by each thread, mostly using pre-allocated
containers (e.g., C++ vectors) for read-only accesses: memory allocation is per-
formed padding each allocated slab to the cache line size, so that objects are
spaced far enough apart in memory that they cannot reside on the same cache

106

4.3. Normalisation

line, thus limiting false sharing. A drawback here is the risk of memory blowup,
due to the padding that slightly increases each object’s size, and the overall
used memory: this risk can be minimised by adhering to the well know rule
of thumb, which dictates that all dynamic allocated memory must be freed, in
order to avoid memory leaks and undesirable memory fragmentation.

NuChart-II’s graph construction performance is strongly affected by the size
of data structures used throughout the computation: most of biology-related
applications deal with memory-bound problems, as a consequence of the huge
amount of data that are normally involved in data analysis and simulations.
Datasets used for DNA exploration are ordered sets of genomic features — such
as paired-end reads, chromosome fragments, human genes labelled with genes
names — whose sizes range between tens of Megabytes to several Gigabytes.

Datasets from Hi-C experiments easily reach several Gigabytes in size, and
they are normally used in an application together with supplementary data: at
run-time, the total memory load quickly grows up, easily exceeding 8 GB of
used memory for a 4 GB Hi-C dataset. The use of a dedicated memory pool
for datasets allocation, as we attempted to realise, reduces memory fragmenta-
tion and avoids memory leaks, but can easily over-load main memory, causing
the OS to swap out pages and irremediably compromising performance. The
working set reduction alleviates this problem: by only keeping actually needed
“fields”, data structures are contiguous and consecutively accessed. In this way
the underlying cache optimisation mechanism works more efficiently, less un-
used data is loaded into the cache and more memory bandwidth is available.

4.3 Normalisation

Particular attention is given to the detection and normalisation of systematic
biases — as already discussed in Section 3.3.1 — that can be associated with
sequencing platforms (such as GC-content) and read alignment (such as map-
pability), while others are specific to Hi-C experiments (such as the frequency
of restriction sites). A normalisation process is needed to remove these biases

107

CHAPTER 4. Scalable Chromosome Exploration

and avoid false-positives or false-negatives results, that could lead to incorrect
data interpretation.

Figure 4.2: A graphical representation of the edges weighing procedure

In Section 3.4 we discussed the achievements by Hu et al. [76]: based on
their technique, NuChart-II applies an ex-post normalisation to each edge of the
resulting neighbourhood graph.

The presence of an edge is related to the existence of a Hi-C read that encom-
passes two genes: normalising each edge using genomic features — which may
include the DNA sequence, genes and gene order, regulatory sequences and
other genomic structural landmarks — yields a significance estimate of frag-
ments interactions. Such estimate is then used as the weight of the edge, that
assumes the role of likelihood of physical proximity for the involved genes. Us-
ing the local genomic features that describe the chromosome (fragment length,
GC-content and mappability), we can set up a generalized linear model (GLM)
with Poisson regression, with which we estimate the maximum likelihood of
the model parameters (Figure 4.2). The model is given by the formula:

e(Y) = g{XTβ}.

108

4.3. Normalisation

Here Y , the dependent variable, is the contact map that contains the mea-
sured contact frequencies: the assumption of this GLM is that the measured
interaction frequencies are generated from a particular distribution in the expo-
nential family, the Poisson distribution in our case, which is used to count the
occurrences in a fixed amount of space. X is the independent variable, which is
built from chromosome length and GC-content, measured for each locus of the
contact map. β denotes the parameter vector to be estimated: XTβ is thus the
linear predictor, that is the quantity which incorporates the information about
the independent variables into the model. It is related to the expected value of
the data through the link function, g, which is the natural logarithm in our case
because it is the canonical link function used with a Poisson distribution.

The maximum likelihood estimates for each edge is computed using the It-
eratively Weighted Least Squares algorithm (IWLS), proposed by Nelder and Wed-
derburn [116]. The best-fit coefficients returned by the linear regression are used
to compute the final score of an edge, so that the edge contains an estimate of
the physical proximity between the two genes it links, plus the genomic infor-
mation for both genes. Listing 4.3 reports the pseudo-code for the normalisation
of a single edge.

For each edge, a contact map (CMap) is constructed directly modelling the
read count data at a resolution level of 1 Mb (or according to the resolution of
the Hi-C experiments used) for the chromosomes identified by the Hi-C read.
The rows and the columns of the contact map correspond to genomic regions
(bins), and each point of CMapi,j denotes the intensity of the interaction be-
tween positions i and j. The contact frequency between two bins relies on their
spatial proximity, and thus it is expected to reflect their distance. Also, Hi-C
data matrix is symmetric, thus we consider only its upper triangular part (de-
noted with ‘ˆ’). Other matrices are built after parsing text files containing the re-
quired values for each locus of interest. Text files containing these feature have
been downloaded from online repositories (e.g., NCBI22, EBI23). Model compo-
nents are built using arrays containing such upper-triangular values (excluding
the diagonal: diagonal values are all zeros, because a chromosome locus does

22http://www.ncbi.nlm.nih.gov/
23https://www.ebi.ac.uk/

109

http://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/

CHAPTER 4. Scalable Chromosome Exploration

1 NormaliseEdge(e, τ, NTH) {
2 LenM = GCcM = MapM = CMap := ∅ // genomic features matrices
3 X = Y = β := ∅
4 Conv := false
5

6 // all matrices have the same size
7 CMap := ContactMap(e.Chr1, e.Chr2)
8 LenM := BuildLengthMatrix(e)
9 GCcM := BuildGCcontentMatrix(e)

10 MapM := BuildMappabilityMatrix(e)
11

12 X := Matrix(LenMˆ, GCcMˆ)
13 Y := Cmapˆ
14

15 while (not Conv) {
16 ApplyLinkFunction(Y)
17 β := ApplyGLM(Y, X, MapMˆ)
18 Conv := CheckConvergence(β)
19 }
20 e.Weight := f(β)
21 }

Listing 4.3: Normalisation

not interact with itself), thus halving the memory consumption for each edge
analysed.

The edges weighing phase is a data parallel application, where any arbitrary
subset of the edges can be processed independently from each other by mean of
a parallel loop pattern. This data parallelism can be properly exploited to boost
up performances and drastically reduce execution time, by just using the code
in Listing 4.3 as the lambda function executed by the ParallelFor pattern:
the skeleton will be responsible for partitioning the data structure containing
all the edges, and will assign a bunch of edges to each worker.

The regression is run until a convergence criterion is met: in our case, we
check that the absolute value of the χ2 (chi-squared) difference at each iteration
is less than a certain threshold τ :

|χ2 − χ2
old| < τ.

In Listing 4.3, the function ApplyGLMwrites the best-fit parameters in vector

110

4.4. Experiments

β, which is the result of the regression: these coefficients are used to calculate
the score (i.e. the estimation of physical proximity) for the edge connecting the
two genes. Also, we compute dispersion and standard error, so as to provide a
useful summary of model fit.

Figure 4.3 shows a neighbourhood graph for the gene TP53. The root gene
is yellow coloured. The neighbourhood graph at Level 2 already shows some
important evidences on how the genes interact and “socially” behave: few ad-
jacent neighbours of the root gene TP53 exhibit a high degree of connected com-
ponents: the role of hub that the two genes (KIA0753 and PHF2) acquire, sug-
gest their importance in maintaining the interactions in that particular genomic
region.

4.4 Experiments

NuChart-II has been designed to overcome the weaknesses of the R prototype,
which had significant bottlenecks in memory management and limitations in
the exploitation of the available computational resources, causing restrictions
in the usability of the tool. This novel implementation addresses these weak-
nesses, making possible a genome-wide exploration of Hi-C contacts — a graph
that comprises almost all human genes can now easily be constructed from a
Hi-C experiments over a cell line. The optimal memory management and data
structure design helped in achieving this result, with outstanding improve-
ments in terms of execution time obtained exploiting loop parallelism tech-
niques on multi-core architectures. We have conducted a number of experi-
ments to verify correctness and goodness of NuChart-II: starting from the work
in [107] we have replicated some of the tests conducted there, in order to have
a basis for comparing the accuracy of the results. We have increased the num-
ber of iterations to further explore genes’ neighbourhood, while also testing the
novel tool on bigger datasets.

111

CHAPTER 4. Scalable Chromosome Exploration

Figure 4.3: Neighbourhood graph for gene TP53 according to LiebermanAiden’s experiment
SRR027963, with neighbours distant 2 hops from the root. Green edges are inter-
chromosome connections; violet edges are intra-chromosome connections. Edges
thickness reflects edges weight

DNA Exploration

We created several neighbourhood graphs for relevant genes or gene clusters,
at different levels of iterations, in order to verify how Hi-C can be used for cyto-
genetics studies. In particular, we focused on Philadelphia translocation, which
is a specific chromosomal abnormality that is associated with chronic myeloge-
nous leukaemia (CML). The presence of this translocation is a highly sensitive
test for CML, since 95% of people with CML have this abnormality, although
sometimes it occurs also in acute lymphoblastic leukaemia (ALL) and in acute
myelogenous leukaemia (AML). The result of this translocation is that a fusion

112

4.4. Experiments

Figure 4.4: Neighbourhood graph with genes ABL1 and BCR, according to LiebermanAiden’s
SRR027956 (left) and SRR027962 (right) experiments

gene is created from the juxtaposition of the ABL1 gene on chromosome 9 (re-
gion q34) to part of the BCR (“breakpoint cluster region”) gene on chromosome
22 (region q11). This is a reciprocal translocation, creating an elongated chromo-
some 9 (called der 9), and a truncated chromosome 22 (called the Philadelphia
chromosome). The Hi-C technique can be used to study such kind of translo-
cations, and subsequently dare to answer questions such as “are these kinds of
chromosomal translocations occurring between nearby chromosomes?”.

With NuChart-II we compared the distance of some couples of genes that
are known to create translocation in CML/AML. In particular, our analysis re-
lies on data from LiebermanAiden experiments [102], which consist of 4 lines of
karyotypically normal human lymphoblastoid cell line (GM06990) sequenced
with Illumina Genome Analyzer, compared with 2 lines of K562 cells, an ery-
throleukemia cell line with an aberrant karyotype. We used well-established
data related to the cytogenetic experiments, and we tried to understand if the
Hi-C technology can successfully be applied in this context, by verifying if
translocations that are normally identified using Fluorescence in situ hybridiza-
tion (FISH) can also be studied using 3C data.

113

CHAPTER 4. Scalable Chromosome Exploration

We studied 5 well known couples of genes involved in translocations and we
analysed their Hi-C probability contacts in physiological and diseased cells. For
validating the presence of an edge in the graph, we used the p-value function as a
test for quantifying the statistical significance of our experiments. Considering
a p < 0.05 threshold, we see that ABL1 and BCR are distant 2 or 3 contacts in
sequencing runs concerning the GM06990 cell line (Figure 4.4, left), while they
are in close contact according to runs related to the K562 cell line (Figure 4.4,
right)24.

This implies that the DNA conformation in cells is effectively correlated to
the disease state and also that Hi-C can be reliable in identifying these cyto-
genetic patterns. Neighbourhood graphs built for AML1 and ETO genes in
leukaemia cells (Figure 4.5, bottom) show a considerable number of “shared”
genes in between the two — meaning that there is a bunch of genes which are in
close spatial proximity with both AML1 and ETO, according to the Hi-C exper-
iment. The presence of these entities likely affects the gene regulation process,
thus confirming the high probability of translocations happening. A between-
ness analysis in this graph highlighted the importance of the shared genes for
playing a part in every possible interactions among the two graphs. In normal
cells (Figure 4.5, top), only two genes are shared, and a fast glance at edges
thickness reveals a low probability of spatial proximity for the two genes with
respect to AML1 (RUNX1, yellow node on the right) thus justifying a lower
probability for a translocation to happen.

Considering the translocation CBFβ-MYH11, they are distant 2 or 3 contacts
in GM06990 (Figure 4.6, left), while they are proximal in K562 (Figure 4.6, right).

These results are of utmost importance for the biomedical community: with
the decreasing of sequencing costs, the Hi-C technique can be an effective di-
agnostic option for cytogenetic analysis, with the possibility of improving the
knowledge on chromosomal architecture nuclear organisation. For example,
Hi-C can be used to infer non trivial risk markers related to aberrant chromo-
somal conformation, like the Msc5a loci for breast cancer, which is known to
play a critical role in the re-organization of a portion of chromosome 9 by CTCF
proteins.

24LiebermanAiden’s experiment presented in [102]

114

4.4. Experiments

C2orf77

KIF13A

RPS6KA2

IMMP2L
ZMAT4

NCOA2

CNGB3

RUNX1T1

FRMD4A

RUNX1

IL1RAPL1

RUNX1T1

CSMD3

PARD3

RUNX1

Key

Intra-Chromosome

Inter-Chromosome

Seed genes

High degree genes

Low degree genes

Medium degree genes

Figure 4.5: Neighbourhood graph for genes AML1 (RUNX1) and ETO (RUNXIT1) according to
LiebermanAiden’s SRR027956 (top) and SRR027962 (bottom) experiments

115

CHAPTER 4. Scalable Chromosome Exploration

Figure 4.6: Neighbourhood graph with genes CBFβ and MYH11 according to Lieber-
manAiden’s SRR027959 (left) and SRR027963 (right) experiments

Concerning visualisation, a drawback is that the readability is dramatically
compromised when the number of nodes and edges increases, likely resulting
in a tangle of edges hardly understandable. NuChart-II supports plotting with
iGraph and GraphViz: these tools perform nicely with small-to-medium sized
graphs, but cannot provide useful representation of huge graphs with more
than ten thousand edges (as it happens when the diameter of the graph in-
creases). Textual and tabular outputs become useful for the analysis of the ge-
nomic regions explored: the probability of a connection can be estimated by
evaluating an edge’s weight, while the overall graph structure is shown in terms
of the distance of each discovered gene from the root(s).

116

4.5. Discussion

Dataset Size Nodes Edges Time (ms)

SRR027956 576 MB 18019 356720 69144.5
SRR027957 665 MB 18086 414964 81948.2
SRR027962 1.9 GB 18605 1049599 219727
SRR027963 958 MB 18450 588635 115111

Table 4.1: Genome-wide graphs built from different datasets starting from gene ABL1

4.5 Discussion

Chromosome conformation capture data actually reveal long-range contacts, ei-
ther between locus pairs that are on the same chromosome but far from each
other (long-range intra-chromosomal), or when detected on different chromo-
somes (inter-chromosomal). Identifying statistically significant contacts between
two intra-chromosomal loci is not trivial and depends heavily on the genomic
distance between the loci, that is affected by random looping of the DNA. On
the other hand, with inter-chromosomal loci it is much simpler: once biases
are eliminated by normalization, in the absence of any prior information on the
pairwise distances among chromosomes all possible pairs of inter chromosomal
loci are expected to interact equally, under the null hypothesis.

This is because the probability of finding a contact on different chromosomes
is so low that even one contact might be significant: highly self-interacting re-
gions, named Topologically Associated Domains (TADs), have been recognised
as regions of chromatin (bins) that fold as discrete three-dimensional (3D) struc-
tures [48]. They tend to favour internal, rather than external, chromatin interac-
tions, and are bounded by narrow segments where the chromatin interactions
appear to end abruptly. When we apply our normalisation on the edges of
the graphs we aim at controlling this random polymer looping by assigning
statistical significance to the observed contact counts, and we operate both on
intra-chromosome and inter-chromosome contacts.

117

CHAPTER 4. Scalable Chromosome Exploration

 0

 4000

 8000

 12000

 16000

 20000

1 2 3 4 5

N
u
m

b
e
r

o
f
n
o
d
e
s

Iteration

Nodes growth per level, with different Hi-C datasets

SRR027956

SRR027957

SRR027962

SRR027963
 0

 4000

 8000

 12000

 16000

 20000

1 2 3 4 5

N
u
m

b
e
r

o
f
n
o
d
e
s

Iteration

Nodes growth per level, with different Hi-C datasets

SRR027956

SRR027957

SRR027962

SRR027963

Figure 4.7: The graph growing trend, as described by graphs created from genes ABL1 (left)
and BCR (right) on different Hi-C experiments, shows that a graph almost reaches
its full size at the second (or third) iteration, depending on the Hi-C experiment used
as dataset

4.5.1 Network Analysis and Statistics

Hi-C datasets containing paired-ends reads are the principal input of NuChart-II:
their resolution determines the size of the resulting graph and affects execu-
tion time and memory load. Table 4.1 reports some details concerning graphs
constructed from gene ABL1, using different Hi-C datasets produced by Lieber-
manAiden’s Hi-C experiments [102]: two resulting from experiments conducted
over normal cells (SRR027956, SRR027957), two obtained from experiments con-
ducted over leukaemia cells (SRR027962, SRR027963). Dataset size is reported,
together with graph sizes and execution times.

Interestingly enough, starting from a single gene a graph almost reaches
its full size at the second (or third) iteration, depending on the Hi-C experi-
ment used as dataset (Figure 4.7). This behaviour again highlights the three-
dimensional conformation of the chromosome in the nucleus of a cell, and can
explain why long-range interactions between genes and distal regulatory ele-
ments can happen: the best-studied long-range interactions are those between
genes and distal regulatory elements, such as enhancers. Such long-range inter-
actions are made possible by chromatin looping in the 3D space, allowing gene
regulatory elements to interact with promoters through direct protein interac-
tions [64].

118

4.5. Discussion

Ideally, chromosomes could be represented as masses of spaghetti-like fibers,
packaged and stretched to fit into cells nuclei. TADs compartmentalise chromo-
some into discrete domains, characterized by frequent long-range interactions
of loci in the same domain but less frequent interactions of loci in adjacent do-
mains. TADs are in turn folded into sub-TADs, that suggest a hierarchical or-
ganisation of the chromatin.

The graph-based approach has been proved to be a valuable way for the in-
terpretation of genomic information by mean of complex, dynamical structures
that organize items in an integrated way. Furthermore, it opens new perspec-
tives on the study of the 3D chromosome conformation and the genes interac-
tion: the social network point of view allows to study the relationships among
genes in terms of network theory.

Representing a genome as a graph changes the mindset, and permits to fo-
cus on interactions among genes, which can in turn be interpreted using graph
theory and network analysis. For instance, centrality metrics describe the in-
teractions that (may) occur among local entities and help to identify the most
important and influential genes. Ranking of nodes by topological features (such
as degree distribution) can help to prioritize targets of further studies or lead to
a more local, in-deep analysis of specific chromosome locations. Here studies of
functional similarity can suggest new testable hypotheses [162].

The degree distribution in all graphs we have produced from Hi-C exper-
iments asymptotically follows a power law distribution (see Figure 4.8), and
leads us to consider genes networks as scale-free networks: few nodes are likely
to act as “hubs”, serving for specific purposes in their networks. The clustering
coefficient distribution also follows a power law, suggesting that low-degree
nodes belong to very dense sub-graphs and those sub-graphs are connected to
each other through hubs. This opens to new hypothesis and further investiga-
tions, towards detecting the presence of community structures and study the
mechanisms that drive tie formations and genes interaction.

119

CHAPTER 4. Scalable Chromosome Exploration

 0

 100

 200

 300

 400

 500

 600

 0 250
 500

 750
 1000

 1250

 1500

 1750

 2000

N
u
m

b
e
r

o
f
n
o
d
e
s

Degree

Degree distribution for a genome-wide Hi-C graph

nodes
avg.degree
mode

(a) degr. distrib

 0

 100

 200

 300

 400

 500

 600

0 63 150

N
u
m

b
e
r

o
f
n
o
d
e
s

Degree

Degree distribution for a genome-wide Hi-C graph

nodes
avg.degree
mode

(b) zoom in

Figure 4.8: The two plots above show the degree distribution of a genome-wide graph
built starting from the BOLA3 human gene, according to the LiebermanAiden’s
SRR027962 experiment. The resulting graph has 18450 genes and 588635 edges. The
average degree of the graph is 63, the maximum degree for a node is 2217 and the
most frequent degree among the nodes is 561.

4.5.2 Performance

The memory size required to hold the data strongly affects performance of both
phases of the application, particularly the graph construction phase. We have
accurately tuned the crucial steps in order to maximize the use of memory hier-
archy and fully exploit cache locality, while minimising cache trashing.

Our first target architecture is a NUMA workstation equipped with 4 com-
puting nodes, each having an eight-cores Intel E7-4820 Nehalem processors run-
ning at 2.0GHz, featuring 18MB L3 cache per NUMA node, 256KB L2 cache and
64KB L1 cache with 64 GB of main memory. The Nehalem processors use hyper-
threading with 2 contexts per core. We use up to 32 threads in our executions,
in order to exploit all physical cores without making use of the second context.
We used the GNU gcc 4.8.0 compiler with the optimisation flag ‘-O3’. Thanks to
the internal structure of FastFlow’s ParallelFor, it is possible to use all physical
cores while thread pinning is automatically managed by the FastFlow library.

Considering that the application is also tested on a NUMA platform, we
alse executed NuChart-II using an interleaved memory allocation policy via
the numactl utility, which gives some control over memory policies on NUMA
systems.

120

4.5. Discussion

 0

 4

 8

 12

 16

 20

 24

 28

 32

interleaved default

M
a
x
im

u
m

 S
p
e
e
d
u
p

Memory Allocation Policy

Graph Creation Stage
BFS Exploration Stage

 0

 4

 8

 12

 16

 20

 24

 28

 32

interleaved default

M
a
x
im

u
m

 S
p
e
e
d
u
p

Memory Allocation Policy

Graph Creation Stage
BFS Exploration Stage

Figure 4.9: The chart on the left shows the execution of NuChart-II with no optimisations. The
chart on the right refers to the memory-optimised implementation of NuChart-II.
The maximum speedup obtained by the parallel execution of the graph creation and
BFS exploration phases is reported.

Graph construction

In Figure 4.9 we show the maximum speedup obtained executing NuChart-II
without optimisations (left), with a simple inclusion of the BFS graph explo-
ration within the ParallelFor skeleton. Both interleaved and default mem-
ory allocation policy have been tested: the interleaved policy permits to allocate
memory pages in a round-robin fashion over all nodes in the NUMA system.
This allocation strategy usually leads to some advantages in terms of memory
bandwidth, since spreading the memory load across all nodes prevents a single
memory interface to become a bottleneck, at the cost of higher memory access
latencies in case of a remote memory access.

