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Abstract 

ASSIST (A Software development System based upon Integrated Skeleton 
Technology) is a programming environment oriented to the development of parallel 
and distributed high-performance applications according to a unified approach. The 
language and implementation features of ASSIST are a result of our long-term 
research in parallel programming models and tools. ASSIST is evolving towards 
programming environments for high-performance complex enabling platforms, 
especially Grids. In this paper, we show how ASSIST can act as a valid research 
vehicle to study, experiment and realize Grid-aware programming environments for 
high-performance applications. Special emphasis is put on the innovative 
methodologies, strategies and tools for dynamically adaptive applications, that 
represent the necessary step for the success of Grid platforms. 

First we discuss the conceptual framework for Grid-aware programming 
environments, based upon structured parallel programming and components 
technology, anticipating how ASSIST possesses the essential features required by 
such framework. Then we summarize the ASSIST programming model, showing its 
evolution, along the line of structured parallel programming, to solve critical 
problems of expressive power, flexibility, interoperability and efficiency; some 
examples, both of kernels and of complex applications, are used to point out the 
ASSIST features. The modular compiler model and the current implementation for 
heterogeneous platforms and Globus-based Grids are illustrated. We show the 
features that allow ASSIST programs to be used in CORBA infrastructures, that 
represents our basic starting point towards interoperability in Grid applications. 
Finally, the presentation of all the previous issues is used to derive an ASSIST-based 
model for supporting dynamically adaptive applications.  

------------------------------------------------------------------ 

This work has been supported by the Italian MIUR FIRB Grid.it project (RBNE01KNFP) on 
High-performance Grid Platforms and Tools, and by the MIUR CNR Strategic Project L 
499/97-2000 on High-performance Distributed Enabling Platforms. 
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1. Introduction: high-performance application development and 
Grids 

The research activity of our group at the Department of Computer Science, University 
of Pisa, is focused on programming models and environments for the development of 
high-performance multidisciplinary applications. The enabling computing platforms 
we are considering are complex distributed architectures, whose nodes are parallel 
machines of any kind, including PC/workstation clusters. In general such platforms 
are characterized by heterogeneity of nodes, and by dynamicity in resource 
management and allocation. In this context, Grid platforms at various levels of 
integration [23], are of main interest, including complex distributed structures of 
general and dedicated subsystems, private heterogeneous networks, and systems for 
pervasive and ubiquitous computing. In the following, we shall speak of Grids to refer 
to such architectural scenario. 

A Grid-aware application must be able to deal with heterogeneity and dynamicity in 
the most effective way (adaptive applications), in order to guarantee the specified 
level of performance in spite of the variety of run-time events causing modifications 
in resource availability (load unbalancing, node/network faults, administration issues, 
emergencies, and so on). With respect to traditional platforms, now it is much more 
important to rely on application development environments and tools that guarantee 
high-level programmability and application compositionality, software 
interoperability and reuse, and, at the same time, to be able to achieve high-
performance and capability to adapt to the evolution of the underlying technologies 
(networks, nodes, clusters, operating systems, middleware, and so on) [7, 10, 22, 31, 
35, 36, 40]. Achieving this high-level view of Grid application development is the 
basic goal of our research, notably in the Grid.it national project [29] and associated 
initiatives at the national and European level. 

Though the programming environment and infrastructure must take into account 
outstanding issues in domain administration and security too, in this document we 
concentrate on the very fundamental issue of the programming model and its 
implementation. Our view of Grid application development is summarized by the 
level structure shown in Fig.1. 

The Programming Environment is centered on the existence of a high-level, high-
performance programming model and related development tools. A high-level view of 
compositionality, interoperability, reuse, performance and application adaptivity 
characterizes the Programming Environment we advocate. Applications are expressed 
entirely on top of this level. The level denoted by Grid Abstract Machine includes all 
the functionalities to support the preparation, loading and execution of the 
applications expressed in the formalism of the programming environment and 
transformed by the compiling tools. The Grid Abstract Machine includes the 
functionalities that, in the current view of Grids, are provided by the Middleware tools 
and services, e.g. moving bottom-up: the Connectivity (micro-kernel), Resource 
(resource management services) and Collective (collective and dynamic resource 
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control and allocation) levels [24]. This Middleware may be one of the 
current/standard products (Globus Toolkit and its evolutions [23, 24, 25, 26]), or a 
subset of the services performed by them. 