However, the gain is still minimal and negligible, and the reason can be
found on poor memory hierarchy exploitation: a frequent context in this graph
exploration is to have huge arrays of objects (e.g., paired-end reads, chromo-
some fragments, genomic features, etc.) from which we wish to retrieve those
who match a given criteria (for example based on start and end coordinates).
When a matching is found, the program goes on employing the found variables
to perform further operations using other arrays of custom objects that model
our datasets. On average, only few elements match the criteria, and many val-
ues will be loaded into the cache even though they are not going to be used
by the program. Since cached memory accesses are optimised for contiguous

121

CHAPTER 4. Scalable Chromosome Exploration

Default Memory Allocation Interleaved Memory Allocation

#Threads Graph Creation BFS Graph Creation BFS

1 137 1006 133 962
2 83 522 77 502
4 77 310 43 248
8 72 328 31 173
16 68 357 27 138
32 63 331 21 132

Table 4.2: Execution times (seconds) for the graph construction without optimisations

consecutive accesses, data that is fetched is usually larger than one primitive
variable. In our context, explicitly reading two coordinates typically translates
to automatically loading into the cache some (or maybe all) consecutive vari-
ables from the same object.

Table 4.2 refers to execution times obtained using up to 32 parallel threads.
Each BFS exploration execution time is the sum of all times needed to explore
the graph at each level, until the fix point is reached. At each level, the number
of nodes reached is highly unbalanced, resulting in very different execution
times during the BFS exploration.

The optimisation we propose minimises the needed modifications on ex-
isting code, but creates ad-hoc, trivial POD data structures25 that only contain
variables needed for each specific phase of the algorithm. Arrays of these data
structures are contiguous and can be consecutively accessed: chances are that
the underlying cache optimisation mechanisms will work more efficiently and
less unused data will be loaded into the cache (meaning more useful memory
bandwidth available).

Table 4.3 shows execution times obtained with the memory-optimised im-
plementation using up to 32 parallel threads. Each BFS exploration execution
time is the sum of all times needed to explore the graph at each level. It can be
noticed that the total running time of the BFS step in the sequential run is about

25POD is an acronym for Plain Old Data. A POD data structure is an aggregate class that con-
tains only PODs as members, has no user-defined destructor, no user-defined copy assignment
operator, and no nonstatic members of pointer-to-member type

122

4.5. Discussion

Default Memory Allocation Interleaved Memory Allocation

#Threads Graph Creation BFS Graph Creation BFS

1 84 570 107 566
2 63 291 59 289
4 39 141 31 139
8 34 76 17 73
16 31 51 12 44
20 29 50 11 37
24 28 43 11 31
28 29 39 11 27
32 28 38 10 26

Table 4.3: Execution times (seconds) for the memory-optimised graph construction implemen-
tation

twice faster compared to the sequential execution of the non-optimised imple-
mentation, considering both memory allocation policy. The best performance
is achieved by using memory interleaving, obtaining a maximum speedup of
21.81 by using 32 threads.

It can be noticed how performance improves dramatically, obtaining a max-
imum speedup of ∼ 22 starting from a speedup of ∼ 7 of the naive implemen-
tation. The reduction of the working set permits to better exploit caches and,
accordingly, the algorithm makes fewer requests to main memory to retrieve
data, thus speeding up the computation.

Normalisation

The edges weighing phase is an embarrassingly parallel application: any ar-
bitrary subset of the edges can be processed independently from each other
by means of a parallel loop pattern. With FastFlow’s ParallelFor this data-
parallelism can be properly exploited to boost up performances and drastically
reduce execution time. This can be accomplished by simply defining our weigh-
ing kernel as the lambda function of the ParallelFor.

During execution, each worker thread gets a bunch of edges to work on, ac-
cording to the grain size: we have found that the best performances are reached
when the grain size is purposely kept small. Each thread uses three thread-
local read-only static data structures that hold information about local genomic

123

CHAPTER 4. Scalable Chromosome Exploration

50

100

150
200

300

500

1000

2000

3000

1 4 8 12 16 20 24 28 32

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

-
lo

g
s
c
a
le

Working Threads

Gene LMO2 on SRR400264 L2 - 12361 Edges

TBB
FF
OMP

1

4

8

12

16

20

24

28

32

1 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Working Threads

Gene LMO2 on SRR400264 L2 - 12361 Edges

ideal
TBB

FF
OMP

Figure 4.10: Execution time (left) and speedup (right) of the normalisation phase for 12361
edges, resulting from a neighbourhood graph for the gene LMO2 with genes dis-
tant up to 2 hops from the root, according to the Dixon et al. SRR400264 experi-
ment [48]

features. These data are used to build all matrices needed to construct the re-
gression workspace (see Listing 4.3). The task presents loops doing Floating
Point arithmetic calculations on data that has purposely been modelled in or-
der to fit the L3 cache, so as to fully benefit from compiler optimizations and
vectorization. On the other hand, a number of dynamic memory allocations are
necessary during the execution of the normalisation step. The use of a memory
allocator not designed for parallel programming causes a serialization of the
operations, that leads to a reduction of the total execution time.

Despite the large memory footprint, the implementation based on FastFlow
reaches a quasi-ideal speedup: the memory intensive computations performed
hide the latency to memory accesses, and when compared against OpenMP and
Intel TBB, the recorded performances are substantially similar (Figure 4.10). In-
tel TBB begins to suffer for the dynamic memory allocations when the number
of threads is greater than 24, causing its performance trend to flatten.

Tests have been conducted using as much similar configurations as possi-
ble, trying either with static scheduling or with dynamic scheduling and vari-
able chunk size. With Intel TBB’s parallel_for we used the affinity par-
titioner, because it attempts to perform some automatic cache optimizations.
Eventually, it did not bring substantial improvements with respect to the de-
fault auto partitioner. With FastFlow’s ParallelFor, we found that the best

124

4.6. Concluding remarks

performance was reached when using the scheduler as thread: the scheduler
can be adapted to be run as thread or as an object. When the former solu-
tion is chosen, the number of running threads is #worker threads + 1. When
this number equals the number of cores, the extra thread used (which performs
busy-waiting during synchronisation) introduces non negligible overhead, es-
pecially in fine grain computations. We have anyway noticed that this con-
figuration yields more desirable results in terms of overall performance. For
the OpenMP parallel for evaluation, we used the dynamic scheduling, be-
cause it produced better performance with respect to dynamic scheduling.

4.6 Concluding remarks

The novel implementation of NuChart-II allows the software to scale genome-
wide, which is crucial to exploit its full capability for a correct analysis, inter-
pretation and visualisation of the chromosome conformation. This graph-based
approach opens new perspectives for the analysis and processing of Hi-C data,
focusing on the interactions of a gene with its neighbourhood.

We have shown that a dataset reduction might be the key for a substan-
tial performance improvement in memory-bound algorithms: at each specific
stage of Hi-C data analysis, we drop unneeded fields that would saturate the
memory bus, leading to an overall performance degradation. A working set
reduction brings immediate improvements in memory bandwidth and cache
utilisation, taking full advantage of multi-core architectures. The normalisation
phase has been revisited and provides a valuable estimate of physical proxim-
ity for two genes, while keeping available all genomic data related to the spatial
region where the genes lie. Such genome-wide exploration and analysis is pos-
sible with the aid of novel high-level parallel programming patterns, that allow
many of the issues that burdened the original R prototype to be addressed, ob-
taining performances that would have been inconceivable with the original R
prototype.

125

Chapter 5

NuchaR t: embedding NuChart-II
in R

In this chapter we discuss the integration of our C++ application into the R
environment, an important step toward our objective of augmenting the usabil-
ity of Bioinformatics tools: we aim at obtaining a high-performance pipeline
that allows users to orchestrate analysis and visualisation of multi-omics data,
making optimal use of the computing capabilities offered by modern multi-core
architectures, combined with the versatile and well known R environment for
statistical analysis and data visualisation.

5.1 Motivation: efficiency and usability

In the previous chapter we described NuChart-II as a highly optimised, C++ ap-
plication designed to integrate information about genes positions and paired-
end reads resulting from Hi-C experiments. The goal is to build a sort of to-
pographical map of the chromosome spatial organisation using a gene-centric,
graph-based approach [107, 149]. We have investigated the possibility of intro-
ducing network concepts to represent the behaviour of genomic actors: a net-
work (or graph) has a high level of expressiveness, since nodes represent the ac-
tors of a process while edges identify relationships among the actors. Structural
properties of a network can reveal significant information on how the actors of

126

5.1. Motivation: efficiency and usability

the represented process interact, while parallel algorithms can be employed to
operate over a network. The graph-based is a valuable way for the interpre-
tation of genomic information by means of complex, dynamical structures that
organize items in an integrated way.

NuChart-II has been designed using high-level parallel programming pat-
terns [38, 4] that facilitate the implementation of the algorithms employed over
the graph: this choice permits to boost performances while conducting genome-
wide analysis of the DNA. Furthermore, the coupled usage of C++ with ad-
vanced techniques of parallel computing (such as lock-free algorithms and mem-
ory affinity) makes possible to process much faster, much more data: informa-
tive results can be achieved to an unprecedented degree [50].

However, parallel programming in C++ is not widely used in Bioinformat-
ics, because it requires highly specialised skills and does not fully support the
rapid development of new interactive pipelines. Conversely, the modularity of
R and the huge amount of already existing statistical packages facilitate the in-
tegration of exploratory data analysis and permit to easily move through the
steps of model development, from data analysis to implementation and visual-
isation.

In order to improve the usability of the software while preserving the high
performance achievable with NuChart-II, we opted to combine it with the R
environment, developing a package that can fulfil the needs of a fast and us-
able tool for Hi-C data interpretation. We used Rcpp to bridge C++ and R: Rcpp
comes as an R add-on package that provides a consistent API for accessing, ex-
tending or modifying R objects at the C++ level [52]. It can be used to accelerate
computing by replacing an R function with its C++ equivalent and facilitates
data interchange from R to C++ and vice-versa.

Embedding NuChart-II in R creates an application that can be used either
to conduct a step-by-step analysis of genomic data (i.e., interactive inspection
of each phases’ output), or as a high-performance work-flow that takes hetero-
geneous datasets in input, processes data and produces a graph-based repre-
sentation of the chromosomal information provided, supported by a rich set of
default descriptive statistics derived from the topology of the graph.

127

CHAPTER 5. NuchaRt: embedding NuChart-II in R

5.1.1 Hi-C data analysis step-by-step

The Hi-C data analysis conducted with NuChart-II walks through five main
steps:

1) data retrieval and parsing;

2) neighbourhood graph construction;

3) weighing of the edges as a result of data normalisation;

4) statistical analysis;

5) output and visualisation.

NuChart-II parses a number of options from CLI26 to set up and characterise
each execution. Once started, the application walks through all the steps out-
lined above in a “monolithic” fashion, and yields its results as a summary of the
whole process: the final output is available in terms of a neighbourhood graph
drawn using some plotting engine, together with formatted text files (such as
csv files) that contain whole information necessary to examine the represented
data. This include the actual sequences “contained” in edges, edges probability,
network analysis metrics and various statistical annotations.

Nothing wrong about this, but genomic data analysis, as it is the case with
many other scientific fields, does not work as one monolithic process: differ-
ent stages of data analysis are just fundamentally different, and have different
parallelism patterns, memory access and data access requirements. Also, it of-
ten makes sense to run the same stage of an analysis in a number of different
ways to demonstrate the robustness of novel results or to tackle different sorts
of data, for example one in which a reference genome is available, compared to
one where it is not.

If we consider the possibility to map additional multi-omics features on a
graph — such as genes expression, CTCF binding sites or methylation profiles
— we would choose a dataset from which to gather the required information
and re-execute the application from the beginning, until we get our output with

26Command Line Interface

128

5.1. Motivation: efficiency and usability

mapped omics data. This means that no intermediate inspection is allowed, nor
we could choose some quick statistics to satisfy whatever curiosity or to banish
some doubts: an application like NuChart-II is designed to create neighbour-
hood graphs from Hi-C experiments, and to furnish output results via different
means (graphs and textual). Little can a user do to interrogate the application
during the consecutive steps.

Despite its undeniable efficiency, this lack of modularity highlights a clear
limitation in usability of the C++ implementation. Concerning visualisation,
as the graphs become wider and richer in nodes and edges, it gets harder to
produce appreciable graphical representations.

These factors led us to re-consider R as a “hosting” environment for a scal-
able and usable tool for Hi-C data analysis. From the early R prototype — de-
veloped within the R environment [107] — we learned that high-performance
and good memory hierarchy exploitation is hard to achieve within the R envi-
ronment, due to specificities of the environment itself, and requires a substantial
programming effort. Nonetheless, research during the last decade has widely
explored the use of parallel computing techniques with R.

5.1.2 Parallelism facilities in R

R is an open-source programming language and a well-known software envi-
ronment for statistical computing and graphics. By default, it does not take
advantage of multiple processing elements available on a modern computer: if
a user wants to execute a parallel application she needs first to register a sort of
“back-end” that effectively permits to run a portion of code in parallel.

R’s high extensibility is possible through the use of packages, libraries for
specific functions or specific areas of study frequently created by R users and
distributed under suitable licenses27. For what it concerns high-performance
computing, many libraries exist that foster parallel programming in R, most
of which focus on distributed architectures and clusters of computers. Worth

27Most of the R packages are available from CRAN and are listed in https:
//cran.r-project.org/web/packages/available_packages_by_name.html. An-
other repository that hosts several R libraries is https://r-forge.r-project.org/. If
not otherwise stated, packages mentioned in this section can be found in these two repositories.

129

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://r-forge.r-project.org/

CHAPTER 5. NuchaRt: embedding NuChart-II in R

to mention are Rmpi and Snow (the latter also permits multi-core exploitation
through socket programming).

Rmpi is a wrapper to MPI and exposes an R interface to low-level MPI
functions. The package provides several R-specific functions, beside wrapping
the MPI API: for example, parallel versions of the R’s apply()-like functions,
scripts to launch R instances in a distributed environment, and some error-
handling to report errors from the workers to the manager. Snow (Simple Net-
work Of Worksations) provides support for simple parallel computing on a
network of workstations. It supports several different low-level communica-
tion mechanisms, including private virtual machine (PVM, via the rpvm pack-
age), MPI (via Rmpi) and raw sockets. The package provides high-level parallel
functions like apply() and simple error-handling mechanism. Some exten-
sions to the Snow package, such as snowFT and snowfall, add fault tolerance,
reproducibility and additional management features, together with simplified
interfaces that wrap Snow’s interface.

The multicore package provides functions for parallel execution of R code on
machines with multiple processing elements: all jobs share the full state of R
when parallel instances are spawned, so no data or code needs to be copied or
initialized. Spawning uses the fork system call (or Operating System-specific
equivalent) and establishes a pipe between the master and child process. The
pipe can be used to send data from the child process to the master. Note that
multicore starts its workers using fork without doing a subsequent exec call.
This poses limitations in the variety of operations that can be parallelized, which
normally fall back into simple independent math computations on a collection
of indexed data items (e.g, an array).

The doMC package acts as an interface between multicore functionalities and
the foreach package, that provides a looping construct for general iteration over
elements in a collection, without the use of an explicit loop counter. When used
in combination with doMC (hence with multicore), foreach can execute looping
operations on multiple processors/cores.

Starting from release 2.14.0, R includes the package parallel that incorpo-
rates slightly revised copies of packages multicore and snow libraries.

130

5.1. Motivation: efficiency and usability

Some other libraries provide parallel computing facilities for multi-core sys-
tems without the use of multicore as a back-end. Among them, pnmath (and
pnmath0) offer a hard-coded parallel implementation of most of the basic R nu-
merical math routines, using OpenMP (and Pthreads, respectively) to manage
low-level operations. Once loaded, these packages replace built-in math func-
tions with hand-crafted parallel versions, and require no further changes to
user code. However, these libraries only speed up things for those functions
that have been specifically coded and permit no customisation. R/parallel28 en-
ables automatic parallelization of loops without data dependencies by exposing
a single function: runParallel(). The implementation is based on C++, and
combines low-level system calls to manage processes, threads and inter-process
communications. The user defines which variable within the enclosed loop will
store the calculation results after each iteration, and how these variables have
to be operated and reduced.

These solutions bring good support for parallel computing to the tradition-
ally single-threaded R environment: a parallelization back-end for vectorized
and looping computations, with explicitly hacks of numerically intensive math
routines, to provide higher efficiency and better scalability.

It is worth to mention that an interface to Intel TBB for R also exists29, that
pretty much resembles our approach and permits to use TBB’s parallel_for
pattern to convert the work of a standard serial for loop into a parallel one,
and the parallel_reduce construct can be used for accumulating aggregate
or other values. This solution enforces a master/slave behaviour between R and
C++, so that data-parallel computations can be offloaded to C++.

We will shortly see that our approach pretty much resembles this latter one.
However, in Section 4.5.2 we compared our solution based on FastFlow against
TBB’s parallel_for and OpenMP’s #pragma omp parallel for, show-
ing comparable — when not better — results in terms of speedup.

28R/parallel is available at www.rparallel.org
29https://github.com/jjallaire/TBB

131

www.rparallel.org
https://github.com/jjallaire/TBB

CHAPTER 5. NuchaRt: embedding NuChart-II in R

5.1.3 Memory management in R

The notoriously “poor” memory management mechanism in R is actually a
combination of multiple factors, which also include the way operating systems
allocate memory. Since our development relies on Linux OS, a discussion about
these factors will shed some light over this problem.

When allocating memory, R relies on the OS default memory allocator. In a
Linux system this is normally the glibc allocator that uses the malloc function
to wrap the underlying system call brk. The allocator does not use exact allo-
cation, but normally reserves fixed-size small contiguous chunks of memory to
place any new object. This behaviour normally affects memory management in
all Linux systems, because when releasing parts of a chunk (imagine an object
that occupies half of a chunk’s size), glibc can’t release the whole chunk until
active objects exist in the chunk.

This also influences R’s memory management, because R looks for contigu-
ous bits of memory to place any new object: when allocating lots of different
sized objects without a game plan, memory fragmentation dramatically grows
and if R cannot find a contiguous space for a new object it returns an error
message about lack of memory space. Follows that when manually deleting
unused (small) objects, free blocks that are contained in a memory chunk can-
not be given back to the OS, because there are other objects in the same segment
that are still active. The OS takes care of these situations by swapping out pages
from unused blocks, but this operation is likely to become more and more fre-
quent if the available memory is small, because page faults occurs at higher
rates and also active pages are likely to be swapped out.

R uses a lazy memory reclaim policy, meaning that it will not reclaim mem-
ory until it is actually needed. Hence, R might be holding on to memory because
the OS hasn’t yet asked for it back, or it does not need more space yet. In order
to decide when to release memory, R uses a garbage collector (GC) that auto-
matically releases memory to the OS when an object is no longer used. It does
so by tracking how many references point to each object, and when there are no
references pointing to an object it deletes that object and returns memory to the
OS. This means that when we have one or more copies of a big object, explicitly

132

5.2. NuchaRt

removing the original object does not correspond to free memory space: until
references to that object exists, the memory wont be released. Even a direct call
to the GC does not force R to release memory, rather it acts as a “request”, but
R is free to ignore it [160].

What seems clear from this description is that R has limited control over
memory management mechanism, but it simply uses malloc/free functions
plus a garbage collector. One attempt to force memory to be released to the OS
is the use of the malloc_trim function, that explicitly forces memory release,
provided that a sufficiently large chunk is ready to be released.

A solution to alleviate this problem can be found in some simple rules of
good application design: constructing big objects first, so that smaller objects
can fit inside the footprint left by the larger objects; pre-allocate objects in order
to avoid continuous dynamic memory allocations; avoid unnecessary copies of
objects and correctly free objects as soon as they are no longer needed; avoid
memory leaks that cause memory fragmentation to explode.

5.2 NuchaR t

We aim at building a tool for Hi-C data analysis that is both efficient — in terms
of speed and memory resources exploitation — and usable. We decided not
to use off-the-shelf libraries for parallel computing, because of the well known
R’s limits in memory management: since we are dealing with a memory-bound
algorithm, parallel memory-intensive tasks should be kept on C++ side, while
we rely on R for setting up a usable working environment. Also, we already
had a fully tested C++ solution to our problem: for this reason our choice fall
into Rcpp: Rcpp facilitates data interchange from C++ to R and vice-versa. C++
objects holding the output of a computation are made available within the R en-
vironment, ready to be used as source for advanced statistical analysis, by mean
of a wrapping mechanism based on the templated functions Rcpp::as<>() and
Rcpp::wrap(). These functions convert C++ object classes into a S expression
pointer (called SEXP), that can be handled on the R side to construct Lists or

133

CHAPTER 5. NuchaRt: embedding NuChart-II in R

R C++

set up
working

environment

get result
inspect

proceed working

Rcpp

level synch

W
1

W
N

L = n

L = n+1
paired-ends reads

next-level genes

gene's
reads

Figure 5.1: Master/Slave behaviour between R and C++, on the graph construction phase: on
the R side the “background” for the computation is set up, and then the computa-
tionally intensive task is offloaded to C++. Once finished, results are moved back to
the R side.

DataFrames30, which are essential object types in R and are used by almost all
modelling functions.

In this respect, our application clearly exhibits a master/slave behaviour: on
the R side we set up the “background” for the computation, and then we offload
computationally intensive tasks to C++ (see Figure 5.1). Once it terminates, the
needed information is moved back to the R side and is ready to be processed,
drawing from the huge R’s library basket.

30We actually use data.tables as basic data structures for our data: data.table is an
enhanced version of data.frame that allows us to easily optimise operations for speed and
memory usage.

134

5.2. NuchaRt

NuchaR t and Rcpp In our context, we have dealt with four C++ objects that
abstract the leading actors of our software: SamData, Gene, Fragment and
Edge. These objects contain much of the information that is needed to build
a topographical map of the DNA from Hi-C data. Just to give an example,
the SamData class has private fields that describe the reads, thus containing
the chromosomes’ names and a starting coordinate for each chromosome of the
paired-ends read, plus the genomic sequence. In order to exchange a SamData
object between C++ and R we have specialised the templated functions above:
a std::vector<SamData> is thus treated by R as a list of Lists, while a list
of Lists in R (or a DataFrame) is managed in C++ by casting the SEXP object
to a Rcpp::List (or a Rcpp::DataFrame) object, and by subsequently filling
each field of the SamData class with the value contained in the respective field
of the List.

1 template<> SEXP wrap(const SamData &s) {
2 List ret = List::create(Named("Id") = s.getId(),
3 Named("Chr1") = s.getChr1(),
4 Named("Start1") = s.getStart1(),
5 Named("Chr2") = s.getChr2(),
6 Named("Start2") = s.getStart2(),
7 Named("Seq") = s.getSeq()
8);
9 return wrap(ret);

10 }
11

12 template<> SamData as(SEXP s) {
13 List samL = as<List>(s);
14 SamData sam;
15

16 sam.setId (as<long>(samL["Id"]));
17 sam.setChr1 (as<string>(samL["Chr1"]));
18 sam.setStart1 (as<long>(samL["Start1"]));
19 sam.setChr2 (as<string>(samL["Chr2"]));
20 sam.setStart2 (as<long>(samL["Start2"]));
21 sam.setSeq (as<string>(samL["Seq"]));
22

23 return sam;
24 }

Listing 5.1: Example of as and wrap usage

Recalling Section 5.1.1, NuchaR t can be described as a 5 stage pipeline: from

135

CHAPTER 5. NuchaRt: embedding NuChart-II in R

data retrieval to output and visualisation, these phases can now be broke up
and used as loose modules. Phase 1) is responsible for data collection and early
data processing: datasets are provided as static csv-like files, but can also be
downloaded from on-line repositories. The information contained therein is
parsed and processed, in order to build the data collections needed to perform
the computations: unneeded fields are dropped and elements are ordered in a
consistent way, while a unique identifier for each element of a collection is gen-
erated, when needed. Thanks to novel advanced data types available in the R
environment (e.g., data.table), we can parse and store big datasets on the R
side and efficiently operate with such datasets, provided that the machine has
enough physical memory to store data. This step encompasses Hi-C datasets
parsing and processing, with file sizes that range from about 1 GigaByte to sev-
eral GigaBytes: as the file size increases, file parsing and processing time also
grows, up to some minutes. This operation is however unavoidable, and lit-
tle can be done to speed it up. Data interchange between R and C++ can be
accomplished through the wrapping mechanism explained above, which also
promotes loose modularity among analysis steps: datasets that are only needed
for a specific phase are loaded on demand, used and removed when finished,
thus lowering and optimising memory utilisation, while main collections are
kept alive in a global environment for immediate access.

Phases 2) and 3) constitute by far the most onerous parts of the application,
in terms of execution time. Both of them are suitable for being revisited in the
context of loop parallelism, since their kernels can be run concurrently on mul-
tiple processors with no data dependencies involved. These phases have been
thoroughly explained in Chapter 4, and they basically do not change: when
offloading the graph construction or the normalisation phase to C++, the very
same logic is used and the ParallelFor skeleton permits to speed up both
phases in a seamless way. Data transfer overhead is negligible, in comparison
with the computationally intensive tasks that take place: it consists of moving a
pointer to an object, plus a thin protection layer that prevents R garbage collec-
tor to delete variables in use [52].

Phase 4) encompasses essential features that NuchaR t ought to provide, in
order to fulfil the requirements of a useful tool for genomic data interpretation.

136

5.2. NuchaRt

With a graph-based representation we can apply network analysis over the re-
sulting graph and highlight the “importance” of the genes, by evaluating the
interactions that occur among local entities. Other topological features, such as
degree distribution, can help to prioritize targets of further studies or lead to a
more local, in-deep analysis of specific chromosome locations [162].

Finally, visualisation is crucial for a tool that aims at facilitating a better
interpretation of genomic data. NuChart-II supplies both tabular output and
graphical visualization. Concerning the latter, iGraph and GraphViz are used as
plotting engines, but while these tools perform nicely with small-to-medium
sized graphs, they cannot provide useful representation of huge graphs. On the
R side there are several graphic libraries — MuxViz or networkD3 just to cite a
few — that facilitate the interactive visualization and exploration of complex
networks. With NuchaR t we can seamlessly exploit these libraries to create
navigable and interactive maps of the chromosome. At the moment networkD3
has been tested to plot our neighbourhood graph: networkD3 produces inter-
active graphs that can be visualised through a browser, so that the JavaScript
language it embeds can be interpreted. Despite good looking, it does not offer
many possibilities of graph customisation and it still remains impractical for
our purpose. Nevertheless, hacking the JavaScript source code might lead to
better results.

A last resort for the visualisation problem is to decouple visualisation from
NuchaR t, and make use of external applications purposely designed for inter-
active visualisation of networks. One such application is Gephi [22], that permits
to interact with the representation, manipulate structures, shapes and colors to
reveal hidden properties. Gephi can import graphs from a number of standard
graph file formats, including Graphviz’s .dot files, but it does not provide the
same support for all file formats. In order to get the most out of Gephi, the
preferred graph formats are XML-structured GEXF and GraphML. NuchaR t can
write a resulting graph in one of these formats, so that the user can easily browse
the result of Hi-C data analysis through Gephi interface.

137

CHAPTER 5. NuchaRt: embedding NuChart-II in R

ZNF670

PTPN4

MAGI1

CADM2

FRAS1

FAM190A

CASP8AP2

RBFOX1

KSR1

C18orf1

A1BG

PEG3

RPS5

AURKC

ZNF8

ZNF17

MZF1

ZNF132

ZNF134

ZNF135

ZNF154

UBE2M

ZNF264

TRIM28

ZNF256

ZNF211

ZNF274
ZNF460

SLC27A5

ZIM2

ZNF324

CHMP2A

ZNF544

ZNF586

ZNF444

ZNF416

ZNF446

VN1R1

ZNF304

ZNF471

USP29

ZNF71ZNF667

ZSCAN18

ZSCAN5A

ZNF329

ZNF419

ZNF552

ZNF671
ZNF606

ZBTB45

ZNF587

GALP

ZNF551

ZNF835

ZIM3

ZNF837

ZNF543

NLRP13

NLRP8

NLRP5

ZNF787

ZFP28

LOC147670

C19orf18

ZNF418

ZNF417

ZNF548

NLRP4

ZNF582

ZNF583

ZNF497

ZNF550

ZNF584

ZSCAN4

ZNF549

ZNF547

ZIK1

ZNF776

ZSCAN1

ZSCAN5B

ZSCAN22

ZNF530

ZNF773

ZNF470

ZNF749

ZNF324B

ZNF805

ZNF772

DUXA

LOC646862

ZNF814

LOC100293516

PTPRT

MACROD2

Key

Intra-Chromosome

Inter-Chromosome

Seed genes

High degree genes

Low degree genes
Medium degree genes

AGBL4

ANKMY1

LRRTM4

DOCK3

MAGI1

FAM13A

LARP7

C4orf21

PTPRN2

SDK1

KAT6A

CSMD1

LRRC23

RBFOX1SKAP1

SYNRG

NLK

BCAS3

A1BG

PEG3

RPS5

AURKC

ZNF8

ZNF17

MZF1

ZNF132

ZNF134

ZNF135

ZNF154

UBE2M

ZNF264

TRIM28

ZNF256

ZNF211

ZNF274

ZNF460

SLC27A5

ZIM2

ZNF324

CHMP2A

ZNF544

ZNF586

ZNF444

ZNF416

ZNF446

VN1R1

ZNF304

ZNF471

USP29

ZNF71

ZNF667

ZSCAN18

ZSCAN5A

ZNF329

ZNF419

ZNF552

ZNF671

ZNF606ZBTB45 ZNF587

GALP

ZNF551

ZNF835

ZIM3

ZNF837

ZNF543

NLRP13

NLRP8

NLRP5

ZNF787

ZFP28

LOC147670

C19orf18

ZNF418

ZNF417

NLRP4

ZNF582

ZNF583

ZNF497

ZNF550

ZNF584

ZSCAN4

ZNF549

ZNF547

ZIK1

ZNF776

ZSCAN1

ZSCAN5B

ZSCAN22

ZNF530

ZNF773

ZNF470

ZNF749

ZNF324B

ZNF805

ZNF772

DUXA

LOC646862

ZNF814

LOC100293516

PTPRT

DSCAM

DIP2A

TTC28

DPYD

MAN1A2

ATF6

RPRD2

NCKAP5

FHIT

MYRIP

DKK2

TBC1D19

ADCY2

PRIM2

KHDRBS2

EYS

MAGI2

NOD1

HECW1

CNTNAP2

AUTS2

JAZF1 SNTG1

CSMD1

NKAIN3

SETX

ATRNL1

PCDH15

SPON1

LRRC4C

TMEM135

PIK3C2G

MED13L

GPC5

GPC6

FRY

KIAA0564

LRCH1

MTUS2

HS6ST3

PRKD1

NRXN3

SYNE2

SETD3

LRFN5

GABRG3
AKAP13

RBFOX1
SNX29

SSH2

DCC

PTPRM

DLGAP1

SMCHD1

A1BG

PEG3

RPS5

AURKC

ZNF8

ZNF17

MZF1

ZNF132

ZNF134

ZNF135

ZNF154

UBE2M

ZNF264

TRIM28

ZNF256

ZNF211

ZNF274 ZNF460

SLC27A5

ZIM2

ZNF324

CHMP2A

ZNF544

ZNF586

ZNF444

ZNF416

ZNF446

VN1R1

ZNF304

ZNF471

USP29

ZNF71

ZNF667
ZSCAN18

ZSCAN5A

ZNF329

ZNF419

ZNF552

ZNF671ZNF606

ZBTB45

ZNF587

GALP

ZNF551

ZNF835

ZIM3

ZNF837

ZNF543

NLRP13

NLRP8

NLRP5

ZNF787

ZFP28

LOC147670

C19orf18

ZNF418

ZNF417

ZNF548

NLRP4

ZNF582

ZNF583

ZNF497

ZNF550

ZNF584

ZSCAN4

ZNF549

ZNF547

ZIK1
ZNF776

ZSCAN1

ZSCAN5B

ZSCAN22

ZNF530

ZNF773

ZNF470

ZNF749
ZNF324B

ZNF805

ZNF772

DUXA

LOC646862

ZNF814

LOC100293516

PTPRT

TSHZ2

MACROD2

DSCAM

SAMSN1

LARGE

BCL2L13

TBC1D22A

MPZL1

KIAA0907

EDEM3

ERBB4

NRXN1

LRP1B

THADA

CNTNAP5

PTPRG

FILIP1LC3orf26

EPHA5

FRG1

PALLD

TBC1D1

TBC1D14

FAM190A

MTHFD2L

GPR98

BAI3

AKIRIN2

KHDRBS2

EYS

OGDH

DNAH11

AUTS2

C7orf10

IMMP2L

TUSC3

CHD7

CPA6

CSMD1

SGCZ

LINGO2

PRKG1

NRG3

CTNNA3

KIAA1217

C10orf11

ODZ4

GALNTL4

CNTN1

GPC5

GPC6

HS6ST3

PRKD1

RGS6

AGBL1

CDH13

GRIN2A

RBFOX1

SKAP1

NLRP1

TEX2

DCC

CTIF

WDR7

A1BG

PEG3

RPS5

AURKC

ZNF8

ZNF17

MZF1

ZNF132

ZNF134

ZNF135

ZNF154

UBE2M

ZNF264

TRIM28

ZNF256

ZNF211

ZNF274

ZNF460

SLC27A5

ZIM2

ZNF324

CHMP2A

ZNF544

ZNF586

ZNF444

ZNF416

ZNF446

VN1R1

ZNF304

ZNF471

USP29

ZNF71

ZNF667

ZSCAN18

ZSCAN5A
ZNF329

ZNF419

ZNF552

ZNF671

ZNF606
ZBTB45

ZNF587

GALP

ZNF551

ZNF835

ZIM3

ZNF837

ZNF543
NLRP13

NLRP8

NLRP5

ZNF787

ZFP28

LOC147670

C19orf18

ZNF418

ZNF417

ZNF548

NLRP4

ZNF582
ZNF583

ZNF497

ZNF550

ZNF584

ZSCAN4
ZNF549

ZNF547

ZIK1

ZNF776

ZSCAN1

ZSCAN5B

ZSCAN22

ZNF530

ZNF773

ZNF470ZNF749
ZNF324B

ZNF805

ZNF772

DUXA

LOC646862

ZNF814

LOC100293516

PTPRT

PLCB1

MACROD2

DSCAM

TTC28

TBC1D22A

IL1RAPL2 DACH2

FAM46D

Figure 5.2: Neighbourhood graphs of the KRAB cluster of genes in four different runs from the
Hi-C experiments of Dixon et al.

138

5.3. Discussion

5.3 Discussion

The novel package benefits of the combined use of parallel programming tech-
niques, provided by the C++ engine, and the flexibility of the R environment.
NuchaR t maintains the same performance and scalability showed in NuChart-II
(as discussed in Chapter 4), and can perform genome-wide analysis of Hi-C
data with reduced memory footprint. Both the graph construction phase and
the normalisation maintain loop parallelism benefits from employing FastFlow’s
ParallelFor skeleton: while the application is now based on the R environ-
ment, computationally intensive tasks can be offloaded to C++. Moreover, with
the R environment the five steps listed in Section 5.1.1 become loose but totally
compatible modules, and could be either executed in order, or as services that
permit to accomplish a specific task on existing data. Also, with the wide rang of
R’s statistical and visualisation libraries at hand, each step can the starting point
of further analysis. The visualisation step has only been partially addressed,
and deserves a further analysis.

Results of each module are made globally available in form of DataTables,
optimised extensions of DataFrames, and can be easily queried and inspected.
The graph can be plotted and results can be visualised and browsed. Eventually,
one can draw from the huge R’s libraries basket the one that suits her need, and
conduct advanced analysis over the resulting data. For instance, we also tested
the ERGM package [69] that permits to understand the processes of network
structure emergence and tie formation: the Exponential-family Random Graph
Models package provides an integrated set of tools for creating an estimator
of the network through a stochastic modelling approach. In particular, ERGM
functions are able to extrapolate salient characteristics of a network by imple-
menting a maximum likelihood estimator that helps to quantify how much a
given feature mapped on the graph influences tie formations on the graph. For
example, we evaluated the probabilities that edges are a function of a specific
genomic feature (see Table 5.1).

139

CHAPTER 5. NuchaRt: embedding NuChart-II in R

ITPKB

DDAH1

DNER

CACNA1D

FHIT

RBMS3

PHLDB2

SLC9A9 CPLX1

ZNF595

ZNF718

SPOCK1

NRG2

CPLX2

ABCF1

AGER

AIF1

ATP6V1G2

CFB

C2

DDR1

CDSN

CLIC1

ATF6B

CSNK2B

DOM3Z

GNL1

GTF2H4

HLA-A

HLA-B

HLA-C

HLA-DMA

HLA-DMB

HLA-DOA

HLA-DOB

HLA-DPA1

HLA-DQA1

HLA-DQA2

HLA-DQB1

HLA-DQB2

HLA-DRA

HLA-DRB1

HLA-DRB5HLA-E

HLA-G

HSPA1A

HSPA1B

HSPA1L

LTA

LTB

MICB

MSH5

NEU1

NFKBIL1

NOTCH4

PBX2

POU5F1

PPP1R10

PSMB8

PSMB9

BRD2

RNF5

SKIV2L

TAP1

TAP2

TCF19

PPP1R11

TNF

VARS

TRIM26

PRRC2A

BAG6

GPANK1

DDX39B

ABHD16A

RDBP

LST1

DHX16
STK19

IER3

PPT2

MDC1

TRIM10

FLOT1

AGPAT1

C6orf10
EHMT2

TRIM31

NRM

DDAH2

MRPS18B

C6orf15

ZNRD1

C6orf48

CCHCR1
APOM

BTNL2

TRIM39

VARS2

LSM2

C6orf47

LY6G5B

LY6G6D

GPSM3

FKBPL

RPP21

ATAT1

RNF39

SLC44A4

VWA7

C6orf25

LY6G6C

LY6G5C

PRR3

PRRT1

EGFL8

TRIM15

TRIM40

DPCR1

PSORS1C1

PSORS1C2

PPP1R18

TRIM39-RPP21

TUBB

C6orf136

NCR3

LY6G6F

SFTA2

MUC21

MCCD1

MICA

MUC22

DOCK4

CNTNAP2

AUTS2

HERPUD2

SDK1

PTK2

KIAA0146

ZFHX4

TLE4

PRKG1

ADAM12

NLRX1
PDZD3

TTC36

PLEKHA7

RIMKLB

OSBPL8

DPF3

KIAA0391

TTLL5

RYR3

CBFBHS3ST4

COG7

TBCD

UBE2G1

KSR1

PRPF8

B3GNTL1

PEPD

CRLF1

EYA2

PKIG

TSHZ2

PIGU

DSCAM

ADRBK2

LARGE

OSBP2

HLA-DPB1

ZBTB12

Key

Intra-Chromosome

Inter-Chromosome

Seed genes

High degree genes

Low degree genes
Medium degree genes

PTPRF

SPEN

MAST2

RNF103-CHMP3

DOCK3

PDZRN3

CACNA2D3

CPLX1

ADCY2

ABCF1

AGER

AIF1

ATP6V1G2

CFB

C2

C4A

DDR1

CLIC1

ATF6B

CSNK2B

DOM3Z

GNL1

GTF2H4

HLA-A

HLA-B

HLA-C

HLA-DMA

HLA-DMB

HLA-DOA

HLA-DOB

HLA-DPA1
HLA-DPB1

HLA-DQA1

HLA-DQA2

HLA-DQB1

HLA-DQB2

HLA-DRA

HLA-DRB1HLA-DRB5

HLA-E

HLA-G

HSPA1A

HSPA1B

HSPA1L

LTA

MICB

MSH5

NEU1

NFKBIL1

NOTCH4

PBX2

POU5F1

PPP1R10

PSMB8

PSMB9

BRD2

RNF5

SKIV2L

TAP1

TAP2

TCF19

PPP1R11

TNF

VARS

TRIM26

PRRC2A

BAG6

GPANK1

DDX39B

ABHD16A

RDBP

LST1

DHX16

STK19

IER3

MDC1

TRIM10

FLOT1

C6orf10

EHMT2

TRIM31

DDAH2

MRPS18B

C6orf15

ZNRD1

C6orf48

CCHCR1

APOM

BTNL2

TRIM39
VARS2

LSM2

C6orf47

LY6G5B

LY6G6D

GPSM3

FKBPL

RPP21

ATAT1

RNF39

SLC44A4

VWA7

C6orf25

LY6G6C

LY6G5C

PRR3

TRIM15

TRIM40

DPCR1

PSORS1C1
PSORS1C2

PPP1R18

TRIM39-RPP21

TUBB

ZBTB12

C6orf136

NCR3

LY6G6F
SFTA2

MUC21

MCCD1

MICA

MUC22

ZC3HAV1

SDK1

NPSR1STAU2

CSMD1

PBX3

HPSE2
TET1

NCAM1

NLRX1

TEAD4

DIP2B

OSBPL8

TMCO3

KIAA0391

TTLL5

MEGF11

CPD

KSR1

PRPF8

C18orf1

SYN3

LARGE

RGS7

PADI1

ZNHIT6

RNF220

PLEKHG5

PCNXL2

NEB

TTN

PRKRA

LRRFIP1

CAB39

HEATR5B

KCMF1

KIDINS220

PARD3B
FAM82A1

EML6

FILIP1L

RBMS3

SCHIP1

CHCHD6

C3orf26

EPHA6

IQCJ-SCHIP1

CAMK2D

GRID2

LIMCH1

SEPT11

C4orf22

POLN

GALNTL6

EBF1

FBXW11

ARL15

ADAMTS12

PCBD2
ABCF1

AGER

AIF1

ATP6V1G2

CFB

C2

C4A

DDR1

CDSN

CLIC1

ATF6B

CSNK2B

DOM3Z

GNL1
GTF2H4

HLA-A

HLA-B

HLA-C

HLA-DMA

HLA-DMB

HLA-DOA

HLA-DOB

HLA-DPA1

HLA-DPB1

HLA-DQA1

HLA-DQA2

HLA-DQB1

HLA-DQB2

HLA-DRA

HLA-DRB1

HLA-DRB5

HLA-E

HLA-G

HSPA1A

HSPA1B

HSPA1L

LTA

LTB

MICB

MSH5

NEU1

NFKBIL1

NOTCH4

PBX2

POU5F1

PPP1R10

PSMB8

PSMB9

BRD2

RNF5

SKIV2L

TAP1

TAP2

TCF19

PPP1R11

TNF

VARS

TRIM26

PRRC2A

BAG6

GPANK1

DDX39B

ABHD16A

RDBP

LST1

DHX16

STK19

IER3

PPT2

MDC1

TRIM10

FLOT1

AGPAT1

C6orf10

EHMT2

TRIM31

NRM

DDAH2

MRPS18B

C6orf15

ZNRD1

C6orf48

CCHCR1

APOM

BTNL2

TRIM39
VARS2

LSM2

C6orf47

LY6G5B

LY6G6D

GPSM3

FKBPL

RPP21

ATAT1

RNF39

SLC44A4

VWA7

C6orf25

LY6G6C

LY6G5C

PRR3

PRRT1

EGFL8

TRIM15

TRIM40

DPCR1

PSORS1C1

PSORS1C2

PPP1R18

TRIM39-RPP21

TUBB

ZBTB12

C6orf136

NCR3

LY6G6F

SFTA2

MUC21

MCCD1

MICA

MUC22

CACNA2D1

CUX1

IGF2BP3

C7orf10NR6A1

GNAQ

CUBN

RPP30

KAT6B

SUFU

C10orf11 ARHGAP19

CPXM2

MPP7

DDB1

PAK1

ARHGEF17

ODZ4

SERGEF

MAML2

GALNTL4

CACNA1C

EPS8

NTF3

IPO8

ERC1

LIMA1

RILPL1

GPC6

ATP8A2

NRXN3

RCOR1

KCNH5

NPAS3

TCF12

SCAPER

PEAK1

FMN1

RBFOX1

XYLT1

DLG4

YWHAE

NCOR1

RPTOR

KIAA1267

GALNT1

DYM

ELAC1

FHOD3

MACROD2

HS6ST2

DAB1

WDTC1

MAST2

DENND1B

CTNNA2

RBMS1

PRKRA

LRP1B

HEATR5B

FAM82A1

PAK2

SLMAP

TSC22D2

CADM2

EPHA5

GRID2

TBC1D1

STK32B

SEPT11

KIAA1239

CTNND2
MRPS27 UIMC1

ADAMTS12

ABCF1

AGER

AIF1
ATP6V1G2

CFB

C2

C4A

DDR1

CDSN

CLIC1

ATF6B

CSNK2B

DOM3Z

GNL1

GTF2H4

HLA-A

HLA-B

HLA-C

HLA-DMA

HLA-DMB

HLA-DOA

HLA-DOB

HLA-DPA1
HLA-DPB1

HLA-DQA1
HLA-DQA2

HLA-DQB2

HLA-DRA

HLA-DRB1

HLA-DRB5

HLA-E

HLA-G
HSPA1A

HSPA1B

HSPA1L

LTA

LTB

MICB

MSH5

NEU1

NFKBIL1

NOTCH4

PBX2 POU5F1

PPP1R10

PSMB8

PSMB9

BRD2

RNF5

SKIV2L

TAP1

TAP2

TCF19 PPP1R11

TNF

VARS

TRIM26

PRRC2A

BAG6

GPANK1

DDX39B

ABHD16A
RDBP

LST1

DHX16

STK19

IER3

PPT2

MDC1

TRIM10

FLOT1

AGPAT1

C6orf10

EHMT2

TRIM31

NRM

DDAH2

MRPS18B

C6orf15

ZNRD1
C6orf48

CCHCR1

APOM

BTNL2
TRIM39

VARS2

LSM2

C6orf47

LY6G5B

LY6G6D

GPSM3

FKBPL

RPP21

ATAT1

RNF39

SLC44A4

VWA7

C6orf25

LY6G5C

PRR3

PRRT1

EGFL8

TRIM15

DPCR1

PSORS1C1

PSORS1C2

PPP1R18

TRIM39-RPP21

TUBB

ZBTB12

C6orf136

NCR3

LY6G6F

SFTA2

MUC21

MCCD1

MICA

MUC22

GBX1

MAD1L1

MAGI2

CNTNAP2

IMMP2L

TNRC18

ABCB5

KCTD9

CSMD1

RALYL

HEATR7A

BNC2

TCF7L2

DIP2C
CTNNA3

PARD3

PLXDC2

RBM14

CNTN5

LUZP2

RBM14-RBM4

EPS8

ITPR2

PIK3C2G

SYT1

MGAT4C

UTP20

MTMR6

GPC6

FAM155A

PRKD1

NRXN3

FBN1

FAM189A1

SPRED1

CDH13

CLCN7

MT4

PITPNC1

AATF
LRRC59

SLC14A2

SLC25A42

ATRN

PLCB1

UQCC

ACSS2

SYNGR1

TTC28

EDA

GPC3

KLHL4

Figure 5.3: Neighbourhood graphs of the HLA cluster of genes in four different runs from the
Hi-C experiments of Dixon et al.