 

 

 

 

 

 

 

 

 

Fig.1 ñ The role of Programming Environment in Grid application development 

The Grid Abstract Machine exploits a subset of the Middleware services and adds 
very critical functionalities that support the programming model and the development 
tools, including all the strategies for resource management and scheduling and re-
scheduling, allocation and re-allocation, as well as all the actions concerning the 
application structuring and re-structuring. By replacing the old-fashion OS-like view - 
according to which the application development occurs directly on top of the 
Middleware - by the view centered upon the Programming Environment and the Grid 
Abstract Machine, we wish to stress the programming-model based approach to 
system design, and, at the same time, to minimize the amount and variety of 
functionalities that are present in the underlying levels: i.e. these functionalities must 
be limited just to the support to the programming model and tools used to build Grid-
aware, adaptive applications. Potentially, this approach leads to achieve a much better 
trade-off between programmability and interoperability, on one side, and 
performance, on the other side. 

From the discussion above, it follows that the fundamental research issues, to design 
innovative platforms for Grid-aware applications, are the programming model and its 
implementation strategies. Other notable research projects [7, 10, 11, 17, 18, 22, 31, 
35, 36, 40] propose to follow a similar approach, each one with its own 
characterization. 

In this paper, we illustrate how ASSIST [41, 1, 2, 3] is a valid research vehicle to 
pursue this programming-model driven line. ASSIST (A Software development 
System based upon Integrated Skeleton Technology) is a programming environment 
oriented to the development of parallel and distributed high-performance applications 
according to a unified approach. It is supported by projects funded by the Ministry of 
University and Research, National Research Council, and Italian Space Agency. 

Grid Abstract Machine 
(including Middleware) services) 

Applications 

High-performance, Component based  
Programming Environment 

Basic hardware-software platform 
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In Sec. 2 we discuss the conceptual framework for Grid-aware programming 
environments, based upon structured parallel programming and components 
technology, anticipating how ASSIST possesses the essential features required by 
such framework. In Sec. 3 we summarize the ASSIST programming model, showing 
its evolution, along the line of structured parallel programming, to solve critical 
problems of expressive power, flexibility, interoperability and efficiency. Sec. 4 
illustrates the modular compiler model and the current implementation for 
heterogeneous platforms and Globus-based Grids. In Sec. 5 we show the features that 
allow ASSIST programs to be used in CORBA infrastructures, that represents our 
basic starting point towards interoperability in Grid applications. Sec. 6 extends the 
presentation of Sec. 3 about the ASSIST-based frameworks for dynamically adaptive 
applications. Sec. 7 summarizes the current status of our research and its fundamental 
steps in the next two years. 

 

 

2. Programming model: distribution, parallelism, interoperability 
and adaptivity 

Currently, Grid applications are often designed according to a low-level approach 
(i.e., by relying on the Middleware services directly, possibly through a Grid portal) 
and, in many cases, they consist in single jobs or in limited forms of job composition 
(e.g. DAGs). Parallelism, where present, is limited inside single jobs, in a way that 
does not affect the external structure of the application (e.g. a job may be a MPI 
program). The result is that rarely Grid applications are Grid-aware and high-
performance.  

As discussed in the previous section, our point of view is radically different. It is 
based on the definition and realization of a programming model with the following 
features: 

1. applications are expressed as compositions of high performance components, 

2. a uniform approach is followed for distributed and parallel programming: in 
general components exploits internal parallelism and are executed in parallel 
with each other, 

3. the strategies to drive the dynamic adaptation of applications are expressed 
in the same high-level formalism of the programming model. 

Fig. 2 summarizes their interrelationships, which form the conceptual frameworks on 
which we found our research approach.  

We will show that the ASSIST model, in the current version and according to its 
foreseen evolution, is a research vehicle which is consistent with the requirements of 
such frameworks. 
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Fig. 2 ñ The conceptual framework for Grid-aware programming environments 

 

2.1. Grid-aware applications as compositions of high-performance 
components 

Feature 1 is based on the proper exploitation of the component technology [9]. In our 
view, components are the basic mechanism to achieve compositionality by 
guaranteeing software interoperability and reuse. Here, we assume that the basic 
features of this software technology are known to the reader.  

Achieving high-performance in component technology is currently an important 
research issue [5, 12, 30, 34, 35, 36]. Currently, we are evaluating how the existing 
standards (CCA [12, 28,], Java Beans [39], CCM [15], Web Services [16, 26, 43]) can 
be assumed as starting points to define and realize a robust component-based high-
performance programming model, that can be widely accepted and that is able to 
interoperate in many application areas. 

As we shall see, ASSIST provides the abstraction of high-performance components 
and high-performance composition of components, independently of any commercial 
standard. This allows us to understand the basic features that high-performance 
components should possess, in particular from the point of view of computation 
structuring, parallelism exploitation and modularity. These features will be properly 

High-performance 
components 

Uniform approach to 
distributed and parallel 

programming 

Dynamically adaptive 
applications 

Interoperability in high-
performance Grid 

applications. Existing, legacy, 
and new components. 

 

Grid applications are expressed in a 
parallel component formalism, 

independently of the inter- or intra-
node allocation of parallel 

components. Resource allocation and 
re-allocation is delegated to the Grid 

Abstract Machine. 

Dynamic adaptation strategies are 
implemented by the parametric 

restructuring of parallel components, 
exploiting the cost model of the 

parallel formalism. 

The Grid is 
considered “a 

computer” whose 
resources can be 
allocated and re-
allocated to the 

applications 
consistently. 

Parallel programs are 
wrapped into “standard” 

components. 

Annotations expressing the 
“performance contract” are 
associated to the parallel 

components. 
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merged with one or more commercial standard, or their future high-performance 
versions, in order to achieve extensive interoperability and reuse. The merging of 
high-performance programming and component technology must allow the designer 
to structure the application as the proper composition of components, i.e. some of 
which may be already existing / legay (possibly in binary form), and other ones are 
programmed from scratch (e.g. written in ASSIST) or as the combination of existing 
software into new parallel structures. 

The current version of ASSIST (ASSIST 1.2) supports heterogeneity and the 
interoperability with several currant standards, in particular the CORBA 
interoperability [15, 33]: that is, not only an ASSIST program can act as a client of a 
CORBA server, but ASSIST programs can be easily defined as, and automatically 
transformed into, CORBA servers invoked by any CORBA client. The performance 
penalties introduced by the CORBA infrastructure, with respect to pure ASSIST 
programs, are quite acceptable for many applications with reasonable granularity. 
Though referred to an object-oriented approach, this experience proves that 
interoperability features can be merged into the ASSIST model, in order to design 
applications as composition of components, some of which are possibly parallel. 

 

2.2. Uniform approach to distributed and parallel programming for 
Grid-aware applications 

Despite the current limitations in Grid application development, Grid applications 
have to be distributed in the real meaning of the word, as known in theory since many 
years. With Feature 2 of the conceptual framework we further characterize this 
concept: we design a Grid application as a parallel program described by the parallel 
composition of parallel components (and possibly existing components). No 
distinction is made a priori between parallelism and distribution, i.e. between 
modules to be executed in the same (possibly parallel) Grid node or in distinct Grid 
nodes. In the same way, we do not restrict the application to be a single (sequential or 
internally parallel) job or a DAG of jobs. In general, the structure of the application 
can be any graph whose nodes are (parallel) components and the arcs are the 
mechanisms for their composition and interaction. The programming model of 
ASSIST is based on this concept. 

At this point, it is important to clarify that modeling a Grid application as a parallel 
program does not necessarily mean that we are considering a Grid merely as a parallel 
machine, though in some cases this is a meaningful and effective view. There may be 
applications in which we could not be interested in inter-component parallelism or in 
optimizing such potential parallelism, possibly exploiting the parallelism at the intra-
component level and forcing distinct components to be allocated onto distinct Grid 
nodes.  

However, there are strong reasons in support to a uniform view of distributed 
programming and parallel programming, notably: 
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a) Provided that the module granularity is determined properly, there are many 
applications that can greatly benefit from inter-node parallelism, while additional 
performance is gained at the intra-node level. We point out that, because of the 
heterogeneous and dynamic nature of Grid platforms, the a-priori distinction 
between inter- and intra-node parallelism may be difficult or, by forcing it in 
some way, it may cause a sensible degradation in performance or fault-tolerance. 
Instead, we believe that the distinction between inter- and intra-node parallelism 
must be delegated to the programming tools, both at compile- and at run-time: as 
said in Sec. 1, it is for this reason that the resource management, scheduling and 
allocation functionalities must belong to the Programming Environment support 
(the Grid Abstract Machine), and in particular to the support of the programming 
formalism. 

b) As a consequence, an approach that does not limit the parallelism opportunities is 
characterized by much more flexibility and performance: notably, it must be 
possible to adapt applications, without sensible or no modifications, to changes 
and evolutions in the underlying platform, such as in node architecture and 
multiplicity, communication latency / bandwidth, processor power, operating 
system facilities, and so on. This aspect is consistent with the trends in 
component technology, e.g. application versioning according to different 
requirements of users and/or availability of system resources. 

 

2.3. Dynamically adaptive applications 

The considerations of the previous points a) and b) are generalized to the possibility 
of developing dynamically adaptive applications, i.e. applications whose resource 
allocation varies at run-time to guarantee a desired level of performance. Re-
scheduling and re-allocation of resources should occur because of node unavailability 
or node unbalancing, or because an increase in performance is required in response to 
an emergency (e.g. in an Earth Observation application for landslip detection, the 
response to some events may require a very large increase in computing power that 
can be rendered available by a large collection of Grid-connected machines).  