140

5.3. Discussion

5.3.1 Experiments

The study of the interactions of the actor genes with the environment is of
critical importance for understanding the entire system. By using the mod-
elling functions of the package we can statistically characterize the distribu-
tion of the edges in relation to the characteristics of the nodes that represent
mapped multi-omics features. In order to test the possibilities of NuchaR t in
terms of statistical inference on the graph, we performed the analysis of the
clusters of genes Human Leukocyte Antigen (HLA, Figure 5.3) and Kruppel-
Associated Box (KRAB, Figure 5.2) in the context of four Dixon experiments
(SRA:SRR400260, SRA:SRR400261, SRA:SRR400266, SRA:SRR400267) [48], to
verify the correlation of the edges distribution in relation to some genomic fea-
tures (hypersensitive sites, CTCF binding sites, isochores, RSSs).

The first analysed locus is located in cytoband chr19.q13.12 and concerns
the clusters of Kruppel-type zinc finger genes, related to the KRAB, which are
peculiar for their tandem organization. Zinc finger proteins are a family of
transcription factors that regulate the gene expression, and most of these pro-
teins are members of the KZNF family. There are 7 human-specific KZNFs
and 10 KZNFs that have undergone pseudo-gene transformation specifically in
the human lineage. 30 additional KZNFs have experienced human-specific se-
quence changes that are presumed to be of functional significance. Members of
the KZNF family are often in regions of segmental duplications, and multiple
KZNFs have undergone human-specific duplications and inversions. In Fig-
ure 5.2, top panel drawings concern sequencing runs from the hESC cell line,
obtained from Dixon et al experiments [48]; bottom panel drawings in the same
figure concern sequencing runs from the IMR90 cell line according to Dixon et al
experiments [48]. Yellow nodes are the genes given as input to the algorithm —
in this case, all the genes belonging to the clusters under analysis — while out-
put genes are differentially represented according to their importance (in terms
of node degree).

The second analysed gene cluster concerns the human leukocyte antigen
(HLA) system, which is the name of the locus containing the genes that encode

141

CHAPTER 5. NuchaRt: embedding NuChart-II in R

for major histocompatibility complex (MHC) in humans. It belongs to a super-
locus that contains a large number of genes related to the immune system func-
tion in humans. The HLA group of genes resides on cytoband chr6.p31.21 and
encodes for cell-surface antigen-presenting proteins, which have many differ-
ent functions. The HLA genes are the human version of the MHC genes that are
found in most vertebrates (and thus are the most studied of the MHC genes).
The major HLA antigens are essential elements for the immune function. In
Figure 5.3, top panel drawings concern sequencing runs from the hESC cell line
while bottom panel drawings in the same figure concern sequencing runs from
the IMR90 cell line [48]. Again, yellow nodes are the genes given as input to the
algorithm, while output genes are differentially represented according to their
importance (in terms of node degree).

The correlation between the presence of CTCF binding sites and edges was
predictable, since linking gene-regulatory elements are demanded to keep dif-
ferent regions of the genome close to each other, but it is very interesting to
quantify this association (see Table 5.1). On the other hand, regions with iso-
chores seem less involved in long-range interactions (estimate < 0), which can
be quite surprising considering that these portions of the genome are consid-
ered gene-rich. The correlation between cryptic RSS sites and edges is more
pronounced in the HLA cluster, in comparison to the KRAB cluster, probably
due to a more consistent presence of this kind of sequences in genes related to
the immune system. Finally, the correlation between hypersensitive sites (super
sensitivity to cleavage by DNase) and edges, although positive, is poor, proba-
bly because the accessibility of these regions are impaired by a large number of
long-range interactions.

The network estimators are all computed using 100 iterations of the ERGM’s
stochastic modelling algorithm, which provided a good statistical significance
for all the experiments (p < 0.01). It is very interesting to see the high repro-
ducibility of results in the four sequencing runs, more reproducible than the
simple correlation between the graphs. As we can see, there is a high correla-
tion between the presence of specific genomic features, such as CTCF binding
sites and cryptic RSSs, and the probability of presence of an edge. DNse sensi-
tivity sites are weakly correlated with the presence of an edge, while isochores

142

5.3. Discussion

KRAB HLA

Estimate Std. Error Estimate Std. Error

SRA:SRR400260
edges + nodecov(“dnase”) 0.2867 0.08451 0.1711 0.07961
edges + nodecov(“ctcf”) 0.6531 0.01157 0.5545 0.01253
edges + nodecov(“rss”) 0.5804 0.06176 0.6304 0.08196
edges + nodecov(“iso”) -1.047 0.09269 -0.9406 0.09156
SRA:SRR400261
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969
SRA:SRR400266
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969
SRA:SRR400267
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969

Table 5.1: Analysis of the impact of the CTCF binding sites, isochores, cryptic RSSs, and DNase
hypersensitive sites on the edge distribution of the KRAB cluster of genes and of the
HLA cluster of genes

are strongly anti-correlated with the presence of an edge.

5.3.2 Performance

comparison between the pure C++ application and the combined R with C++
package reports substantially similar behaviours: the graph construction exe-
cution is strongly affected by datasets size and resolution, that determine the
“search space” for the BFS-like graph construction and the overall memory
load. Reducing the working set ameliorates execution times and overall scal-
ability with NuChart-II, and clearly helps in obtaining good performance when
offloading the graph construction from R to C++.

Figure 5.4 compares execution time (left) and speedup (right) in the two ap-
proaches: Figures 5.5a and 5.5b show the performance for constructing a graph
at level 1 starting from the KRAB cluster of genes using Dixon’s SRR400266 ex-
periment as Hi-C dataset. Despite similar timings and scalability, NuchaR t has
slightly worse performance and shows a higher execution time. Figures 5.5c
and 5.5d show a comparison of the performance during normalisation phase

143

CHAPTER 5. NuchaRt: embedding NuChart-II in R

500

1500

3000

6000

12000

18000

1 4 8 12 16 20 24 28 32

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

(a) Graph construction - exec. time

1

4

8

12

16

20

24

28

32

1 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

ideal

(b) Graph construction - speedup

50

150

300

600

1200

1800

1 4 8 12 16 20 24 28 32

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

(c) Normalisation - exec. time

1

4

8

12

16

20

24

28

32

1 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

ideal

(d) Normalisation - speedup

Figure 5.4: Comparison between NuChart-II and NuchaRt during the graph construction and
normalisation on a NUMA machine. Graphs built on average running times, from 4
runs with very same configurations.

with NuChart-II and NuchaR t: again both implementations yield similar re-
sults, both approaching a quasi-linear scalability, even though NuchaR t’s exe-
cution time is slightly higher with respect to NuChart-II’s. This is likely due
to the worsening of memory access time when offloading computation to C++:
while the multi-threaded C++ application is running, the R environment is kept
alive. R stores additional information, beside the data itself, for each object cre-
ated: when this small overhead is combined to the lazy memory reclaim policy
adopted by R’s garbage collector, and to the massive size of the dataset used
for neighbourhood graph construction, resident memory consumption remains
high at run-time, thus affecting memory access times and overall performance.

Our experiments where conducted on an Intel NUMA system, equipped

144

5.3. Discussion

800

1600

3200

6400

8000

1 2 4 6 8

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

(a) Graph construction - exec. time

1

2

4

6

8

1 2 4 6 8

S
p
e
e
d
u
p

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

ideal

(b) Graph construction - speedup

100

200

400

600

800

1 2 4 6 8

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

(c) Normalisation - exec. time

1

4

6

8

1 4 6 8

S
p
e
e
d
u
p

Working Threads

Neighbourhood graph for KRAB cluster of genes

NuchaRt

NuChart-II

ideal

(d) Normalisation - speedup

Figure 5.5: Comparison between NuChart-II and NuchaRt during the graph construction and
normalisation on a UMA, single socket machine. Graphs built on average running
times, from 4 runs with very same configurations.

with 4 eight-cores E7-4820 Nehalem running at 2.0GHz, with 18MB L3 cache
and 64 GB of main memory. The Nehalem processor has Hyper-Threading ca-
pability with 2 contexts per core, but we decided not to use it and stick to the
number of physical cores: the heavy memory usage would dramatically dam-
age performance, and likely increase chances of false-sharing among threads in
the same context that share L2 cache. With this machine the cache-coherence
mechanism plays an important role on this performance degradation, where
cache misses are likely frequent and cache line updates occur frequently.

Performance differences seem to flatten when the same applications are ex-
ecuted on a different machine (Figure 5.5): we also conducted experiments on

145

CHAPTER 5. NuchaRt: embedding NuChart-II in R

a workstation equipped with a single eight-cores Intel Xeon CPU E5-2650 run-
ning at 2.60GHz. This machine features 20MB of L3 cache with 64 GB of main
memory. The SandyBridge processor also has Hyper-Threading capability al-
lowing 2 contexts per core. Here as well we decided to not run more than 8
threads, so that the second context is not used an only physical cores are em-
ployed during computation. In this case the gap between the two solutions is
reduced, though the total execution time is higher due to the limited degree of
parallelism that can be achieved because of the reduced number of available
cores.

5.3.3 Graph drawing

Graphs constitute a powerful and expressive mean to describe entities and their
relationships, because they give an immediate, visual representation of both
natural and man-made complex systems. Nonetheless, plain graph drawing
might turn out to be useless with huge dense graphs, because it would result
in an obscure bundle of edges and nodes (see Figure 5.6). In this case, network
analysis and data mining techniques come in handy, providing methodologies
to extrapolate knowledge from the network and to examine structural proper-
ties of the graph.

Starting from the assumption that the vertex degree is one of the most fun-
damental properties of the structure of a graph [104], in our first attempt to
ameliorate the visualisation we classify nodes according to nodes degree and
degree distribution: we set a threshold for nodes degree below which a node is
dropped (together with the edge linking to it) and not plotted. In our context,
this naı̈ve approach helps to better depict the neighbourhood of a gene (or an
ensemble of genes), drawing attention to those highly connected entities that
are likely to play an important role in the gene regulation mechanism. Edges
score is not necessarily taken into account with this first classification, but it
can be factored in by setting a specific threshold for the edges too: recall that
the score of an edge qualifies the reliability of the gene-gene contact identified
by the Hi-C experiment. Edges with score equal to or above the threshold are

146

5.3. Discussion

Figure 5.6: Genome-wide graph built from human gene ADH1A, using LiebermanAiden’s
SRR027957 experiment. The graph reached 18450 genes (nodes) and has 588635
edges

kept on the graph together with the nodes they link, no matter what degree the
nodes have.

This naı̈ve approach is useful to extract a representative instance of the im-
mediate neighbourhood of a gene, and could still perform well with a graph at
with less than 2000 nodes, but it soon becomes impractical to visualise a graph
of the whole genome (Figure 5.6): in our vision, the network has to be browsed
just like a map, so that the information contained within the genes and the edges
can be accessed by simply interacting with them. This perspective requires a
mechanism that changes the details of the graph as we zoom in or out without

147

CHAPTER 5. NuchaRt: embedding NuChart-II in R

losing consistency. Much like in a web-based cartographic system, zooming out
of the graph keeps only few but relevant entities visible on the map (highest
degree nodes or densest subgraphs), while details increase as we zoom in. This
is one outstanding challenge we are currently dealing with.

We are investigating a number of solutions to address the visualisation prob-
lem, which will be better presented and discussed in Section 7.1.

5.4 Concluding remarks

Coupling the broad R modelling capabilities and the high performance achiev-
able with the parallel C++ implementation of NuChart-II, yields a solid re-
sponse to the demand for software tools that help scientists in drawing more
concrete biological knowledge. The graph-based approach fosters a tight cou-
pling of topological observations to biological knowledge, which is likely to
bring remarkable biological insights to the whole research community. From a
computational point of view, the ever-increasing amount of information gen-
erated by novel Bioinformatics techniques require proper solutions that permit
the full exploitation of the computing power offered by modern computing sys-
tems, together with advanced tools for an efficient analysis and interpretation
of genomic data.

Despite the results achieved in terms of performance and usability, some
problems remain partially unsolved, and are open to further investigations.
Among them, our main concern is the visualisation of multi-omic graphs, which
we believe is an essential feature for a usable tool aimed at facilitating genomic
data analysis and interpretation, and that remains an open problem.

148

Chapter 6

A cloud solution for multi-omics
data integration

We have already seen that the recent advances in molecular biology and bioin-
formatics techniques have brought to an explosion of the information about the
spatial organisation of the DNA inside the nucleus. In particular, 3C-based ex-
periments are revealing the chromatin structure in the nucleus of the cell, for
many different cell types and cell states. This information can be used to re-
interpret omics data (in particular RNA-Seq and ChIP-Seq outputs), which can
greatly benefit from analysis relying on 3D maps of the chromatin conformation
in the nucleus, instead of relying on the bare linear sequence of the genome.
Public on-line repositories, such as NCBI and EBI, are full of data that can be
reconsidered as soon as novel genomic data becomes available.

Each of these experiments potentially opens new perspectives for re-analyse
data in a three-dimensional view, but their combined interpretation requires a
considerable computational support. The Cloud paradigm, which allocates re-
sources on-demand, seems the most convenient way to support the development
of new solutions that foster an unsupervised analysis of biological data. Here
we propose a cloud-based task farm that orchestrates a data analysis work-flow,
leading to the integration and the interpretation of multi-omic features on a nu-
clear map, capable of representing the effective disposition of genes in a graph-
based representation.

149

CHAPTER 6. A cloud solution for multi-omics data integration

6.1 Motivation: a flood of data

In Chapter 3 we discussed novel techniques for DNA sequencing and chromo-
some conformation analysis: DNA sequencing is driving unprecedented dis-
coveries in the life sciences since the emergence of next-generation sequencing
(NGS) technologies, and the research is moving from a hypothesis-driven to a
data-driven approach. With the advent of massively parallel DNA sequencing,
the rate at which the human genome is studied is limited by the computational
tools required to analyse these data, more than by sequence generation. Indeed,
every experimentally analysed genomic pattern requires an extensive compu-
tational process to transform hundreds of gigabytes of raw output into aligned
sequences: the sequencing industry has been demanding increasingly larger
compute and storage resources to keep up.

The development of new technologies and research models that would help
to address NGS computational needs is a hard path to go, because these fields
are literally “caught in a flood of data” and are now facing many of the scale-out
issues that high-performance computing (HPC) has been addressing for years.
Data must be managed, analysed, integrated and archived. These steps pose
substantial requirements in speed (in terms of execution time), application scal-
ability and data representation. Orchestrating applications to fulfil these re-
quirements is a complex and delicate task.

In previous chapters, our graph-based approach to represent genomic data
has been explained: graphs are used to provide a better description of the so-
cial behaviour of genes inside the nucleus, and can be very useful to map and
re-interpret omics data. A characterization of different spatially-associated do-
mains creates a topological description of the genome folding in the nucleus,
in relation to different cells and cell states. These maps will be the ground for
the integration and analysis of omics information, which will be annotated as
“points of interest” on the chromatin 3D structure. We will test our solution
to characterize results from a gene therapy clinical trial using public available
Hi-C and epigenetic data. Achieved results can boost the development of a
new generation of 3D genome browsers, which will take into account the spa-
tial distribution of the genome in the nucleus, facilitating the identification of

150

6.2. A bit of background

spatio-functional patterns (co-localization/regulation/expression).
Considering the computational workload that comes from DNA sequencing,

the critical performance parameters that drive effective system architectures for
the given workloads, and the algorithms and applications being used, the com-
putational demands of genomic data analysis and interpretation can be satisfied
by using lab-scale and enterprise-oriented technologies. Cloud computing, and
its various declinations (DaaS, SaaS, PaaS, IaaS), deliver computational power
and storage as dynamically allocated virtual resources via the Internet, relieving
scientists from the daunting expense of establishing and maintaining complex
computational infrastructures for data processing.

Cloud computing turns out to be also very useful for the kind of analysis we
are interested on, considering that the on-demand paradigm properly addresses
the need of re-mapping available expressions and epigenetics data on new Hi-C
experiments. These experiments permit to re-analyse multi-omic data available
in public repositories (such as NCBI, and EBI) relying on a three-dimensional
genomic view. As new information about the chromatin conformation in differ-
ent cell types and in relation to different cell states becomes available, grows the
need for novel pipelines of data analysis and integration designed to efficiently
and easily handling these tasks.

6.2 A bit of background

The high demand for low-cost genomic data has driven the development of
high-throughput technologies that parallelise the sequencing process. Nowa-
days, the advent of novel rapid sequencing methods has greatly accelerated
biological and medical research, generating millions of biological sequences
(reads) in each experiment. The cutting-edge idea was to amplify each piece
of genome in a local fashion, using nano-wells or similar approaches, to auto-
matically analyse the signal corresponding to each piece of genome in paral-
lel, generating millions of sequencing reads. Operatively, the addition of one
(or more) nucleotide(s) at each sequencing step results in a local reaction that
generates a signal that is recorded by the instrument. If the signal is mediated

151

CHAPTER 6. A cloud solution for multi-omics data integration

through light, a CCD camera is used for the identification of wells, while in case
of PH variation a semiconductor technology is used to capture the signal.

Although sequencing mainly refers to DNA, NGS techniques are used in
many related genomic researches which can be re-conducted to this case, such
as transcriptome profiling (RNA-Seq), epigenome characterization (ChIP-Seq),
and for the analysis of the chromosome conformation inside the nucleus. Con-
cerning RNA-Seq, it is used to characterize gene expression in cells, and study
which genes are expressed in what tissues, and at which levels. ChIP-Seq helps
determining how proteins interact with DNA to regulate gene expression, and
is essential for understanding many biological processes and disease states.

If the genome is available for the specie in analysis, the first computational
effort is usually the alignment against the reference sequences. This is useful to
highlight the genomic regions involved in expression and regulation. Although
alignments are computed with very sophisticate algorithms, usually employing
the Burrow-Wheeler Transformation [30], NGS data analysis is notoriously a
time-consuming task. Since dealing with sequencing experiments is one of the
most resource-demanding applications in Bioinformatics, it is very common to
use parallel, distributed and cloud infrastructures for this kind of analysis.

In Chapter 3 we have given a description of next-generation sequencing and
related techniques: we refer to those pages (and references therein) for a more
detailed explanation.

6.2.1 Cloud for Bioinformatics

High Performance Computing technologies and Big Data paradigms are very
important in Bioinformatics, since they allow to accelerate biological and medi-
cal analysis, moving genomic data analysis from laboratories to healthcare sys-
tem. With the amount of data growing continuously, it is becoming increasingly
daunting for small laboratories, or even large institutions to establish and main-
tain computational infrastructures for data processing.

152

6.2. A bit of background

Accordingly, Bioinformatics is experiencing a new leap-forward from in-
house computing infrastructure to utility-supplied, on-demand computing de-
livered over the Internet, that permits to handle the vast quantities of biologi-
cal data generated by high-throughput experimental technologies [133]. At the
core of this computational paradigm are virtualisation techniques, which enable
a larger resource usage by sharing a given hardware among several users, thus
reducing the required amount of instances of that particular device. As a result,
virtualisation is being increasingly adopted in data centres.

Data are both a blessing and a curse in Bioinformatics: for this reason it
can seriously take advantage from the cloud paradigm. However, cloud com-
puting is a broad term that describes a broad range of services built on top of
one another (see Section 2.5). The Cloud holds great promises in effectively ad-
dressing data storage and analysis problems in Bioinformatics: a typical such
analysis often involves downloading data from public sites, installing software
tools locally, and running analyses on in-house computer resources. By placing
data and software into the cloud and delivering them as services, data and soft-
ware can be seamlessly integrated into the cloud so as to achieve adequate data
storage and analysis.

In the past several years, efforts have been made to develop cloud-scale
tools, including sequence mapping [117, 134], expression analysis [165], peak
caller for ChIP-Seq data [55], and various cloud-based applications for NGS
data analysis (BGI Cloud31 and EasyGenomics32). These names can all be seen
as examples of the SaaS model.

To the best of our knowledge, two remarkable PaaS platforms in Bioinfor-
matics are Eoulsan33, which is a cloud-based platform for high-throughput se-
quencing analyses, and Galaxy Cloud34, which is an open, web-based platform
for data intensive biomedical research.

Amazon EC2 represents an example of an IaaS model [61], and it offers a va-
riety of VM images provided with a good variety of Bioinformatics tools. Other
important examples are Cloud BioLinux [92] and CloVR [11]. The former is

31https://www.bgionline.com/
32http://www.easygenomics.com/
33http://www.tools.genomique.biologie.ens.fr/eoulsan/
34http://galaxyproject.org/

153

https://www.bgionline.com/
http://www.easygenomics.com/
http://www.tools.genomique.biologie.ens.fr/eoulsan/
http://galaxyproject.org/

CHAPTER 6. A cloud solution for multi-omics data integration

a publicly accessible virtual machine for high performance bioinformatics com-
puting. The latter, instead, is a portable virtual machine for automated sequence
analysis.

It is also worth to mention that Amazon Web Services (AWS) provides a
centralized repository of public datasets, including archives of GenBank, En-
sembl, Model Organism Encyclopedia of DNA Elements, Influenza Virus, etc.
As a matter of fact, AWS contains multiple public datasets for a variety of sci-
entific fields, from biology to astronomy, chemistry, etc.35. These datasets are
delivered as services (DaaS) and can be seamlessly integrated into cloud-based
applications [61].

6.2.2 The problem of data integration

The problem of data integration can be approached using semantic technologies
and ontologies, which are essential in many domains for capturing knowledge
as a hierarchy of concepts and corresponding relationships. However, these
methods assume as a prerequisite an independent sampling of features. This
assumption is clearly not satisfied when considering long-range chromatin in-
teractions, since they associate regions that are known to be functionally corre-
lated.

On the other hand, high-throughput 3C datasets are a natural ground for
integrating many different types of data, since they describe the topological or-
ganization of the genome in the nucleus, for example, by enabling the inter-
pretation of features that are shared by spatially co-localized genes. Studying
point-wise properties such as gene expression, methylation, histone modifica-
tion and mutations, and relational information such as co-expression and co-
regulation, can benefit from the spatial context provided by Hi-C based distance
matrices (derived from contact frequencies). Recent studies that have focused
on comparing relational omic information with contact frequency have pointed
to a high correlation of the above properties with the spatial organisation of
the chromatin, encouraging further research of the 3D genome architecture and
epigenetics [108].

35http://aws.amazon.com/publicdatasets

154

http://aws.amazon.com/publicdatasets

6.3. Methods: a cloud-based task farm approach

With these premises, we studied a solution for mapping point-wise infor-
mation directly on the topological map of the chromatin in the nucleus, repre-
sented by the graph. This allows us to apply spatial statistics on the nucleus
and highlight patterns and correlations between epigenetic features and spatial
organization, that could not have been detected by considering only the bare
proximity on the linear sequence. This in turn can result in insights into how
spatial and chemical constraints are acting together to regulate molecular func-
tion.

6.3 Methods: a cloud-based task farm approach

Considering the innovation that high-throughput technologies are introducing
to the analysis of omics data, and the importance of the spatial conformation
of the genome in the nucleus, we propose a custom work-flow for data inte-
gration that relies on cloud computing: a cloud architecture with a scalable
high-performance infrastructure where software tools for data processing are
provided as services.

In particular, we want a solution that permits to re-interpret RNA-Seq and
ChIP-Seq data every time a novel experiment of Chromosome Conformation
Capture is available to researchers. The idea is to create a system that revolves
around the graph representation of Hi-C data, upon which transcriptomics and
epigenetics experiments can be mapped and statistically analysed taking into
account the spatial component.

6.3.1 Three pipelines

Raw data from genomic experiments are downloaded from public repositories
and analysed using well-known pipelines. The main repository for this kind of
analysis is the Sequence Read Archive (SRA) of the National Centre for Biotech-
nology Information (NCBI), which makes biological sequence data available to
the research community, so as to enhance reproducibility and allow for new
discoveries by comparing datasets. In this work, we also use this repository
as main reference for RNA-Seq, ChIP-Seq and Hi-C experiments. Datasets are

155

CHAPTER 6. A cloud solution for multi-omics data integration

differential
epigenetic
patterns

bowtie
index

ChIP-Seq

.sra
.sra

SRATOOLKIT

BOWTIE

MACS

.bed

c
o
n
tr

o
l_

fi
le s

a
m

p
le

_
fi
le

.fastq
.fastq

.sam
.sam

paired-ends

Hi-C

.sra

SRATOOLKIT

#1.fastq #2.fastq

HICUP
+

BOWTIE

.sam
genes

list

ERGM

ch
ro

m
os

om
e

fra
gm

en
ts

NUCHART

graphs
+

omics data

statistical
analysis

gene-level
expression

values

splice

junctio
ns

RNA-Seq

SRATOOLKIT

TOPHAT
+

BOWTIE

s
a
m

p
le

_
fi
le c

o
n
tro

l_
fi
le

.sra
.sra

.fastq
.fastq

.bam
.bam

an
no

ta
tio

ns

CUFFLINKS
+

CUFFMERGE

genome

(.fa)

CUFFDIFF

gene_exp.diff

split
.fastq

merge
.sam

BOWTIE

HICUP
+

BOWTIE
TOPHAT

+
BOWTIE

split
.fastq

merge
.sam

Figure 6.1: Raw data resulting from genome sequencing are processed through the steps of data
analysis pipelines before they can be integrated and statistically interpreted. Red
dashed lines indicate a further dataset partitioning, where .fastq files are split and
processed by many aligner services simultaneously, then partial aligned .sam files
are merged together to form a definitive output of aligned sequences (see figure 6.2)

available in the .sra format and can be easily managed using SRAtoolkit [137],
a suite of tools that allow to programmatically access data housed within .sra

files and convert them to a number of standard formats, like .fa and .fastq.
Once data have been retrieved, they must be analysed before they can be

integrated and statistically interpreted. Two widely used analysis pipelines for
RNA-Seq and ChIP-Seq data exist, relying on Tophat [151] and Cufflinks [152]
the former, and on Bowtie [97] and MACS [166] the latter. For what it concerns
Hi-C data processing, we already discussed our approach for the analysis and
representation of such information in Chapters 4 and 5. Our method relies on

156

6.3. Methods: a cloud-based task farm approach

HiCup [19] for raw data processing and alignments, and on NuchaR t for map-
ping multi-omic information on the resulting neighbourhood graph and sub-
sequent visualisation. Figure 6.1 illustrates the stages that compose the three
pipelines: raw data resulting from genomic experiments (.sra files) are con-
verted and aligned against reference genomes, and then processed using spe-
cific tools (MACS, Cufflinks, NuchaR t). ChIP-Seq and RNA-Seq pipelines ex-
pect the analysis to be conducted both on sample data and control data, so that
significant differences can be detected.

Dashed lines in Figure 6.1 indicate a further dataset partitioning: .fastq
files are split into multiple parts, as many parts as there are services available
for data alignment (see Figure 6.2). Partial files are processed simultaneously
and converted to .sam (or .bam) file. All partial results are then merged to
form a single aligned file ready to be used in the subsequent steps: ChIP-Seq
yields differential epigenetic patterns; RNA-Seq produces gene-level expression
values; Hi-C reveals the chromosome spatial conformation. Once all data have
been processed, we proceed by mapping them onto the neighbourhood graph
produced by NuchaR t.

The definitive step aims at verifying if co-localization patterns can be found
in transcription and/or epigenetic experiments. Although many different ap-
proaches can be used for this purpose, such as ontology annotation or machine
learning analysis, in this work we use a statistical approach relying on the Ex-
perimental Random Graph Model (ERGM), which is very popular in the network
analysis field [69]. This technique has the advantage of overcoming the limiting
assumptions of independence and identical distribution of standard statistical

ALIGNER

.fastq FASTQSPLIT

_n.fastq

_3.fastq

_2.fastq

_1.fastq

ALIGNER

ALIGNER

ALIGNER

.sam

_n.sam

_3.sam

_2.sam

_1.sam

MERGESAM

Figure 6.2: .fastq files are split into several parts, according to the available services, and
each piece is dispatched to a remote service. Outputs from each service are merged
to form a definitive, aligned SAM (or BAM) file used during subsequent steps

157

CHAPTER 6. A cloud solution for multi-omics data integration

models, like linear regression does, which is clearly violated by network data
since they are inherently relational.

Multi-threading is optionally supported by some of the tools listed above.
For instance, searching for alignments is a highly parallel task, and obtainable
speedup is significant (though affected by memory overhead). Bowtie allows to
execute a parallel search, where threads will run on separate processors/cores
and synchronize when parsing reads and outputting alignments. Consequently,
all tools based on Bowtie (e.g., TopHat) permit to exploit multi-threading during
the alignment phase. Among the tools in the Cufflinks suite, Cuffmerge and
Cuffdiff walk through short-reads alignment steps, and they allow to specify
the number of threads to be used when performing such operations.

HiCup itself is a pipeline encompassing six scripts executed one after an-
other, that enable multiplexed sequences to be sorted and mapped to the genome,
pairing Hi-C fragment ends and filtering for valid Hi-C interaction products.
HiCup supports multi-threading, allowing simultaneous processing of multi-
ple files.

Finally, NuchaR t has already been discussed in Chapter 5 and its features
in exploiting multi-threading parallelism to speedup Hi-C data analysis have
been presented.

ChIP-Seq analysis protocol

The goal of ChIP-Seq experiments is to identify Transcription Factor binding
sites or epigenetic modifications able to control gene expression. The first step
of this analysis includes an unspliced alignment for a small subset of raw reads.
There is a number of competing tools for short read alignment, each with its
own set of strengths, weaknesses, and caveats. As for the ChIP-Seq pipeline
we align raw sequencing data using Bowtie, by far the most popular short-read
aligner relying on the Burrow-Wheeler Transform. The alignment against the
genome must be performed both for the experimental file and for the control
file. This step is of utmost importance if we want to identify differentially en-
riched areas in the genome.

158

6.3. Methods: a cloud-based task farm approach

Once raw reads have been aligned, we use MACS for identifying transcrip-
tion factor binding sites: MACS evaluates the significance of enriched ChIP
regions and uses them to improve the spatial resolution of predicted binding
sites, by combining the information of both sequencing tag position and ori-
entation. As a non-interactive CLI tool, MACS takes inputs by setting proper
command line parameters and no input is needed during running. It works
on mapped reads from ChIP-Seq experiments, while the control data is op-
tional. The minimum output of a MACS execution contains the called peaks
and their summits. It also permits to generate wiggle format files that can
be loaded into the Affymetrix Integrated Genome Browser (IGB) [118] or UCSC
Genome Browser [154] to visually analyse the ChIP-Seq signal.

RNA-Seq analysis protocol

RNA-Seq studies the transcriptome of a group of cells, which typically means
to check for the different isoforms of genes and to compare the gene expression
between two different conditions in order to identify differentially expressed
genes. This is done with a well-established protocol, often called the “Tuxedo
pipeline”.

The key point of this technique is the alignment of transcripts reads to a ref-
erence genome, where the alignment software also places spliced reads across
introns and correctly determines exon-intron boundaries. Numerous tools per-
form short read alignment, so the choice of aligner should be carefully made, ac-
cording to the analysis goals/requirements. Here we will use Tophat, a widely
used ultra-fast aligner that performs spliced junctions alignments. Tophat works
directly on reads from transcriptomic experiments, using the reference genome
indexed according to the Burrow-Wheeler Transformation. Aligned fragments
are stored in a .bam file (compressed binary version of the .sam format) called
accepted_hits.bam. It also creates a .bed file named junctions.bed, that
defines the data lines displayed in an annotation track and stores the coordi-
nates of the spliced junctions present in the dataset, as these have been extracted
from the spliced alignments.

159

CHAPTER 6. A cloud solution for multi-omics data integration

Once the reads have been mapped against the reference genome, the recon-
struction of the transcriptome is performed using Cufflinks. Cufflinks can do
transcriptome assembly either ab initio or using a reference annotation, and also
quantifies the isoform expression in Fragments Per Kilobase of exon per Million
(FPKM). Cufflinks works on the .bam file produced by Tophat, using also the
reference genome and the gene annotations. The reconstruction process yields 4
files that summarize the process while providing also the estimated gene-level
expression values and the estimated isoform level expression values. Finally,
the transcripts originated on the sample and on the control are merged in a
unique file through the Cuffmerge tool, a script which comes in support of Cuf-
flinks.

The last step of a typical RNA-Seq analysis is the differential expression eval-
uation. The Cufflinks package includes a program named Cuffdiff, which can
be used to find significant changes in transcript expression, splicing, and pro-
moter use. Cuffdiff models the variance in fragment counts across replicates as
a function of the mean fragment count across replicates. The Cuffdiff step per-
mits to compare different cell conditions — such as control and disease, wild-
type and mutant, or various developmental stages — in order to highlight dif-
ferent RNA expression profiles. Cuffdiff is thus fed with gene annotations file,
and yields a .diff file that contains a list of the most significant differentially
expressed genes, sorted by q-value (corrected p-value for multiple tests).

Hi-C analysis protocol

Hi-C experiments describe the conformation of the DNA inside the nucleus
identifying interactions between spatially adjacent DNA segments. As for the
previously discussed pipelines, the first step is the alignment of reads against
the reference genome. The particular structure of Hi-C datasets requires a wrap-
per to the aligner, in order to handle paired reads in terms of contact frequency.
One of the most popular software for this kind of analysis is HiCup, which takes
in input the bare FASTA Quality (.fastq) files and performs mapping and pre-
liminary sequences filtering using Bowtie. Then for each read representing a
digested fragment, HiCup observes the distance from the nearest restriction site

160

6.3. Methods: a cloud-based task farm approach

to verify if the distance is reliable (it should be less than a fixed threshold, oth-
erwise the corresponding Hi-C contact is filtered out).

We already discussed NuchaR t, that exploits this graph-based approach for
the representation of Hi-C data. The graph-based approach has proved to be
a valuable way for the interpretation of genomic information by mean of com-
plex, dynamical structures that organize items in an integrated way.

6.3.2 Integration and statistical analysis

With a graph-based representation, it is possible to apply network analysis over
the resulting graph: topological measures capture graph’s structure for nodes
and edges and highlight the “importance” of the actors. Exploiting NuchaR t
we want to integrate data resulting from RNA-Seq and ChIP-Seq pipelines into
the Hi-C graph.

We use a method for the network analysis that relies on Exponential Ran-
dom Graph Models [69], which proposes a way to understand the processes of
network structure emergence and tie formation. These models work by mea-
suring a limited set of known statistics from a given network, and then using
the distribution of such parameters generates random networks. These random
networks are then compared to the observed subject to assess the likelihood of
the fit.

Operatively, the software generates a huge number of networks, selects the
ones having characteristics similar to the graph under analysis (i.e. degree
distribution, connected components, topological conformation), and tries itera-
tively to optimize the generation parameters until all the created graphs have
characteristics similar to the processed one. This estimator is extremely useful,
since it allows to create probability distributions by which some peculiarities of
the graph can be extrapolated, concerning both its intrinsic topology and con-
sidering specific attributes of the nodes [1]. In particular, the package allows to
compute simple statistics about the topology of the graph, such as the signifi-
cance of the vertex clustering attitude (triangle terms), or the significance of the
network tendency to create multiple paths between two vertices (twopath term).

161

CHAPTER 6. A cloud solution for multi-omics data integration

On the other hand, we can choose more complex modelling functions, and ex-
ploit the multi-omic features mapped on our graphs: for example, the nodecov
term analyses the nodal covariate, and will produce an estimate about the ef-
fect that a particular feature has on tie formation. The term absdiff will test
the significance of having edges in relation to the absolute difference of a vertex
property. We believe that the possibility of analysing data to infer structural-
activity relationships in a network is of critical importance [130].

6.4 Cloud platform

Processing genomic data through the pipelines described in Section 6.3.1 ap-
pears manageable, but working on thousands of such data sets within a reason-
able wall-clock time frame presents a challenge. Each single step of the pipelines
could take up to few hours — depending on the size of input files and on com-
puting capabilities available (see Section 6.5.2) — and produces results that can
be combined together to obtain an enriched data interpretation. If we want
our approach to scale genome-wide, we have to take into account that many
genomes are quite large (the human genome is 3.3 billion base pairs long), thus
data analysis represents a significant computational and data challenge. More-
over, as the resolution achievable through NGS experiments is increasing and
the read-quality data is factored in, a dataset containing full DNA molecules
easily reaches to hundreds of gigabytes.

6.4.1 Set up and communication

In this context, the cloud paradigm represents an appealing solution that per-
mits to obtain large amounts of computing capacity on-demand, with vari-
able pricing. Upon the OpenStack cloud software we built our virtualised in-
frastructure: OpenStack36 is a free and open-source cloud operating system,

36https://www.openstack.org/

162

https://www.openstack.org/

6.4. Cloud platform

volume

VM

compute node 2

internet

controller node

workflow
manager

compute node 1

network
manager

volume volume volumevolumevolumevolume

compute node 3

volume volume

compute node N

volume volume

volumevolume

storage node

S
T
O

R
A

G
E

BACKUP

VM VM

volume

VM VM VM VM VM

volume

VM VM VM

volume

VM

volume

VM VM VM

volume

VM

VM VM

SHARED

(a) Architecture of the cloud infrastructure

ephemeral
storage

persistent
storage

eth0CPUsRAM

OS

software

shared
storage

(b) A Virtual Machine instance

Figure 6.3: Each machine features a virtual hardware layout which includes CPUs, RAM and
network interfaces, and an ephemeral storage. A persistent block storage (or vol-
ume) of 100 GB is attached to each VM. A Linux operating system runs on top of the
virtual hardware, together with all software needed by data analysis pipelines

that controls large pools of compute, storage, and networking resources, pro-
viding an IaaS remote environment for end users. OpenStack APIs are open-
source Python clients, and can run on most existing operating systems, includ-
ing Linux, Mac OS and Windows. A command-line interface enables to ac-
cess the platform’s API through easy-to-use commands that can be included in
scripts to automate tasks. Internally, each command uses cURL command-line

163

CHAPTER 6. A cloud solution for multi-omics data integration

tools, which embed RESTful APIs, and use the HTTP protocol. They include
methods, URIs, media types, and response codes.

Each of our virtual machines is equipped with direct-attached ephemeral stor-
age (i.e., it disappears when the virtual machine is terminated) and a secondary
persistent storage where resources outlive the virtual instance (see Figure 6.3b).
Persistent storage can be attached (i.e., mounted) to running instances, detached
and attached again to a different virtual machine. Our virtual instances feature
commodity multi-core architectures, with some VMs having a more powerful
configuration (red instances in Figure 6.3a). All virtual instances are connected
to each other trough a 100Mbps network and run a 64-bit Linux OS.

To fully leverage the cloud, there are some design aspects that affect archi-
tectural choices. Namely, a right combination of data storage, job orchestration
and data exchange solutions would help to minimise processing costs. In our
scenario, datasets are collected from on-line repositories prior to the start of the
analysis. They are accessed in read-only mode, and must be available for all
computing instances in order to be used throughout the steps of the pipelines.
On the other hand, when a step has completed its execution, the resulting out-
put file(s) will be used as input for a (possible) subsequent step. Consequently,
novel produced files need to be accessible by the service that is going to pro-
cess that data. This requirement clearly derives from the software-as-a-service
scenario that we have designed: each step of the pipeline is accomplished by a
service (trapezoid blocks in Figure 6.1), and each single virtual machine hosts
all services need by all pipelines. A virtual machine can execute one service
at a time, provided that all needed input is available for the service to run; a
work-flow manager is responsible for orchestrating task scheduling.

While the cloud methodology would suggest data migration and replica-
tion as the favourite mean of shared storage, we decided that a distributed file
system that “ties” together all compute instances is the best solution for our sce-
nario: datasets are huge and need only to be accessed in read-only mode, thus
a transferring appears to be unneeded and impractical. Every virtual instance
performs temporary writes on its own local storage, where it has direct I/O ac-
cess. Writes to the shared folder only happen when a service has completed

164

6.4. Cloud platform

workflow
manager

volume

VM

volume

VM

shared
storage

dispatch job

inspect output

ready tasks

I/O

I/O

I/O

next job

active jobs

workload

Figure 6.4: Task scheduling

its task. As for contention, each service does not interfere with others’ opera-
tions, because each write to the shared storage only affects the files owned and
produced by the service. Shared data is periodically backed up on a backup
storage.

6.4.1.1 Task scheduling

The controller node in Figure 6.3a provides two services for managing work-
flows and network operations: the network manager basically operates as a
proxy for all data transfer operations, in and out of the cloud, acting as a gate-
way to the internet while managing accesses to outputs results. A further im-
provement will exploit a powerful and scalable NoSQL database to store datasets
and results: this is a step towards a multi-omic browser that permits to index,
search and retrieve datasets and results from genomic data analysis.

The work-flow manager is aimed at organizing the steps of the pipelines
into tasks, maintaining a list of active jobs37 and a list of tasks ready to be sched-
uled, and finally dispatching jobs to worker machines while handling failures
and uncertainties (see Figure 6.4). There are several, well established work-flow
management systems (WMS) that have supported Bioinformatics and other sci-
entific work-flows (Pegasus, Taverna and Askalon, among others) which provide

37In this chapter we will use the terms task and job interchangeably

165

CHAPTER 6. A cloud solution for multi-omics data integration

several advanced features such as fault-tolerance, task clustering, site selection,
resource provisioning, etc.

OpenStack includes a library named TaskFlow38, that allows the creation of
work-flows where task objects and functions are combined together. In this
sense, a task is the smallest unit of work that can be executed, and it defines its
desired input values and the expected outputs. A flow is a structure that links
one or more tasks together in an ordered sequence. Upon these objects, Task-
Flow guarantees a consistent, scalable and reliable work-flow execution, and
includes an engine that permits to stop, resume and safely revert tasks incur-
ring into failures.

Every WMS has its own pros and cons, but we found that TaskFlow has
limited (or at least confusing) support for orchestrating work-flows over a dis-
tributed infrastructure: it permits to declare work-flow engines also as workers,
that are separate processes dedicated for certain task execution. If running on
other machines, engines are connected through the kombu python messaging li-
brary. Differently, Pegasus39 seems to better suits our needs, likely because it has
native explicit support for clusters and grids: it works in combination with HT-
Condor40, a full-featured workload management system for compute-intensive
jobs.

At the time of writing, a full working cloud solution based on Pegasus is
still under development, mainly because we started with a small scale cloud
infrastructure which was sufficient to test and benchmark our ideas. We have
built our own simpler WMS, loosely inspired by the above, in order to be able
to validate our solution. Simpler does not mean less efficient: our WMS reli-
ably schedules tasks on worker machines that are marked as ready to execute
a task. We used the paramiko python library to handle SSH connections to re-
mote machines: paramiko takes care of monitoring available remote workers
and supports a basic error handling that either attempts to retry a failed task on
a different available worker, or tags it as failed and requests a user-supervised
checking.

38https://wiki.openstack.org/wiki/TaskFlow
39http://pegasus.isi.edu/
40https://research.cs.wisc.edu/htcondor/

166

https://wiki.openstack.org/wiki/TaskFlow
http://pegasus.isi.edu/
https://research.cs.wisc.edu/htcondor/

6.4. Cloud platform

ready running

success

failed

Figure 6.5: Task states

Each task in our system contains the name of the service (e.g., an applica-
tion) to be executed on the remote machine, paths to input files, application’s
parameters and path to the shared output folder, according to the application’s
requirements.

Tasks are linked together according to a pattern of execution. Specifically, for
each pipeline in Figure 6.1, tasks follow a linear pattern of execution, because
the tasks of a pipeline run one after the other in a serial manner, so as to respect
dependencies among tasks. When considering the whole schema, the overall
execution follows an unordered pattern, where a set of tasks can be executed in
any order, provided their input data is available.