Currently, despite some interesting ongoing projects [7, 10, 11, 17, 18, 22, 29, 31, 38, 
40, 42, 44] try to find innovative solutions, when this problem is addressed only 
partial solutions are mentioned: notably, dynamic code/data movement.  

In general, the problem does not consist merely in finding a better allocation of the 
same code and data, instead we need to take into account other more complex actions 
that imply a transformation of the executable version of the program, such as  

∑ a different degree of parallelism, 

∑ different data distribution and partitioning,  

∑ and also alternative versions of the program implementing the same 
functionality, i.e. a different implementation of the same component or 
composition of components.  
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A rigorous approach to the adaptivity problem can be based upon the following 
points: 

a) several modalities of expressing the structuring and restructuring of a 
computation must be available in the programming formalism, 

b) these modalities must be characterized by a cost model (performance model) that 
can drive the structuring and restructuring phases with reasonable complexity and 
overhead. 

These modalities can correspond to the usage of different (combinations of) 
parallelism forms, or parallelism paradigms, as it normally happens in structured 
parallel programming models based upon the skeletons concept [13, 6, 20, 4, 41]. In 
such models a consistent set of parallelism forms is provided to the programmer to 
structure/restructure the application at hand: for example, pipelines, farms or 
divide&conquer are typical task-parallel (stream-parallel) paradigms, while map, 
reduce, prefix, scan, stencil are typical data-parallel paradigms. In structured parallel 
programming, a coordination language is adopted that acts as a meta-language used 
to compose codes expressed in any standard language (C, C++, Java, Fortran). These 
codes may be already existing: for example they may be existing programs, libraries, 
or components themselves. 

Skeletons have associated a semantic model and a cost model, that make this 
approach very promising also for Grid programming: because of the existence of the 
cost model, the static and dynamic implementation of each skeleton is parametric 
with respect to few parameters. For example, the actual degree of parallelism or the 
actual number of data partitions can be varied dynamically without affecting the code 
of the run-time support. 

ASSIST is based on the structured parallel programming approach [41]. Beyond the 
ì classicalî  skeletons, the ASSIST programming model contains several features 
(graphs, parallel modules, external objects) that sensibly increase flexibility and 
expressive power, including the possibility to design adaptive program structures (see 
the previous consideration about the need for alternative versions of the same 
computation). The ASSIST features will be presented in Sec. 3. 

In other words, we have seen that parallelism (and structured parallelism in particular) 
is not only useful per se (i.e. to exploit higher performance of a certain code, possibly 
allocated onto the same Grid node), but also it has an utilization which is much more 
consistent with the dynamically adaptive nature of Grid-aware applications: in fact, in 
our model structured parallel programming is a way to specify the strategy for 
structuring and for restructuring a component or a composition of components. 
Components are internally expressed in ASSIST, with the addition of proper scripting 
annotations for specifying the ì performance contractî  of the component (e.g. 
performance metrics, critical events, and so on). Notice that, in general, processes of 
the same component could be rescheduled onto different Grid nodes. These issues will 
be discussed in Sec. 6. 
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2.4. Interrelationships of programming model features 

As shown in Fig. 2, features 1, 2 and 3, that we advocate for the definition of a Grid 
programming model, are strongly interrelated. Feature 1, that implies 
interoperability, is fundamental for being able to structure complex application that 
include existing and /or predefined software components, and their ì glueî  is made 
possible and easy by the structured parallel programming approach. This feature is 
also fundamental to allow ì legacy codeî  usage in Grid programs. 

Feature 3 requires that components of an application can be rescheduled and 
restructured dynamically: in turn, this requires feature 2 (uniform approach to 
distributed and parallel programming) because processes of the same parallel 
component could be restructured and reallocated onto different and distinct nodes, 
even in the case that at launch time this component has been allocated onto the same 
node in a sequential or differently parallelized fashion. The parametric feature of 
structured parallel programming makes the realization of a performance model for the 
dynamic restructuring of applications feasible. 

Summing up: 

∑ a Grid-aware application can be designed as a parallel program, properly 
ì wrappedî  into a components structure (together with some possibly pre-
existing components), without distinguishing between inter- or intra-node 
parallelism at the implementation level. Provided that an initial allocation of the 
components is done at launch time, the allocation of parts of the same 
components can be modified at run-time (both in identities of nodes and in 
amount of nodes) to deal with the dynamic adaptation strategies expressed in the 
same parallel formalism. 

Finally, we observe that dealing with the complexity of the Grid programming model 
has beneficial effects on the same parallel programming principles per se. In fact, the 
possibility to express dynamically adaptive computations also contributes to the 
solution of irregular and dynamic problems in parallel programming, i.e. 
computations that cannot efficiently be expressed according to predefined paradigms 
and/or that need substantial modifications according to some data values known at 
run-time (e.g. parallel Barnes-Hut algorithm), including some interactive applications. 
ASSIST aims to be a solution to these problems too, since it goes beyond the typical 
limitations of ì classicalî  skeletons in dealing with irregularity, dynamicity and 
interactivity. 

 

3. The ASSIST programming model 

Structured parallel programming, based on the skeletons model, is an approach to deal 
with the complexity in the design of high-performance applications. The validity of 
this approach has been proved, in the last years, for homogeneous parallel machines 
(MPP, Clusters, Clusters of SMP). As discussed in the previous section, the basic 
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features of structured parallel programming are much more valid for complex 
heterogeneous, dynamic platforms, like Grids. 

The validity of the skeletons model can be summarized by the following elements: 

a) parallel programs are written, by means of a coordination language, as 
compositions of predefined parallel paradigms, called skeletons. In the past 
experiences of our group (parallel languages P3L and SkIE [6], Lithium [4]), they 
are the stream parallel skeletons pipeline, farm (also known as master-worker or 
parameter sweeping) and data-flow loop, and the data-parallel skeletons map 
(independent virtual processors), reduce and comp (sequential composition of 
map-reduce combinations). In other skeletal language, similar constructs are 
adopted. The ì hostî  languages, i.e. the languages with which the sequential parts 
are written, are all the standard ones (C, C++; Java, Fortran) with their compilers; 

b) owing to its clear semantics, for each skeleton it is known a set of implementation 
templates and a cost model, both parametric, that can be used to optimize the 
compilation and the run-time support taking into account the composition 
characteristics. The optimization of the composition is largely dependent upon 
the knowledge of the possible compositions, and also on some equivalence 
properties of the composition themselves; 

c) from points a) e b) it follows that, often, writing structured parallel programs is 
rather easy and fast, since the most complex decisions related with the parallel 
implementation are delegated to the compiling and run-time tools. 

The intensive experiences with skeletal languages have shown that, in many parallel 
programs, the performance measures are satisfactory, and comparable with those of 
the same programs expressed in lower level formalism, such as MPI, or in other 
parallel languages when possible (HPF for data-parallel computations only). For 
example this result is achieved by the parallel program depicted graphically in Fig. 3, 
that expresses a parallel version of the Data Mining A-priori algorithm [14] as a 
pipeline composition of six stages, two of which are farms and the other four are 
sequential modules (mainly performing file transfer). 
 

 

Ph1

W 

W 

R1 Ph2

W 

W 

R2

  

Fig. 3 - Skeleton structure of partitioned Apriori algorithm 
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The partitioned parallel Apriori requires two scans of the input to compute the set of 
frequent sets. The two phases have the same skeleton representation. Sequential 
module Ph1 reads in the input and sends data partitions to the workers W. Module R1 
is a sequential reduction (union of the result sets). The same schema is repeated with 
different sequential modules (Ph2, W, R2) to produce the result. The application 
scales well with database size; however, modules Ph1 and Ph2 are I/O bound, and the 
efficiency of the structure can be improved by forms of shared data access from 
within the workers.  

Despite many advantages, the classical skeleton approach has several drawbacks in 
terms of expressive power and efficiency for complex applications, flexibility in 
adapting to a variety of combinations of parallel paradigms, as well as in terms of 
interoperability and suitability to component-based programming for Grid 
applications.  

ASSIST is an evolution of the classical skeleton model aiming to act as a research 
vehicle in this complex scenario. In the following, we summarize the main features of 
the ASSIST programming model (ASSIST-CL: ASSIST Coordination Language) 
through their relationship with significant problems to be solved. For an extensive 
presentation of the ASSIST-CL syntax, semantics and implementation, the reader is 
referred to [41, 1, 2, 3]. 