A task life cycle is characterised by different states (Figure 6.5): a task is
ready to be fired for execution when all input files it needs are available. When
in this state, the work-flow manager dispatches the task to an available service:
a ready task contains paths to the input files needed to execute the job with all
optional parameters, plus directives on multi-threading exploitation (the tool
used to accomplish a task might or might not support multi-threading). Once
fired, a task is in the running state and the work-flow manager updates infor-
mation concerning workers’ workload, so that jobs scheduling is optimized to
minimize the number of idle services. A task moves to the success state after
it has finished successfully (i.e. no exceptions were raised during running): a
successful job has written all its output files into the shared storage, so that its
results can be used by a following step of the pipeline. If a task execution has
finished with an error, and maybe some exceptions were raised during running,
it enters the failed state.

At this point, the failed task is rescheduled, as soon as a worker is ready to

167

CHAPTER 6. A cloud solution for multi-omics data integration

execute it. If it fails again it remains in the failed state: due to the nature of
the pipeline’s steps a supervised checking is needed in this case, because some
input files might be missing or incorrect. A detailed description of the exception
occurred is reported, while the pipeline where the failing task belongs is halted.
Whichever problem occurred, the user is required to intervene and fix it, so that
the task is brought back to the ready state and can be scheduled again.

A coarse-grain parallelism is kept up while services are running: every com-
mand is sent through a SSH channel and is in turn managed by a controller
thread responsible for the low-level operations of establishing the connection,
while the work-flow manager continues its operations. Once the workflow
manager has dispatched a command on a worker machine, the controller thread
waits for the command to terminate its execution and captures the exit status
and output messages returned by the service when the assigned job has termi-
nated. If a service halts and returns an error message, the task enters the failed
state and the pipeline where the task belongs is suspended: here a supervised
operation is requested to solve the problem. Once the issue is solved the task
moves back to the ready state and is listed among tasks to be scheduled.

6.4.1.2 Partitioned alignment

Sequence alignment is notoriously a long, time- and resource- consuming task:
Bowtie and Bowtie-based alignment tools normally exhibit execution times in
the order of hours, depending on dataset size, aligning options, computing
power available and memory resources. Timings are likely to increase as the
size of datasets increases, but this situation is even worst if the physical mem-
ory available is too small, causing the operating system to swap pages when
memory demands are greater than physically available for all processes.

Despite being able to exploit parallel threading execution during alignment,
the size of the raw data files is by far the most important factor that influences
this execution time. In order to cope with this issue, .fastq files can be further
split, and alignment performed on partial files, while the actual aligned reads
file is obtained by merging each partial alignment (Figure 6.2). An ideal policy
would suggest to create as many partial files as there are working machines

168

6.4. Cloud platform

full .fastq split .fastq

fastq file size (GB) align (s) split (s) size (GB) align (s) merge (s)

SRR206986 3.7 1729 374 0.9 559 149
SRR207094 5.5 4871 571 1.4 1893 276

SRR501780 1 15 28800 1927 3.6 10700 1320

Table 6.1: Fastq files split into four parts, aligned and merged. Execution times and sizes

available: the more the parts, the smaller the files, thus the faster should be the
alignment. In reality, there is a trade-off among number of split parts, splitting
time, alignment time and merging plus sorting time.

Each computing resource performs alignment on a partial .fastq file, yield-
ing a partial .sam (or .bam) file of aligned sequenced reads. Partial outputs are
then merged together and sorted, either by mean of Samtools [101] facilities or
by using Linux commands, depending on the file format (.bam files are binary
files that must be processed using Samtools).

Table 6.1 reports some details concerning timings and file sizes during align-
ment steps for the ChIP-Seq (first row), RNA-Seq (second row) and Hi-C (third
and fourth row) pipelines. fastq files have been split into four parts, each
part has been aligned using the proper tool for each specific pipeline, and then
outputs have been merged and sorted (when needed). Timings reported are in
seconds and reflect wall-clock time measured using Linux time tool, on virtual
instances equipped with 2 vCPUs. Alignment time for split files is the average
of the four alignments. The last column reports the sum of the merge and sort
operations. These timings could be lower if more computing power was avail-
able, because aligner tools (Bowtie, HiCup, TopHat) can exploit multi-threading
for some steps of their processing.

This solution is a valuable mean for reducing alignment timings — com-
pared to the processing of a whole dataset maintaining the same configuration
— but mostly it allows to distribute the workload over several computing in-
stances, making effective use of the IaaS cloud paradigm. Nevertheless, per-
formance is still heavily dependent on the underlying computing capabilities
and physical memory available: we used basic configurations when launching

169

CHAPTER 6. A cloud solution for multi-omics data integration

alignments, but the number of options varies for each tool, which permit to cus-
tomise the process and obtain more accurate and detailed outcomes, at the cost
of higher memory consumption.

6.5 Test Case

In order to test our infrastructure, we used the datasets from the work of Shen et
al. [142], which is particularly interesting since it presents associated RNA-Seq,
ChIP-Seq and Hi-C experiments on the same samples of laboratory mouse. In
detail, the work comprises 143 datasets from 19 different tissues of mouse, with
the aim of annotating cis-regulatory elements of the mouse genome. The pe-
culiarity of this work is the concomitant presence of Hi-C data, which allowed
scientists to demonstrate that the mouse genome is organized into domains of
regulated enhancers and promoters.

In particular, the ChIP-Seq datasets describe the genomic localizations of
RNA polymerase II (PolII) accessibility sites, the CTCF binding sites, and three
chromatin modification marks, histone H3 lysine 4 trimethylation (H3K4me3),
histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine27 acetylation
(H3K27ac), in 13 adult tissues, four embryonic tissues and two primary cell
lines. The transcriptome of each tissue and cell type was determined through
RNA-Seq experiments, using the strand-specific sequencing of complementary
DNA protocol that can detect both the abundance and strand of origin of RNA
transcripts. For a systematic evaluation of the enhancer/promoter pairing rela-
tionships, long-range looping interactions have been analysed genome-wide in
adult mouse cortex by using the Hi-C method. Therefore, this latter tissue has
been used for our experiments of multi-omics data integration.

6.5.1 Results

We selected three genes and a gene cluster for our analysis, which are all con-
nected with the neuronal development and homeostasis, according to the avail-
ability of Hi-C data. In particular, SOX2 is a transcription factor that is essential
for maintaining self-renewal, or pluripotency, of undifferentiated embryonic

170

6.5. Test Case

Table 6.2: ERGM estimates – REST

REST Estimate Std.Error

edges + nodecov(”transcripts”) 0.6841 0.0465
edges + nodecov(”H3K4me3”) 0.6083 0.0601
edges + nodecov(”H3K4me1”) 0.5714 0.0517

stem cells. SOX2 has a critical role in maintenance of embryonic and neural
stem cells. POU5F1 is a homeodomain transcription factor of the POU family,
which is critically involved in the self-renewal of undifferentiated embryonic
stem cells and highly expressed in neurons. The Neuron-Restrictive Silencer
Factor (NRSF), is a protein which in humans is encoded by the REST gene, and
acts as a transcriptional repressor. REST is expressly involved in the repression
of neural genes in non-neuronal cells.

For all these genes we created the neighbourhood graph according to the
available Hi-C experiments. Data about differentially expressed genes has been
mapped on these “Google maps”-like representations (see Figure 6.6).

Gene expression values have been obtained from the RNA-Seq pipeline, af-
ter selecting all and only entries with p-value ≤ 0.05. Many co-localized genes
have very similar expression patterns (Figure 6.6, red and green nodes), fact
that highlights the importance of the spatial components in the interpretation
of omic data. Moreover, these expression patterns correspond to what we can
see from the epigenetic point of view, since both H3K4me3 and H3K4me1 —
landmarks of gene activation — have a distribution comparable to what seen
from the transcriptional point of view (Table 6.2, estimate values for the REST
gene, computed using the ERGM package, studying the nodal covariate for the
“transcripts” feature, and both histone modification marks above).

The graph-based representation for the analysis of Hi-C data and for the
integration of other multi-omics information is particularly suitable when in-
terpreting information coming from gene clusters, which are groups of genes
that encode for similar proteins that collectively share a generalized function
and are often located within a few thousand base pairs of each other. Con-
cerning this experiment, Hi-C data shows that the physical partitioning of the
genome is highly correlated with the enhancer-promoter units that encompass

171

CHAPTER 6. A cloud solution for multi-omics data integration

Dst

Kcnh1

Abcb6

Kcnq5

Jph2

Camk1d

Dclk1

Gnb4

Gria2

Sars

Sox2

Zranb2

Dclk2

Nlgn1

Fstl5
Slc22a15

Lrrc7

Sox2ot

Maml3
Gm6639

Tnik

Cngb3

1700123O12Rik

Slc24a2

Zmym6

Dpp6

Lrrc17

Fbxl13

Grm8

Fam190a

Stim1

Vwa3a

Zfp536

Mctp2

Sh3rf1

Sh2d4a

Cntn5

Rfx7

Psap

Utrn

Ppfia2

Gria1

4921511I17Rik

Fam71d

Pde4d

Zfp459

Dpys

Ncam2

Tiam2

Dsc3

Trpm3

(a) SOX2

Fmn2

Pcmtd1

Lair1

Bahcc1

Bop1

Alk

Pde9a
Pou5f1

Tnxb
Scaf8

Mta3

Zfp563

Cchcr1

3110082D06Rik

Arhgap26

(b) OCT4

Pla2g4a

Ush2a

Fer1l4

Mccc1

Cdc14a

1700123O12Rik

Gm136

6430704M03Rik

Cmklr1

Kit

Mad1l1

Aff1

Rest

Sgcb

Igfbp7

Ociad1

Cad

Fryl

Ep400

Mtus2

Cox7b2

Dcun1d4

Card11

Tnip2

Lrrc66Polr2b

Sfswap

Rbm47

Lgi2

Adamts3

Gm6116

9530036O11Rik

Anxa4

Suclg2

Lyrm1
Shank2

Mir3470b
Adam18

Bmper

Dlg4

Col23a1

Fam71d

Samd4

Stk3

Fam105b

Trap1

Akap8l

Lrp5

(c) REST

Figure 6.6: These figures show the neighbourhood graph of a) SOX2, b) POU5F1 and c) REST
with mapped differential expression genes. The yellow node identify the gene from
which the graph has been built. Red nodes describe positive fold change for the
gene expression pattern, while green nodes are negatively expressed genes. The
size of the node increases as the expression value increases. Blue edges are intra-
chromosome connections, while green edges identify inter-chromosome connec-
tions

172

6.5. Test Case

Cacna1s

Fmn2

Fam174a

Ccdc108

Dbh

Fnbp1

Itgb6

Eif2ak4

Tsc1 Acoxl

Plk1s1

6430548G04

Bmpr1b

Enpep

Tacr3

Pdgfc
Ttll7

Them4

5330417C22Rik

B930007M17Rik

Maml3

Tcea3

Ctnnal1

Tmem57

Ube2r2

Bend5

Slc24a2

Smpdl3b

Abcb1b

Pclo

Rnf10

Ankrd17

Slc2a9

Helq

Exoc4

Arhgef5

Snd1

Fkbp14

Arhgap25

9930013L23Rik

Me3Agbl1

Adam18

Elavl1

Shcbp1

2610019F03Rik

Nr3c2
Ctnnb1

Trf

Tyk2

Filip1

Glb1l3

Lrrfip2

Myo1e

Pdgfd

Zfp280d

Dnajc13

Pah

Reep3

Trhde

Gm239

Akap7
Zmat5

Urgcp

Csnk1d

Brip1

Fstl4
Fkbp1b

Ppp2r5c

Hpcal1

Immp2l

E030019B13Rik

Ston2
Rin3

Heatr5a

Ripk1

Gpr137b

Larp4b

Ofcc1

Slc22a17

Zc3h13

1700112E06Rik

Galntl2

Dab2

Ppara

Deptor

Ranbp3l

Adamts12

Slx4
Fyttd1Qtrtd1

Slc12a8

Lpp

Alk
Abcg5

1700106N22Rik

Ltbp1

Pcdha4

Pcdha7

Pcdha5Pcdha11
Pcdha10

Dsc3

Epb4.1l4a
Hars

Hdac3

Mep1b

Sema6a

Map3k8

Bambi

Snx24

4921528I01Rik

Arhgap26

Chst9

Ccdc11

Armc4

Arhgap12

Mpp7

Trappc8

C330018D20Rik

Abhd3

Lrrtm2

Eif4ebp3

Ankhd1

Elac1 Pcdha1

Ppargc1b

Pcdha9

Pcdha3Pcdha12

Wac

Rell2

Mapk4

Slc4a9

Kcng2

Ctif
Arhgef37

Pcdha8

Pcdhac1

Pcdhac2

Greb1l

G630055G22Rik

Spink13

Gfra1

Kif11

Tle4

Rnls

Pi4k2a

Myof

Scd4

Pcdha6

Figure 6.7: This figure shows the neighbourhood graph of the PCDHα cluster with mapped
differential expression genes. Yellow nodes are the gene of the studied gene clus-
ter. Red nodes describe positive fold change for the gene expression pattern, while
green nodes are negatively expressed genes. The size of the node increases as the
expression value increases. Blue edges are intra-chromosome connections, while
green edges identify inter-chromosome connections

the Protocadherin gene cluster (Pcdhα) on chromosome 18. As reported in Fig-
ure 6.7, there is a high correlation between the expression patterns and the epi-
genetics landmarks, which is well evidenced by the graph-based representation
presented in this work. The automatic re-analysis of data performed using our
cloud approach clearly can now confirm results proposed in [142].

The last analysis performed on this case study is the statistical modelling of
the Protocadherin gene cluster graph. Using ERGM we characterized the distri-
bution of the edges in relation to the characteristics of the nodes under analysis.
When running the simulation, we used default parameters to control the under-
lying Monte Carlo algorithm (MCMC.burnin=10000, MCMC.interval=1000),

173

CHAPTER 6. A cloud solution for multi-omics data integration

Table 6.3: ERGM estimates – Pcdhα

Pcdhα Estimate Std.Error

edges + nodecov(”transcripts”) 0.7031 0.01157
edges + nodecov(”H3K4me3”) 0.6078 0.0867
edges + nodecov(”H3K4me1”) 0.5067 0.0547

and the final estimator of the network for the Protocadherin gene cluster has a
p-value < 1e−4. The achieved statistical results are quite interesting to analyse,
since the correlation between gene expression and the presence of edges in the
graph is quite high. From the epigenetic point of view, the correlation is less
strong, but still present, both for H3K4me3 and H3K4me1 (Table 6.3).

6.5.2 Computational costs

The following tables (Table 6.4, 6.5 and 6.6) summarize the computational costs
encountered while running our task farm over Shen et al. experiments [142].
Our task farm was implemented over a cloud infrastructure built on top of
OpenStack, as described in Section 6.4, with a farm of 8 worker instances, plus
the controller node. All instances had a very simple, identical configuration,
with 2 vCPUs and 4GB of RAM, except one featuring 4 vCPUs and 8 GB of
RAM.

Tables report timings and input sizes for each step of each pipeline, for both
the control file (marked with a ’C’) and the sample file (marked with a ’S’). Nor-
mally, early steps of the pipelines involve conversion of .sra files into .fastq
and alignment. Afterwards, control and sample files are used together to iden-
tify significant features from the experiments. When both files are processed
together (as it is the case with MACS or Cuffdiff), timings are reported in the
sample column only, while input sizes are showed for both.

Tools employed in each step might output more than one file, sometimes
containing statistics on the alignment or a summary of the executed operations.
However, input sizes reported in our tables reflect the sum of the files (if more
than one) passed as input to a specific task. Also note that alignment timings re-
ported are the sum of the average split time, average aligning time and average

174

6.5. Test Case

ChIP-Seq

SRR206986 (S) SRR206994 (C)

step time (s) input (GB) time (s) input (GB)
fastq-dump 138 0.49 149 0.51

alignment 982 3.7 1017 3.9
MACS 344 2.5 – 2.6

Table 6.4: The table shows execution times (in seconds) and size of the input file (in GB) for
each step of the ChIP-Seq pipeline, measuring both the control and the sample file

merge (and sort) time.
For what it concerns ChIP-Seq, it has been the less demanding pipeline:

smaller datasets led to faster execution time. Table 6.4 reports details of a run
using SRR206986 experiment as sample file, and SRR206994 experiment as con-
trol file (the latter was an input cortex cell line, while the former had CTCF
cortex data). Aligned reads from both control and sample files are used to find
enriched areas and transcription factor binding sites, by using them as input for
the MACS tool. MACS captures the influence of genome complexity to evaluate
the significance of enriched ChIP regions, and improves the spatial resolution
of binding sites through combining the information of both sequencing tag po-
sition and orientation. MACS generates its peak files in a file format called
.bed file. This is a simple text format containing genomic locations, specified
by chromosome, begin and end positions, and some more optional information,
including the p-value of peak region.

RNA-Seq pipeline is slightly more complex, and more steps are required
to interpret transcriptome assembly and differential expression. TopHat uses
Bowtie for read mapping and alignment, but it aligns RNA-Seq reads to a ref-
erence genome in order to identify exon-exon splice junctions: by first map-
ping RNA-Seq reads to the genome, TopHat identifies potential exons, since
many RNA-Seq reads will contiguously align to the genome. Using this ini-
tial mapping information, TopHat builds a database of possible splice junctions
and then maps the reads against these junctions to confirm them. This spe-
cific phase of TopHat’s processing is very time- (and memory-) consuming, and
there is little room to speed it up because it does not benefit from multi-threaded
execution, which is instead exploited when aligning reads with Bowtie. When

175

CHAPTER 6. A cloud solution for multi-omics data integration

RNA-Seq

SRR207094 (S) SRR207095 (C)

step time (s) input (GB) time (s) input (GB)
fastq-dump 171 0.45 240 0.53

alignment 4871 5.5 4006 6.2
cufflinks 3156 0.6 3421 0.8

cuffmerge 287 1.2 – 1.3
cuffdiff 18840 2.5 – –

Table 6.5: The table shows execution times (in seconds) and size of the input file (in MB) for
each step of the RNA-Seq pipeline, measuring both the control and the sample file

we split .fastq files we can distribute the workload over several working ma-
chines, attempting reducing overall execution time — on average, splitting the
file into 4 parts and aligning each part on separate instances, halves the wall-
clock execution time, with respect to processing the full dataset — but the over-
head of merging partial outputs and sorting the definitive one is not negligible.
All in all, performance strongly depend on the underlying computing capabili-
ties.

In order to reconstruct the transcriptome, in the subsequent steps the Cuf-
flinks suite is used: sample and control transcriptome libraries are assembled to
quantify their expression. Cuffilnks reports the estimated gene-level expression
values in a file named genes.fpkm tracking, and the assembled isoforms in
a file called transcripts.gtf. Assembled isoforms from sample and con-
trol file are then merged together into a master transcriptome assembly, and
then used to analyse both mapped reads with Cuffdiff, that compares expres-
sion levels of genes and transcripts in both control and sample RNA-Seq exper-
iments. The differential expression at the gene level is reported in a file named
gene exp.diff.

The Hi-C pipeline does not use a control file, but operates on paired-end
reads: conversion of raw Hi-C data contained in the .sra file yields two .fastq
files with forward and reverse spot, respectively. HiCup maps .fastq data
against a reference genome and filters out frequently encountered experimental
artefacts. It produces paired-read files in .sam (or .bam) format, each read pair
corresponding to a putative Hi-C di-tag.

176

6.5. Test Case

HiC

SRR501780 1 SRR501780 2

step time (s) input (GB) time (s) input (GB)
fastq-dump 1517 3.0 1624 3.2

alignment 13606 15+15 – –
NuchaRt 387 ∼8 – –

Table 6.6: The table shows execution times (in seconds) and size of the input file (in MB) for
each step of the Hi-C pipeline

The Hi-C pipeline proceeds by building a neighbourhood graph upon the
.sam file produced by HiCup, starting from the genes of interest. On the graph,
we map the genomic information resulting from other pipelines: CTCF binding
sites described in the .bed files yielded by MACS and differential expression
values listed in gene exp.diff yielded by Cuffdiff. Once the graph is con-
structed, we can conduct statistical analysis over the graph (such as ERGM),
visualise data either in textual or tabular format, and eventually plot resulting
graphs using NuchaR t. The execution time for the NuchaR t phase is relative to
the ran for gene SOX2 on SRR501780 experiment: we normally reported graph
construction and normalisation performance only, because we focused on the
parallel implementation. The whole application’s execution time is the sum of
5 distinct steps (as described in Section 5.1.1), the others being mostly involved
in I/O sequential operations, whose execution time depends on data size.

Most of the benefits in terms of performance clearly derive from the parti-
tioned alignment, which is a valuable mean for reducing alignment timings —
compared to the processing of a whole dataset, maintaining the same hardware
configuration. With our solution we achieved to distribute the workload over
several computing instances, making effective use of the IaaS cloud paradigm.
Nevertheless, performance is still heavily dependent on the underlying com-
puting capabilities and physical memory available. Also, we used basic config-
urations when launching alignment tools, but the number of options varies for
each tool, which permit to customise the process and obtain more accurate and
detailed outcomes, at the cost of higher memory consumption.

Nevertheless, a clear improvement that this solution brings is the possibility
of concurrently executing the analysis pipelines on several sample/control files

177

CHAPTER 6. A cloud solution for multi-omics data integration

couples, provided a sufficient number of services is available, which is obvi-
ously related to the (virtual) hardware resources available. An increase in the
number of “worker” services must be supported by a proper WMS, which will
permit to efficiently orchestrate the whole process.

Minor considerations

Notably, long-lasting tasks are more likely to incur in platforms or connection
errors, causing the abortion of the failing job and which would force a job re-
submission, increasing the total execution time. Our task farm can handle fail-
ures by trying to resubmit a task in a different working instance, but has little
automated control over platform errors: misconfiguration of user software or
missing libraries can impede an application to start; huge datasets can saturate
physical memory, causing an application to immediately abort. As soon as we
upgrade our infrastructure with a state-of-the-art WMS, we foresee better han-
dling of failures and errors.

VMs have all been cloned from a fully equipped and tested one, but failures
can still occur. In this case the user must manually intervene. At the same time,
if some required datasets are missing (such as genome annotations, digest files,
genome indexes, etc.) they must be re-generated using the proper tool, and this
requires the user to provide for such needs.

It might also be the case that some stages’ execution time largely exceed
the others, causing a pipeline to halt, waiting for a output data to be ready. In
our case, this happened with the Hi-C pipeline, where the NuchaRt stage was
waiting for the outputs of both ChIP-Seq and RNA-Seq before it could build
graphs with mapped multi-omic information.