 

3.1. High-performance programs as graphs 

In several applications, the computation structures that can be expressed by the 
classical skeletons are not adequate. Notably: 

a) many applications can be conceived in terms of the composition of independently 
developed components, without a predefined structure; 

b) the composition structure may follow a data-flow or, alternatively, a 
nondeterministic model (event driven computations) in which the components, in 
general, can have an internal state. Many Work Flow models and their extensions 
have these features; 

c) components can interact by means of several communication patterns, notably 
streams (sequences of typed objects), events, or single invocations, possibly in a 
RPC fashion; 

d) many parallel algorithms can be expressed in a Divide&Conquer (D&C) style. 
Though a D&C specific skeleton can be defined [13, 4], its performance may be 
low in general, because of the large variety of configurations and situations in 
which this paradigms occurs. The solution, adopted in SkIE, making use of 
parallel compositions (e.g. pipelines, farms and map-reduce) inside a data-flow 
loop, has a similar drawback because a general implementation of the data-flow 
loop cannot be optimized for all the situations. Many irregular and dynamic 
parallel algorithms have similar features. 
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In ASSIST a parallel program can be structured as a generic graph, whose nodes 
correspond to parallel or sequential modules, and arcs correspond to communication 
channels over which streams of typed values are transmitted. Thus, in our case 
streams are the general composition mechanism for components. Other 
communication patterns (single invocation, RPC, and so on) can easily be expressed 
as particular cases of streams or implemented in a stream-based formalism. A 
computation, applied to the values of an input stream, terminates when the stream 
ends. Modules can have a state that is initialized at the beginning of the computation, 
and that is significant until the computation terminates. Each module can have any 
number of different input and output streams. In general, input streams are selected 
nondeterministically in a CSP-like fashion. Alternatively, a node may have a data-
flow behaviour driven by all the input streams, or, in the most general case, a mixed 
nondeterministic + data-flow behaviour. 

The choice of graphs and streams in ASSIST is not only more general, but it also 
eliminates the performance penalties mentioned in point d). In fact, streams are 
explicitly controlled by program, and it is much more feasible to achieve an efficient 
implementation of simple communication channels and guarded commands, with 
respect to the complex communication patterns which are needed by D&C and 
irregular/dynamic computations.  

Fig. 4 shows the structure of an ASSIST program for a parallel implementation of the 
Data Mining C4.5 algorithm according to a D&C solution. Conquer and Computing 
(the Divide functionality, i.e. the core of the computation) are ASSIST parmods (see 
Sec. 3.2); the streams convey (references to) training set and decision tree objects. 
The description will be detailed in Sec. 3.5. It can be shown [14] that this parallel 
program has a performance comparable to the solution written directly in MPI or 
other lower-level libraries; this proves the validity of the implementation of streams 
and parallel modules also in computations structured as complex cyclic graphs. 

 

 

Conquer
 

control 
parmod 

P1 

Pn 

Data Repository     (input partition data) 

Virtual Shared Memory    (gathered statistics) 

data parallel 

task parallel 

Computing parmod 

 
 

Fig. 4 - Structure of a classifier (sequential code based on C4.5) made up of two 
interconnected parmods exploiting external objects 
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In the component version of ASSIST, single nodes of the program graph, or entire 
subgraphs, correspond to components, whose interfaces are expressed in terms of 
streams activating internal operations of the modules. For example, ì providesî  and 
ì usesî  ports, as well as events or other kind of interfacing mechanism [12, 15, 16, 28, 
39, 43], can be mapped onto the ASSIST composition mechanisms. This issue is 
currently investigated and the precise definition of the ports-streams mapping will 
depend on the specific component model that will be adopted. However, structuring 
ASSIST programs in terms of graphs and streams (and in terms of external objects, 
see Sec. 3.3) is sufficient to capture the essential semantics of high-performance 
components, in a way that is largely independent of the specific component 
technology. 

 

3.2. A generic skeleton: parmod 

Every classical skeleton correspond to a specialized paradigm to express parallelism. 
Though in many algorithms they are exactly what the programmer needs, there are 
some applications which need much more flexible structures for expressive power 
and/or efficiency reasons. Notable examples are: 

a) stream-parallel farms with an ad-hoc task scheduling strategy (master), workers 
having some form of internal state or additional communications, or specific task 
ordering strategy; 

b) datañparallel algorithms with various kind of stencils that can be statically 
recognized (fixed or variable stencils), or dynamic stencils; 

c) specific data distribution strategies, ranging from on-demand scheduling to 
scatter, multicast, broadcast; 

d) no limitation in the number of input/output streams, controlled according to a 
nondeterministic or data-flow style, or both; 

e) existence of internal state, considered significant for the duration of the 
computation, which is usually prohibited by the classical completely functional 
semantics of data-flow skeletons, 

f) proper combinations of stream- and data-parallel paradigms in the same module 
(e.g. in systolic computations), 

g) modules that are able to behave according to different paradigms in different 
phases of run-time behaviour. E.g. the Divide module in the C4.5 implementation 
of Fig. 4 may have a data-parallel behaviour or a farm-like behaviour in order to 
optimize load balancing during phases that, because of the multiplicity of data, 
have significantly different requirements. 

All these situations can be emulated by means of specialized skeletons, but at the 
expense of code complexity and/or efficiency. For example, often the solution could 
consist in combining specific skeletons in parallel data-flow loop structures; however, 
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besides the loop implementation, serious overhead sources are represented by the 
operations providing data transformation and redistribution necessary for the correct 
combination of skeletons (e.g. a pipeline combination of farm and data-parallel 
skeleton). 

The ASSIST solution is a generic skeleton, that is a general-purpose construct that 
can be tailored, for each application instance, in order to deal with all the features 
needed to solve problems a ñ g). This construct, called parallel module or parmod, 
must possess the feature that, when it describes the computations equivalent to 
specialized skeletons, it does not incur in sensible overhead due to its generality. 

A parallel module is defined as follows (see Fig. 5): 

 

 

 

 

 

 

 

 

 

Fig. 5 ñ Elements of a parallel module (parmod) 
 

∑ a set of virtual processors with internal state. The set has declared a certain 
topology to provide names to virtual processors, when needed, e.g. an array 
topology, or a none topology (no name: in this case all the virtual processors are 
anonymous); 

∑ a set of typed input streams controlled in a data-flow and/or nondeterministic 
fashion. Once selected, the data of an input stream may be pre-processed, and 
are sent to the virtual processors according to the scatter, multicast, broadcast, or 
on-demand strategies. The chosen distribution strategy is expressed by program 
through a proper declaration; 

∑ a set of output streams controlled independently by means of collective 
operations on the state value of the virtual processors. Post-processing on the 
data to be sent to other modules can be performed collectively. 

It is easy to see that all the known specialized stream- and data-parallel skeletons can 
be expressed directly in ASSIST. More important, no performance penalty is paid 
with respect to the equivalent specialized skeletons. Several kernels have been tested 

. . 

Output 
streams 

Input 
streams 

VP VP VP 

VP VP VP 

VP VP VP 

. . 

 
 

Other 
Parallel 
Modules 

 
 

Other 
Parallel 
Modules 

 

External Objects 

set of Virtual Processors 



15 

in ASSIST to verify the comparison of parmod performance with respect to the 
specialized skeletons. The result [1, 2] is that the parmod performance is comparable 
to, or better than, the performance of specialized skeletons or programs written in 
data-parallel languages. For example, the ASSIST program corresponding to the A-
priori computation of Fig. 3 is expressed by a graph, where the two farm nodes are 
expressed by parmods with none topology and on-demand distribution, while the 
other nodes are sequential modules (e.g. parmods with only one virtual processor, but 
with the all the parmod features about the control of input / output streams). The 
speed-up of the ASSIST program [1, 2, 14] is equal or better than the corresponding 
SkIE program (using specialized skeletons) and comparable to the MPI version.  

Analogous considerations apply to the evaluation of data-parallel skeletons. In this 
case, the comparison is done, with respect to data-parallel languages (HPF), for fixed 
and variable stencils. Among all, the cases, in which ASSIST achieves higher 
performance, are the computations where we need a sophisticated combination of 
various parallel paradigms in the same module. Notable examples are the adaptive 
version of C4.5 and systolic algorithms. Other significant cases derive from the 
combined utilization of parmods and external objects (see next section). 

An important observation concerns the cost model. In the specialized skeletons 
approach, analytical cost models are derived for some skeletons, especially stream 
parallel or simple data parallel ones. What is the position of ASSIST from this point 
of view? First of all, the implementation of a parmod can be optimized in the same 
way that it happens for simple skeletons: the capability to optimize the run-time 
support is the true strength of structured parallel programming. From this point of 
view, ASSIST is not different from the approaches based on specific skeletons. 

Moreover, especially in complex applications and Grid platforms, we have to consider 
the issue of cost model in a much more general way, that is according to the 
capability to express a cost of a parallel component or any combinations of parallel 
components in a context that is strongly variable and dynamic. Dynamically adaptive 
Grid applications must have associated a performance contract, specifying 
information to evaluate the application performance and, possibly, to drive the 
application restructuring (see Sec. 2.3.and Sec. 6). In this context, we have to know a 
library of cost models for various structures, both elementary and composed; such 
library could be enriched according to the past history of the system or application 
field. For ASSIST, this library is known, at least in the same way that is was known 
with specific skeletons (e.g. in SkIE): we know the cost model of a parmod when it is 
equivalent to a farm or to a map/reduce, or similar simple skeletons; in addition, we 
know or can derive the cost models of a rich variety of data-parallel structures with 
fixed and variable stencils, as well as of some notable combinations of stream- and 
data-parallel (e.g. systolic), or with graphs with specific structures. All such 
information will be inserted in the annotation of the components of a Grid-aware 
application (Sec. 2.3), and exploited by the Grid Abstract Machine at launch time and 
at run time. In conclusion, ASSIST has (at least) all the features of a structured 
parallel programming model from the point of view of the cost model and its 
utilization. 
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3.3. External objects 

Another feature to increase both flexibility and efficiency of ASSIST programs are 
the so called external objects. A module (sequential or parallel) of an ASSIST 
program can refer to external objects according to the interfaces/methods or APIs of 
such objects. This is a mechanism to exploit (import) the functionalities of possibly 
existing objects defined outside the application.  