6.6 Concluding remarks

The amount of information that can be integrated relying on each single Hi-C
map is huge, in the order of tens of GB of raw data. The explosion of experimen-
tal datasets available for genome folding analysis and multi-omic integration
will pose difficult challenges of data management, which should be carefully

178

6.6. Concluding remarks

considered by computer scientists working in the field. Cloud Computing can
be very useful for this kind of analysis, since the on-demand paradigm is well
suited with the possibility (and necessity) of remapping available expression
and epigenetic data on new Hi-C experiments. In this Chapter we have shown
how the re-interpretation of omics data can be automatically performed using
a cartographic representation of the nucleus, as soon as experimental data be-
come available. The presented system attempts to provide an optimal exploita-
tion of the available resources, while good scalability is foreseeable for what it
concerns the split/merge of sequenced reads, as the number of virtual instances
increases (see Section 6.4.1.2). The whole system permits to produce results in
a standardized and reproducible way. Many different protocols and tools can
be used in this sense, but the principle is to provide researchers better possibil-
ities to analyse their data, in the view of creating a cloud solution able to fully
consider also spatial component in the complexity of biological systems.

179

Chapter 7

Conclusions

In this thesis we walked through the steps of a high-performance pipeline,
whose objective is to promote the usability and availability of novel solutions
for the analysis and interpretation of heterogeneous genomic information. Start-
ing from NuChart-II, an application for Hi-C data analysis built using high-level
parallel programming paradigms, we embedded our tool into the R environ-
ment, which is rich on statistical features and is widely appreciated in most
scientific communities for being highly usable and accurate. We eventually in-
tegrated NuchaR t in larger genomic analysis pipelines, and described their im-
plementation by means of a tailored cloud approach, fostering both efficiency
and availability. We tried to address performance and usability in parallel and
distributed systems, providing a pragmatic approach linked to Bioinformatics.
We believe that our work can be the base for further adaptations and develop-
ments, also considering the appreciable results we obtained.

In Chapter 4 we focused on NuChart-II, a C++ application that uses ad-
vanced parallel computing techniques (such as lock-free synchronisation and
algorithmic skeletons) and applies memory optimisations to provide a gene-
centric, graph-based representation of the chromosome spatial organisation, by
working on the three-dimensional chromosome information obtainable from
Hi-C data. With NuChart-II we have suggested an approach that helps to deal
with memory-bound algorithms, which are not unusual in scientific fields: forc-
ing a run-time, working set reduction, we obtained substantial improvements

180

IaaS, PaaS

SaaS

DaaS

shared-memory
architectures

algorithmic
skeletons

tools
libraries

next-generation
sequencing

3C-based
techniques multi-omic

data

genetics
biology

parallel
computing

 data
integration
omics

visualisation
statistics

NuchaRt

cloud
services

Figure 7.1: A high-level view of our approach to heterogeneous genomic information process-
ing and interpretation

in memory bandwidth and cache utilisation, taking full advantage of multi-
core architectures. We also elaborated a normalisation approach for biased Hi-C
data, that permits to assign a probability to the spatial proximity of two genes,
and map this probability on the graph: we described our solution that employs
a well-known normalisation algorithm to our graph-based representation, and
we discussed its implementation using high-level parallel programming pat-
terns, which achieved outstanding performance and quasi-linear scalability.

In Chapter 5 we focused on usability, and decided to embed NuChart-II into
the R environment: R has a rich set of existing statistical packages that facili-
tates the integration of exploratory data analysis, and permits to easily move
through the steps of model development, from data analysis to implementation
and visualisation. We designed an R package, NuchaR t, that embeds our C++
software as a parallel engine: parallel memory-intensive tasks can be offloaded

181

CHAPTER 7. Conclusions

to C++, while we rely on R for setting up a usable working environment. Per-
formances are consistently similar to the C++ implementation (for what it con-
cerns parallel computing phases), while there are clear benefits in the possibility
of conducing a step-by-step analysis of genomic data.

The availability requirement has been addressed proposing a cloud-based
solution that permits to deliver computation and storage as dynamically al-
located virtual resources: our gene-centric, graph-based representation of ge-
nomic data has been used as the the ground for the integration and analysis
of multi-omic information, facilitating the identification of functional patterns
arranged in the nucleus of a cell.

Our cloud infrastructure deploys a task farm, where software for data pro-
cessing is provided as a service, and a task scheduler is responsible for main-
taining a coarse-grain parallelism while services execute their tasks over dif-
ferent sorts of data. Every task can fully exploit the underlying computing in-
frastructure it lands on, while different stages of the data analysis pipeline can
be executed in parallel, eventually dealing with different parallelism, memory-
and data-access requirements. By partitioning datasets we also managed to
ameliorate the performance of a time- (and resource-) consuming task, like se-
quence alignment can be.

The work discussed in this thesis is a small, though remarkable, step to-
wards our final purpose: we envision a Cloud platform that provides Bioin-
formatics scientists with computing facilities, software tools and easy access to
public data repositories. What we expect is a complete solution for dealing
with complex scientific workflows modelled as pipelines, where software ser-
vices are made available in an fully equipped environment that can embrace
novel data processing and visualisation techniques, as novel discoveries spring
out from Bioinformatics and Systems Biology communities.

7.1 Open issues and future works

Throughout this discussion, we bumped into some issues that are still open,
which we tried to address by studying possible solutions, and upon which we

182

7.1. Open issues and future works

are currently working on.
Going back to NuChart-II in Chapter 4, the memory management matter

still presents a number of open issues: currently, our efforts are focusing on
memory allocation for memory-bound parallel applications: as mentioned in
section 2.2, we believe that data movement and memory affinity represent two
of the cornerstones of performance and efficiency in code production for multi-
cores and heterogeneous architectures. Particularly for memory-bound prob-
lems, taking full control of the memory allocation strategy can lead to substan-
tial performance improvement and overall program efficiency: we are investi-
gating a solution that would alleviate the memory burden, by balancing good
throughput and good memory utilization, while possibly exploiting memory-
mapped I/O for huge read-only datasets. We believe that handling the problem
with a pattern-based approach will help to describe data structures that can be
effectively coupled with the implicit data path exposed by the computation.

A porting on GPUs is also under evaluation, both for the graph construc-
tion phase and the normalisation step. However, this porting is not straightfor-
ward, due to the dynamic nature of the application (e.g., loops that break when
a matching position is found): it seems to be unsuitable for a SIMD design, that
notoriously suffers from dynamic memory allocation and conditional branch-
ing.

The NuchaR t package presented in Chapter 5 is not yet publicly available
from R’s on-line package repository (CRAN41), but we are currently working
on making it compliant with CRAN’s requirements. The usability requirement
encompasses the visualisation of processing results: we have so far managed
to draw neighbourhood graphs of small-to-medium size, obtaining a compre-
hensive representation of the analysed data. However, static visualisation hin-
ders the readability of the graphs, particularly when the size of the graph in-
creases. We are still investigating novel approaches that operates over proba-
bilistic graphs and that would help us to implement an interactive, navigable
map of the genome.

Visualisation of genomic data can not overlook experiments resolution: re-
cent works on Hi-C data have shown that more information about chromatin

41https://cran.r-project.org/

183

https://cran.r-project.org/

CHAPTER 7. Conclusions

folding can be captured by increasing experiments resolutions [128, 141], which
clearly reveals TADs organisation into sub-compartments, where genomic el-
ements have high interaction frequencies. We are currently studying how to
incorporate this information in our neighbourhood graphs, making it available
as we zoom in into the graph.

For what it concerns our Cloud solutions, it has been tested on a small-scale
virtual environment with very basic configurations. The whole infrastructure
has to be enriched with a full-featured workflow manager, in order to adhere to
standard task scheduling mechanisms. This requirement becomes crucial once
we manage to enlarge our virtual infrastructure with proper storage solutions
and computing nodes: by widening the number of computing nodes, grows
the number of available services, which would reflect in a greater number of
samples upon which data analysis pipelines can be executed, concurrently.

Core decomposition and probabilistic graphs

Being the visualisation requirement a serious issue, we have been studying pos-
sible solutions to optain a multi-scale, interactive representation of Hi-C data,
that permits to variate the amount of rendered details as we zoom closer (or
further) into the graph.

One step toward this achievement is to compute the core decomposition on a
genome-wide graph: this technique is based on the notion of k-core, a graph-
analysis technique commonly used to find subgraphs that can be computed in
linear time [23]. The k-core of a graph is defined as the maximal subgraph in
which every vertex has at least degree k within that subgraph. The set of all
k-cores of a graph forms its core decomposition. We can employ this decom-
position to create a sort of multi-scale visualisation mechanism: when zooming
out of the graph we only keep high k cores, while the k decreases as we zoom
in, revealing more and more details. However, we cannot keep edges out of this
game, because they contain valuable genomic information plus a score result-
ing from the normalisation, that tells us whether we are actually looking at two
likely adjacent genes.

184

7.1. Open issues and future works

Figure 7.2: Core decomposition of a (deterministic) graph, adapted from Batagelj V. and Za-
veršnik M, 2011 [23]

In this regard, we could also describe a neighbourhood graph built from
Hi-C data as an uncertain (or probabilistic) graph, where the uncertainty comes
from the biased, noisy experiments. Indeed, we already manage such uncer-
tainty assigning a score to each edge of a graph, according to the genomic fea-
tures that characterise the relationship between each pair of linked genes (see
Section 4.3). Since the range of values of scores varies widely, we can rescale
such score so that each value falls in the range (0, 1]. What we get is a proba-
bility that the relation between the two linked nodes holds; in other worlds, a
probability that a given edge exists.

An uncertain graph is defined as G = (V,E, p), where p : E → (0, 1] is a
function that assigns a probability of existence to each edge. The connectivity
of such network is a complex probabilistic function of the network topology and
edge uncertainty. A possible graph of an uncertain graph is a deterministic graph
which is one of the possible outcome of the random variables representing the
edges of the probabilistic graph G. The possible graph is usually denoted as
G = (VG, EG), with G ⊆ G and EG ⊆ G. The total number of possible graphs
obtainable from an uncertain graph is 2|E|, because for each edge we have two
cases as to whether or not that edge is present in the graph. The probability of
sampling a possible graph G from the uncertain graph G is:

Pr[G] =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e))

185

CHAPTER 7. Conclusions

A drawback of probabilistic graphs is that, due to the exponential number
of possible worlds, even the simplest analysis problem that would be computed
in linear time in a deterministic graph, becomes a #P-complete problem in the
uncertain scenario [155]. However, knowledge discovery and data mining com-
munities have long been investigating such problems, proposing solutions that
lead to the extraction of representative instances of an uncertain graph, where
the representative instances preserve a number of important graph metrics.

Among these approaches, we found two of them that could be interesting
for our purposes: the Highly Reliable Subgraphs discovery proposed by Jin et
al. [85], and the core decomposition of uncertain graphs proposed by Bonchi et
al. [26]. The first solution is described “at least as intractable” as a #P-complete
network reliability problem could be, while the latter uses dynamic program-
ming techniques to obtain a core decomposition algorithm in polynomial time.

Both solutions take into account the network topology and edges probabil-
ity, and use a probability threshold below which graphs elements are dropped,
though maintaining the consistency of the information contained in the graph.
We are still investigating whether (an adaptation of) these approaches might be
of valuable use for our purposes: we believe that by leveraging the probability
threshold we can augment or reduce the “details” of a graph, producing a sort
of navigable map of the DNA. This would be a first step towards our project of
building an interactive, navigable genome browser.

186

Bibliography

[1] R. Admiraal and M. S. Handcock. networksis: a package to simulate bi-
partite graphs with fixed marginals through sequential importance sam-
pling. Journal of Statistical Software, 24(8):1–21, may 2008.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, 29:66–76, 1995.

[3] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati.
Targeting distributed systems in fastflow. In Euro-Par 2012 Workshops,
Proc. of the CoreGrid Workshop on Grids, Clouds and P2P Computing, volume
7640 of LNCS, pages 47–56. Springer, 2013.

[4] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati.
Design patterns percolating to parallel programming framework imple-
mentation. International Journal of Parallel Programming, 42(6):1012–1031,
2014.

[5] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids.
Parallel Computing, 32(7):449–462, 2006.

[6] M. Aldinucci and M. Danelutto. Skeleton based parallel programming:
functional and parallel semantic in a single shot. Computer Languages,
Systems and Structures, 33(3-4):179–192, Oct. 2007.

[7] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Skeletons for multi/many-
core systems. In B. Chapman, F. Desprez, G. R. Joubert, A. Lichnewsky,
F. Peters, and T. Priol, editors, Parallel Computing: From Multicores and
GPU’s to Petascale (Proc. of PARCO 2009, Lyon, France), volume 19 of Ad-
vances in Parallel Computing, pages 265–272, Lyon, France, 2010. IOS press.

[8] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fastflow:
high-level and efficient streaming on multi-core. In S. Pllana and F. Xhafa,
editors, Programming Multi-core and Many-core Computing Systems, Parallel
and Distributed Computing, chapter 13. Wiley, Oct. 2014.

189

BIBLIOGRAPHY

[9] M. Aldinucci and M. Torquati. FastFlow website, 2009. http://
mc-fastflow.sourceforge.net/.

[10] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New
York, NY, USA, 1967. ACM.

[11] S. Angiuoli, M. Matalka, G. Gussman, K. Galens, M. Vangala, D. Riley,
C. Arze, J. White, O. White, and W. Fricke. Clovr: A virtual machine for
automated and portable sequence analysis from the desktop using cloud
computing. BMC Bioinformatics, 356(12), Aug 2011.

[12] J. Antony, P. P. Janes, and A. P. Rendell. Exploring thread and memory
placement on NUMA architectures: Solaris and Linux, UltraSPARC/Fire-
Plane and Opteron/Hyper-Transport. In Proceedings of the 13th interna-
tional conference on High Performance Computing, HiPC’06, pages 338–352,
Berlin, Heidelberg, 2006. Springer-Verlag.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of
Cloud Computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[14] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.
A view of the parallel computing landscape. Commun. ACM, 52(10):56–67,
2009.

[15] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.
A view of the parallel computing landscape. Communications of the ACM,
52(10):56–67, 2009.

[16] T. Asbury, M. Mitman, J. Tang, and W. J. Zheng. Genome3d: A viewer-
model framework for integrating and visualizing multi-scale epigenomic
information within a three-dimensional genome. BMC Bioinformatics,
11(1):444, 2010.

[17] F. Ay, T. Bailey, and W. Noble. Statistical confidence estimation for Hi-C
data reveals regulatory chromatin contacts. Genome Research, 2014.

[18] F. Ay and W. Noble. Analysis methods for studying the 3D architecture
of the genome. Genome Biology, 16(1):183+, Sept. 2015.

190

http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/

BIBLIOGRAPHY

[19] Babraham Bioinformatics. Available from:
http://www.bioinformatics.babraham.ac.uk/projects/hicup/, 2012.
Accessed: 2015-11-20.

[20] T. Bailey, P. Krajewski, I. Ladunga, C. Lefebvre, Q. Li, T. Liu, P. Madri-
gal, C. Taslim, and J. Zhang. Practical guidelines for the comprehensive
analysis of chip-seq data. PLoS Comput Biol, 9(11):e1003326, 11 2013.

[21] A. Barabási and Z. Oltvai. Network Biology: Understanding the Cell’s
Functional Organization. Nature Genetics, 5:101–114, 2004.

[22] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source Soft-
ware for Exploring and Manipulating Networks. In International AAAI
Conference on Weblogs and Social Media, 2009.

[23] V. Batagelj and M. Zaveršnik. Fast algorithms for determining (general-
ized) core groups in social networks. Adv. Data Anal. Classif., 5(2):129–145,
July 2011.

[24] J.-M. Belton, R. P. McCord, J. H. Gibcus, N. Naumova, Y. Zhan, and
J. Dekker. Hic: A comprehensive technique to capture the conformation
of genomes. Methods, 58(3):268 – 276, 2012. 3D chromatin architecture.

[25] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A
scalable memory allocator for multithreaded applications. In L. Rudolph
and A. Gupta, editors, ASPLOS, pages 117–128. ACM Press, 2000.

[26] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposi-
tion of uncertain graphs. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
1316–1325, New York, NY, USA, 2014. ACM.

[27] J. Bonwick. The Slab Allocator : An Object-Caching Kernel Memory Al-
locator, 1994.

[28] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall. Cloud Computing.
Version 1.0, IBM White Paper, October 2007.

[29] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: A generic framework
for managing hardware affinities in hpc applications. In Proceedings of the
2010 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing, PDP ’10, pages 180–186, Washington, DC, USA, 2010. IEEE
Computer Society.

191

BIBLIOGRAPHY

[30] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital Equipment Corporation, 1994.

[31] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1997.

[32] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computer Systems,
25(6):599 – 616, 2009.

[33] S. Campa, M. Danelutto, M. Goli, H. González-Vélez, A. M. Popescu, and
M. Torquati. Parallel patterns for heterogeneous cpu/gpu architectures:
Structured parallelism from cluster to cloud. Future Generation Computer
Systems, 37:354–366, 2014.

[34] S. Campa, M. Danelutto, M. Torquati, H. González-Vélez, and A. M.
Popescu. Towards the deployment of fastflow on distributed virtual ar-
chitectures. In ECMS, pages 518–524, 2013.

[35] Y. Chu and D. Corey. RNA Sequencing: Platform Selection, Experimental
Design, and Data Interpretation. Nucleic Acid Therapeutics, 22(4):271–274,
July 2012.

[36] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Munster skeleton li-
brary Muesli – a comprehensive overview. In ERCIS Working paper, num-
ber 7. ERCIS – European Research Center for Information Systems, 2009.

[37] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tations. Research Monographs in Par. and Distrib. Computing. Pitman,
1989.

[38] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[39] L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang. Bioinformatics clouds for
big data manipulation. Biology Direct, 7(1), 2012.

[40] M. Danelutto, R. D. Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A
methodology for the development and the support of massively parallel
programs. Future Generation Compututer Systems, 8(1-3):205–220, 1992.

[41] M. Danelutto and M. Stigliani. SKElib: parallel programming with skele-
tons in C. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller, editors,

192

BIBLIOGRAPHY

Proc. of 6th Intl. Euro-Par 2000 Parallel Processing, volume 1900 of LNCS,
pages 1175–1184, Munich, Germany, Aug. 2000. Springer.

[42] M. Danelutto and M. Torquati. Loop parallelism: a new skeleton per-
spective on data parallel patterns. In M. Aldinucci, D. D’Agostino, and
P. Kilpatrick, editors, Proc. of Intl. Euromicro PDP 2014: Parallel Distributed
and network-based Processing, Torino, Italy, 2014. IEEE.

[43] J. Darlington, Y.-k. Guo, H. W. To, and J. Yang. Parallel skeletons for struc-
tured composition. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP ’95, pages 19–28,
New York, NY, USA, 1995. ACM.

[44] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth. Traffic management: A holistic approach to
memory placement on numa systems. SIGARCH Comput. Archit. News,
41(1):381–394, Mar. 2013.

[45] E. de Wit and W. de Laat. A decade of 3C technologies: insights into
nuclear organization. Genes & Development, 26(1):11–24, Jan. 2012.

[46] J. Dekker, K. Rippe, M. Dekker, and N. Kleckner. Capturing Chromosome
Conformation. Science, 295(5558):1306–1311, Feb. 2002.

[47] M. Diener, E. H. M. da Cruz, and P. O. A. Navaux. Locality vs. balance:
Exploring data mapping policies on NUMA systems. In 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Process-
ing, PDP 2015, Turku, Finland, March 4-6, 2015, pages 9–16, 2015.

[48] J. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. Liu, and
B. Ren. Topological domains in mammalian genomes identified by anal-
ysis of chromatin interactions. Nature, 485(5):376–80, 2012.

[49] J. Dostie, T. A. Richmond, R. A. Arnaout, R. R. Selzer, W. L. Lee, T. A.
Honan, E. D. Rubio, A. Krumm, J. Lamb, C. Nusbaum, R. D. Green, and
J. Dekker. Chromosome Conformation Capture Carbon Copy (5C): a mas-
sively parallel solution for mapping interactions between genomic ele-
ments. Genome Research, 16(10):1299–1309, Oct. 2006.

[50] M. Drocco, C. Misale, G. Peretti Pezzi, F. Tordini, and M. Aldinucci.
Memory-optimised parallel processing of Hi-C data. In Proc. of Intl. Eu-
romicro PDP 2015: Parallel Distributed and network-based Processing, pages
1–8. IEEE, Mar. 2015.

193

BIBLIOGRAPHY

[51] M. Dubois and C. Scheurich. Memory access dependencies in shared-
memory multiprocessors. Software Engineering, IEEE Transactions on,
16(6):660–673, Jun 1990.

[52] D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New
York, 2013. ISBN 978-1-4614-6867-7.

[53] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed
Shared-Memory Programming. Wiley-Interscience, 2003.

[54] J. Enmyren and C. W. Kessler. Skepu: a multi-backend skeleton program-
ming library for multi-gpu systems. In Proceedings of the fourth interna-
tional workshop on High-level parallel programming and applications, HLPP
’10, pages 5–14, New York, NY, USA, 2010. ACM.

[55] X. Feng, R. Grossman, and L. Stein. Peakranger: A cloud-enabled peak
caller for chip-seq data. BMC Bioinformatics, 12:139, 2011.

[56] C. Ferrai, I. J. de Castro, L. Lavitas, M. Chotalia, and A. Pombo. Gene
positioning. Cold Spring Harbor perspectives in biology, 2(6):a000588, 2010.

[57] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Comput-
ing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999.

[58] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid - En-
abling Scalable Virtual Organizations. International Journal of Supercom-
puter Applications, 15:2001, 2001.

[59] J. Fraser, I. Williamson, W. A. Bickmore, and J. Dostie. An overview of
genome organization and how we got there: from FISH to Hi-C. Microbi-
ology and Molecular Biology Reviews, 79(3):347–372, 2015.

[60] M. J. Fullwood, M. H. Liu, Y. F. Pan, J. Liu, H. Xu, Y. B. Mohamed, Y. L.
Orlov, S. Velkov, A. Ho, P. H. Mei, E. G. Y. Chew, P. Y. Huang, W.-J. Wel-
boren, Y. Han, H. S. Ooi, P. N. Ariyaratne, V. B. Vega, Y. Luo, P. Y. Tan, P. Y.
Choy, Wansa, B. Zhao, K. S. Lim, S. C. Leow, J. S. Yow, R. Joseph, H. Li,
K. V. Desai, J. S. Thomsen, Y. K. Lee, Karuturi, T. Herve, G. Bourque, H. G.
Stunnenberg, X. Ruan, V. Cacheux-Rataboul, W.-K. Sung, E. T. Liu, C.-L.
Wei, E. Cheung, and Y. Ruan. An oestrogen-receptor-alpha-bound human
chromatin interactome. Nature, 462(7269):58–64, Nov. 2009.

[61] V. A. Fusaro, P. Patil, E. Gafni, D. P. Wall, and P. J. Tonellato. Biomedical
cloud computing with amazon web services. PLoS Comput Biol, 7(8):1–6,
08 2011.

194

BIBLIOGRAPHY

[62] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to enhance
the performance of memory consistency models. In In Proceedings of the
1991 International Conference on Parallel Processing, pages 355–364, 1991.

[63] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. SIGARCH Comput. Archit. News, 18(2SI):15–26,
May 1990.

[64] J. Gibcus and J. Dekker. The Hierarchy of the 3D Genome. Molecular Cell,
49(5):773–782, 2013.

[65] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Nbmalloc: Allocating
memory in a lock-free manner. Algorithmica, 58(2):304–338, 2010.

[66] A. Gogol-Dring and W. Chen. An overview of the analysis of next gen-
eration sequencing data. In J. Wang, A. C. Tan, and T. Tian, editors, Next
Generation Microarray Bioinformatics, volume 802 of Methods in Molecular
Biology, pages 249–257. Humana Press, 2012.

[67] H. González-Vélez and M. Leyton. A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers. Softw.,
Pract. Exper., 40(12):1135–1160, 2010.

[68] J. L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–
533, May 1988.

[69] M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, and M. Morris.
statnet: Software tools for the Statistical Modeling of Network Data. Seattle,
WA, 2003.

[70] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[71] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems, ICDCS ’03, pages
522–, Washington, DC, USA, 2003. IEEE Computer Society.

[72] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. SIGARCH Comput. Archit. News,
21(2):289–300, May 1993.

195

BIBLIOGRAPHY

[73] M. P. Herlihy. Impossibility and universality results for wait-free synchro-
nization. In Proceedings of the Seventh Annual ACM Symposium on Principles
of Distributed Computing, PODC ’88, pages 276–290, New York, NY, USA,
1988. ACM.

[74] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[75] S. Hong, T. Oguntebi, and K. Olukotun. Efficient parallel graph explo-
ration on multi-core cpu and gpu. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 78–88, Washington, DC, USA, 2011. IEEE Computer Society.

[76] M. Hu, K. Deng, S. Selvaraj, Z. Qin, B. Ren, and J. S. Liu. HiCNorm:
removing biases in Hi-C data via poisson regression. Bioinformatics,
28(23):3131–3133, 2012.

[77] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu. Xmalloc: A
scalable lock-free dynamic memory allocator for many-core machines. In
Proceedings of the 2010 10th IEEE International Conference on Computer and
Information Technology, CIT ’10, pages 1134–1139, Washington, DC, USA,
2010. IEEE Computer Society.

[78] T. Hubbard, D. Andrews, M. Caccamo, G. Cameron, Y. Chen, M. Clamp,
L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts,
T. Down, R. Durbin, X. M. Fernandez-Suarez, J. Gilbert, M. Hammond,
J. Herrero, H. Hotz, K. Howe, V. Iyer, K. Jekosch, A. Kahari, A. Kasprzyk,
D. Keefe, S. Keenan, F. Kokocinsci, D. London, I. Longden, G. McVicker,
C. Melsopp, P. Meidl, S. Potter, G. Proctor, M. Rae, D. Rios, M. Schus-
ter, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, W. Spooner,
A. Stabenau, J. Stalker, R. Storey, S. Trevanion, A. Ureta-Vidal, J. Vogel,
S. White, C. Woodwark, and E. Birney. Ensembl 2005. Nucleic Acids Re-
search, 33(suppl 1):D447–D453, 2005.

[79] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg. Mcrt-
malloc: a scalable transactional memory allocator. In Proceedings of the 5th
international symposium on Memory management, ISMM ’06, pages 74–83,
New York, NY, USA, 2006. ACM.

[80] A. Hunter, D. Schibeci, H. L. Hiew, and M. I. Bellgard. Grendel: A bioin-
formatics Web Service-based architecture for accessing HPC resources. In

196

BIBLIOGRAPHY

R. Buyya, P. D. Coddington, P. Montague, R. Safavi-Naini, N. P. Shep-
pard, and A. L. Wendelborn, editors, ACSW Frontiers, volume 44 of CR-
PIT, pages 29–32. Australian Computer Society, 2005.

[81] T. Ideker and D. Lauffenburger. Building with a scaffold: emerging strate-
gies for high- to low-level cellular modeling. Trends in Biotechnology,
21(6):255–262, Aug. 2003.

[82] Intel Corp. Threading Building Blocks, 2011.

[83] J.A. Lorenzo and J.C. Pichel and F.F. Rivera and T.F. Pena and J.C. Ca-
baleiro. A flexible and dynamic page migration infrastructure based on
hardware counters. Journal of Supercomputing, 65(2):930–948, 2013.

[84] V. Jackson. Formaldehyde cross-linking for studying nucleosomal dy-
namics. Methods, 17(2):125 – 139, 1999.

[85] R. Jin, L. Liu, and C. C. Aggarwal. Discovering highly reliable subgraphs
in uncertain graphs. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 992–
1000, New York, NY, USA, 2011. ACM.

[86] D. Johnson, A. Mortazavi, R. Myers, and B. Wold. Genome-wide map-
ping of in vivo protein-dna interactions. Science, 316(5830):1497–1502,
June 2007.

[87] D. Karolchik, G. P. Barber, J. Casper, H. Clawson, M. S. Cline,
M. Diekhans, T. R. Dreszer, P. A. Fujita, L. Guruvadoo, M. Haeussler,
R. A. Harte, S. Heitner, A. S. Hinrichs, K. Learned, B. T. Lee, C. H. Li, B. J.
Raney, B. Rhead, K. R. Rosenbloom, C. A. Sloan, M. L. Speir, A. S. Zweig,
D. Haussler, R. M. Kuhn, and W. J. Kent. The UCSC genome browser
database: 2014 update. Nucleic Acids Research, 42(D1):D764–D770, 2014.

[88] Khronos Compute Working Group. OpenCL, Nov. 2009. http://www.
khronos.org/opencl/.

[89] A. Kleen. A NUMA API for LINUX. Technical report, SUSE Labs, Apr.
2005.

[90] A. Kleen. Scaling existing lock-based applications with lock elision. Com-
mun. ACM, 57(3):52–56, Mar. 2014.

[91] C. Knief. Analysis of plant microbe interactions in the era of next genera-
tion sequencing technologies. Frontiers in Plant Science, 5(216), 2014.

197

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

BIBLIOGRAPHY

[92] K. Krampis, T. Booth, B. Chapman, B. Tiwari, M. Bicak, D. Field, and K. E.
Nelson. Cloud biolinux: pre-configured and on-demand bioinformatics
computing for the genomics community. BMC Bioinformatics, 13(1):1–8,
2012.

[93] A. Kukanov and M. J. Voss. The Foundations for Scalable Multicore Soft-
ware in Intel Threading Building Blocks. Intel Technology Journal, 11(04),
Nov. 2007.

[94] B. R. Lajoie, J. Dekker, and N. Kaplan. The hitchhikers guide to Hi-C
analysis: Practical guidelines. Methods, 72:65 – 75, 2015. (Epi)Genomics
approaches and their applications.

[95] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Comput., 28(9):690–691, 1979.

[96] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching
for SNPs with cloud computing. Genome Biology, 10(11):1–10, 2009.

[97] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and
memory-efficient alignment of short dna sequences to the human
genome. Genome Biology, 10(3):R25, 2009.

[98] C. E. Leiserson and I. B. Mirman. How to Survive the Multicore Software
Revolution (or at Least Survive the Hype) . Cilk ARTS, 2008.

[99] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the dash multiprocessor.
SIGARCH Comput. Archit. News, 18(2SI):148–159, May 1990.

[100] M. Leyton and J. M. Piquer. Skandium: Multi-core programming with
algorithmic skeletons. In Proceedings of the 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, PDP ’10, pages 289–
296, Washington, DC, USA, 2010. IEEE Computer Society.

[101] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin. The sequence alignment/map format and
samtools. Bioinformatics, 25(16):2078, 2009.

[102] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev,
T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner,
R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke,
J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker. Compre-
hensive Mapping of Long-Range Interactions Reveals Folding Principles
of the Human Genome. Science, 326(5950):289–293, Oct. 2009.

198

BIBLIOGRAPHY

[103] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. Com-
parison of Next-Generation Sequencing Systems. Journal of Biomedicine
and Biotechnology, 2012:1–11, 2012.

[104] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, K. C. Claffy,
and A. Vahdat. The Internet AS-level Topology: Three Data Sources and
One Definitive Metric. SIGCOMM Comput. Commun. Rev., 36(1):17–26,
Jan. 2006.

[105] J. Marathe and F. Mueller. Hardware profile-guided automatic page
placement for ccnuma systems. In Proceedings of the Eleventh ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’06, pages 90–99, New York, NY, USA, 2006. ACM.

[106] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of constructive
skeletons for sequential style of parallel programming. In Proc. of the 1st
Inter. conference on Scalable information systems, InfoScale ’06, New York,
NY, USA, 2006. ACM.

[107] I. Merelli, P. Liò, and L. Milanesi. Nuchart: An r package to study
gene spatial neighbourhoods with multi-omics annotations. PLoS ONE,
8(9):e75146, 09 2013.

[108] I. Merelli, F. Tordini, M. Drocco, M. Aldinucci, P. Liò, and L. Milanesi. In-
tegrating multi-omic features exploiting chromosome conformation cap-
ture data. Frontiers in Genetics, 6(40), 2015.

[109] M. Michael and M. Scott. Concurrent Update on Multiprogrammed Shared
Memory Multiprocessors. Technical report. University of Rochester, De-
partment of Computer Science, 1996.

[110] M. M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN
Not., 39(6):35–46, June 2004.

[111] T. Mikkelsen, M. Ku, D. Jaffe, B. Issac, E. Lieberman, G. Giannoukos,
P. Alvarez, W. Brockman, T.-K. Kim, R. Koche, W. Lee, E. Mendenhall,
A. O’Donovan, A. Presser, C. Russ, X. Xie, A. Meissner, M. Wernig,
R. Jaenisch, C. Nusbaum, E. Lander, and B. Bernstein. Genome-wide
maps of chromatin state in pluripotent and lineage-committed cells. Na-
ture, 448(7153):553–560, Aug. 2007.

[112] M. Morey, A. Fernndez-Marmiesse, D. Castieiras, J. M. Fraga, M. L.
Couce, and J. A. Cocho. A glimpse into past, present, and future {DNA}

199

BIBLIOGRAPHY

sequencing. Molecular Genetics and Metabolism, 110(12):3 – 24, 2013. Spe-
cial Issue: Diagnosis.

[113] S. Mukherjee, H. Erickson, and D. Bastia. Enhancer-origin interaction in
plasmid R6K involves a DNA loop mediated by initiator protein. Cell,
52(3):375 – 383, 1988.

[114] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Hardware monitors for
dynamic page migration. Journal of Parallel and Distributed Computing,
68(9):1186 – 1200, 2008.

[115] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and
M. Snyder. The transcriptional landscape of the yeast genome defined by
RNA Sequencing. Science, 320:1344–1349, 2008.

[116] J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal
of the Royal Statistical Society, Series A, General, 135:370–384, 1972.

[117] T. Nguyen, W. Shi, and D. Ruden. Cloudaligner: A fast and full-featured
mapreduce based tool for sequence mapping. BMC Research Notes, 4(1):1–
7, 2011.

[118] J. W. Nicol, G. A. Helt, S. G. Blanchard, A. Raja, and A. E. Loraine. The in-
tegrated genome browser: free software for distribution and exploration
of genome-scale datasets. Bioinformatics, 25(20):2730–2731, 2009.

[119] Oaks, Scott and Wong, Henry. Java Threads, 3rd Edition. O’Reilly Media,
2004.

[120] K. Okonechnikov, O. Golosova, M. Fursov, and the UGENE team. Unipro
UGENE: a unified bioinformatics toolkit. Bioinformatics, 28(8):1166–1167,
Apr. 2012.

[121] D. A. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao. Toward
high-throughput algorithms on many-core architectures. TACO, 8(4):49,
2012.

[122] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1996.

[123] C. S. Pareek, R. Smoczynski, and A. Tretyn. Sequencing technologies and
genome sequencing. Journal of Applied Genetics, 52(4):413–435, 2011.

[124] I. Park, M. J. Voss, S. W. Kim, and R. Eigenmann. Parallel programming
environment for OpenMP. Scientific Programming, 9:143–161, 2001.

200

BIBLIOGRAPHY

[125] E. Pettersson, J. Lundeberg, and A. Ahmadian. Generations of sequencing
technologies. Genomics, 93(2):105 – 111, 2009.

[126] C. Pousa Ribeiro and J.-F. Méhaut. Minas: Memory Affinity Management
Framework. Technical report RR-7051, INRIA, 2009.

[127] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In
Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture, HPCA ’07, pages 13–24, Washington, DC,
USA, 2007. IEEE Computer Society.

[128] S. S. P. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov,
J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L.
Aiden. A 3D Map of the Human Genome at Kilobase Resolution Reveals
Principles of Chromatin Looping. Cell, 159(7):1665–1680, Dec. 2014.

[129] C. Ravishankar and J. Goodman. Cache implementation for multiple mi-
croprocessors. Jan 1983.

[130] R. Reagans and B. McEvily. Network structure and knowledge trans-
fer: The effects of cohesion and range. Administrative Science Quarterly,
48(2):pp. 240–267, 2003.

[131] D. Reed. High-Performance Computing: Where’d The Abstractions Go?
BLOG@CACM, May 2009.

[132] A. Réka. Network Inference, Analysis, and Modeling in Systems Biology.
The Plant Cell Online, 19(11):3327–3338, Nov. 2007.

[133] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan. Cloud
and heterogeneous computing solutions exist today for the emerging big
data problems in biology. Nature reviews. Genetics, 12(3):224, Mar. 2011.

[134] M. C. Schatz. Cloudburst: highly sensitive read mapping with mapre-
duce. Bioinformatics, 25(11):1363–1369, 2009.

[135] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable
locality-conscious multithreaded memory allocation. In Proceedings of the
5th international symposium on Memory management, ISMM ’06, pages 84–
94, New York, NY, USA, 2006. ACM.

[136] V. C. Seitan, A. J. Faure, Y. Zhan, R. P. P. McCord, B. R. Lajoie, E. Ing-
Simmons, B. Lenhard, L. Giorgetti, E. Heard, A. G. Fisher, P. Flicek,

201

BIBLIOGRAPHY

J. Dekker, and M. Merkenschlager. Cohesin-based chromatin interactions
enable regulated gene expression within preexisting architectural com-
partments. Genome research, 23(12):2066–2077, Dec. 2013.

[137] Sequence Read Archive Submissions Staff. Using the SRA
Toolkit to convert .sra files into other formats. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK158900/, 2011. Accessed:
2015-07-29.

[138] N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C.-J. Chen, E. Heard,
J. Dekker, and E. Barillot. HiTC: exploration of high-throughput ’C’ ex-
periments. Bioinformatics, 28(21):2843–2844, Nov. 2012.

[139] Y. Shavit, F. Hamey, and P. Liò. FisHiCal: an R package for iterative FISH-
based calibration of Hi-C data. Bioinformatics, 30(18), Sept. 2014.

[140] Y. Shavit and P. Liò. Combining a wavelet change point and the bayes
factor for analysing chromosomal interaction data. Mol. BioSyst., 10:1576–
1585, 2014.

[141] Y. Shavit, B. J. Walker, and P. Lio. Hierarchical block matrices as effi-
cient representations of chromosome topologies and their application for
3c data integration. Bioinformatics, 2015.

[142] Y. Shen, F. Yue, D. F. McCleary, Z. Ye, L. Edsall, S. Kuan, U. Wagner,
J. Dixon, L. Lee, V. V. Lobanenkov, and B. Ren. A map of the cis-regulatory
sequences in the mouse genome. Nature, 488(7409):116–120, Aug. 2012.

[143] M. Simonis, P. Klous, D. Splinter, Y. Moshkin, R. Willemsen, E. de Wit,
B. van Steensel, and W. de Laat. Nuclear organization of active and
inactive chromatin domains uncovered by chromosome conformation
capture-on-chip (4c). Nature Genetics, 38(11):1348–1354, Nov. 2006.

[144] D. B. Skillicorn and D. Talia. Models and languages for parallel computa-
tion. ACM Comput. Surv., 30(2):123–169, June 1998.

[145] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency
and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[146] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. ScatterAlloc:
Massively Parallel Dynamic Memory Allocation for the GPU. In Proceed-
ings of InPar Conference, 2012.

202

BIBLIOGRAPHY

[147] M. Steuwer, P. Kegel, and S. Gorlatch. Skelcl - a portable skeleton library
for high-level gpu programming. 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum, 0:1176–1182,
2011.

[148] F. Tordini, M. Drocco, I. Merelli, L. Milanesi, P. Liò, and M. Aldinucci.
NuChart-II: a graph-based approach for the analysis and interpretation of
Hi-C data. In Post-Conference proceedings of the 11th Intl. meeting on Compu-
tational Intelligence methods for Bioinformatics and Biostatistics (CIBB 2014),
volume 8623 of LNBI, Cambridge, UK, 2015. Springer.

[149] F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. Liò, I. Merelli, and M. Ald-
inucci. Parallel exploration of the nuclear chromosome conformation with
NuChart-II. In Proc. of Intl. Euromicro PDP 2015: Parallel Distributed and
network-based Processing. IEEE, Mar. 2015.

[150] F. Tordini, I. Merelli, L. Milanesi, P. Liò, and M. Aldinucci. NuchaRt: em-
bedding high performance computing in R for augmented DNA explo-
ration. In Post-proceedings of the 12th Intl. meeting on Computational Intelli-
gence methods for Bioinformatics and Biostatistics (CIBB 2015), LNBI, Naples,
Italy, 2016. Springer. To appear.

[151] C. Trapnell, L. Pachter, and S. L. Salzberg. Tophat: discovering splice
junctions with rna-seq. Bioinformatics, 25(9):1105–1111, 2009.

[152] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van
Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature Biotechnology, 28(5):511–515,
May 2010.

[153] H. L. Truong and S. Dustdar. On analyzing and specifying concerns for
data as a service. In M. Kirchberg, P. C. K. Hung, B. Carminati, C. Chi,
R. Kanagasabai, E. D. Valle, K. Lan, and L. Chen, editors, 4th IEEE Asia-
Pacific Services Computing Conference, IEEE APSCC 2009, Singapore, Decem-
ber 7-11 2009, Proceedings, pages 87–94. IEEE, 2009.

[154] University of California, Santa Cruz. Ucsc genome browser.
http://genome.ucsc.edu/, 2012.

[155] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

203

BIBLIOGRAPHY

[156] J. C. e. a. Venter. The Sequence of the Human Genome. Science,
291(5507):1304–1351, 2001.

[157] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for
transcriptomics. Nature reviews. Genetics, 10(1):57–63, Jan. 2009.

[158] K. Wetterstrand. DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP). Available at: www.genome.gov/
sequencingcosts. Accessed: 2015-09-02.

[159] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2009.

[160] H. Wickham. Advanced R. Chapman and Hall/CRC, 1 edition, Oct. 2014.

[161] S. Widmer, D. Wodniok, N. Weber, and M. Goesele. Fast dynamic mem-
ory allocator for massively parallel architectures. In Proceedings of the
6th Workshop on General Purpose Processor Using Graphics Processing Units,
GPGPU-6, pages 120–126, New York, NY, USA, 2013. ACM.

[162] W. Winterbach, P. V. Mieghem, M. J. T. Reinders, H. Wang, and D. de Rid-
der. Topology of molecular interaction networks. BMC Systems Biology,
7:90, 2013.

[163] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of
the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, Mar. 1995.

[164] E. Yaffe and A. Tanay. Probabilistic modeling of Hi-C contact maps elim-
inates systematic biases to characterize global chromosomal architecture.
Nat Genet, 43(11):1059–1065, Nov. 2011.

[165] L. Zhang, S. Gu, Y. Liu, B. Wang, and F. Azuaje. Gene set analysis in the
cloud. Bioinformatics (Oxford, England), 28(2):294–295, Jan. 2012.

[166] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,
C. Nusbaum, R. M. Myers, M. Brown, W. Li, and X. S. Liu. Model-based
Analysis of ChIP-Seq (MACS). Genome Biology, 9(9):R137+, Sept. 2008.

[167] Z. Zhao, G. Tavoosidana, M. Sjolinder, A. Gondor, P. Mariano, S. Wang,
C. Kanduri, M. Lezcano, K. Singh Sandhu, U. Singh, V. Pant, V. Tiwari,
S. Kurukuti, and R. Ohlsson. Circular chromosome conformation capture
(4C) uncovers extensive networks of epigenetically regulated intra- and
interchromosomal interactions. Nat Genet, 38(11):1341–1347, Nov. 2006.

204

www.genome.gov/sequencingcosts
www.genome.gov/sequencingcosts

	Abstract
	Glossary
	Introduction
	High-Performance Computing overview
	HPC architectures
	Structured parallel programming

	HPC and Bioinformatics
	Next-generation sequencing
	Capturing chromosome conformation

	Contributions of this thesis

	Background – Parallel Computing
	Shared-memory architectures
	Memory organisation

	Memory allocation
	Memory allocators - Literature review

	Blocking and non-blocking algorithms
	Structured parallel programming
	Low-level parallel programming
	Algorithmic Skeletons
	Stream parallelism
	Data parallelism

	Literature review

	HPC and Cloud computing
	Cloud service models
	Cloud implementation models
	Performance
	Existing Cloud platforms

	Discussion
	Measuring Performance
	Research niche

	Background – Genomics
	DNA exploration overview
	Next-Generation Sequencing
	RNA-Seq
	ChIP-Seq

	Chromosome Conformation Capture
	Normalisation

	State of the art
	Discussion
	Visualisation of biological data
	Research niche

	Scalable Chromosome Exploration
	Three-dimensional chromosome exploration
	Neighbourhood graph construction
	Data-parallel BFS-like graph exploration
	Memory-optimised graph construction

	Normalisation
	Experiments
	Discussion
	Network Analysis and Statistics
	Performance

	Concluding remarks

	NuchaRt: embedding NuChart-II in R
	Motivation: efficiency and usability
	Hi-C data analysis step-by-step
	Parallelism facilities in R
	Memory management in R

	NuchaRt
	Discussion
	Experiments
	Performance
	Graph drawing

	Concluding remarks

	A cloud solution for multi-omics data integration
	Motivation: a flood of data
	A bit of background
	Cloud for Bioinformatics
	The problem of data integration

	Methods: a cloud-based task farm approach
	Three pipelines
	Integration and statistical analysis

	Cloud platform
	Set up and communication
	Task scheduling
	Partitioned alignment

	Test Case
	Results
	Computational costs

	Concluding remarks

	Conclusions
	Open issues and future works