External objects are also a mechanism to cooperate with other modules of the same 
application, in addition to the stream mechanism. While the streams can be referred 
only at the beginning and at the end of an activation (i.e. it cannot be referred during 
the activation of Virtual Processors), an external object can be referred by a parmod in 
any phase (input, virtual processors processing, output). 

In general, the goals of including / supporting external objects are the following: 

i) to provide a powerful mechanism to import/export abstract objects in 
commercial standards, 

ii) to provide a standard modality to interact with system functionalities (servers), 

iii) to optimize scalability when the by-reference communication is more efficient 
than the by-value one; 

iv) to overcome the limitations of the single node resources (notably, memory 
capacity) in distributed architectures, 

v) to make the management of dynamic and/or irregular program/data structures 
easier. 

Three kinds of external objects are distinguished: 

a) Shared variables: a first kind of external object is defined just in terms of the same 
data types of ASSIST-CL. Any variable can be defined as shared by modules 
of an ASSIST application. This can be interpreted as an extension of the 
concept of internal state of modules: now the state can also be shared between 
distinct modules. 

b) Integration of Distributed Shared Memory libraries: in many problems, the goals 
iii-v) mentioned above can be met by means of external objects expressed by 
abstractions of shared memory. In particular, we integrated libraries for 
Distributed Shared Memory (DSM) and for abstract objects implemented on 
top of some DSM. While on shared variables we can only execute the 
operations corresponding to the ASSIST-CL types, on the shared memory 
objects the proper set of operations is defined for expressing powerful 
strategies of allocation, manipulation and synchronization. 

c) Remote objects: they enable an ASSIST program to interact with external services 
through their specific interfaces (e.g. parallel file systems, databases, GUIs, 
other - possibly parallel - programs or libraries), using an object oriented 
formalism, provided for example by a distributed object middleware like 
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CORBA. The interoperability with CORBA has been introduced in Sec. 2.1 
and will be described in Sec. 5. 

The use of shared variables and shared objects is a further mechanism to increase the 
expressive power and efficiency of ASSIST programs. The preliminary experiences 
with the addition of shared objects to specialized skeletons [14] have proved the 
feasibility and effectiveness of this mechanism. A first example has been shown about 
the C4.5 algorithm (Fig. 4), where the heaviest data structures are shared by the 
virtual processors of the Divide parmod, while the streams convey references to such 
data structures. 

Another significant example is shown in Fig. 6: it is an ASSIST version of the 
Barnes-Hut N-Body algorithm, using a proper combination of parmods and shared 
objects (vector of bodies and other control structures).  

 

 

 

 

 

 

 
 

Fig. 6 ñ ASSIST version of Barnes-Hut algorithm using proper combinations of 
parmods and shared objects 

Owing to the utilization of shared objects, the modules are combined in a non-cyclic 
structure, exploiting both nondeterminism and data-flow behaviour. Streams convey 
just reference to the shared objects, that are created and scheduled by the Emitter 
module and processed by the Farm module.  

While the performance of this algorithm expressed by specialized skeletons is rather 
low, the performance of this ASSIST version is quite satisfactory: the efficiency lies 
between 70 and 80% with 8-16 processors for rather small data sets (100K, 1000 K 
bodies). The achieved result is comparable with a dedicated MPI version. In 
particular, the overhead introduced by the ASSIST support in communication, 
nondeterminism and sharing is negligible with respect to the corresponding primitive 
underlying mechanisms. This and other benchmarks prove that ASSIST is able to 
express efficiently many irregular and dynamic/adaptable computations, though by 
adopting a high-level structured approach to parallel programming. 
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3.4. ASSIST applications 

Till now we have shown the ASSIST performance in benchmarks represented by 
single computational kernels, belonging to a rather large collection of regular and 
irregular benchmarks and tests developed during the project. However, ASSIST has 
been also used successfully in the design of complex applications, notably: 

∑ Image Processing: isosurfaces extraction, decimation, compression (IMATI-
CNR, Genova), 

∑ Earth Observation: SAR, Interferometry (Italian Space Agency), 

∑ Computational Chemistry: molecular dynamics (ISTM-CNR, Perugia), 

∑ MPEG2 parallel encoder (our Department), 

∑ Knowledge Discovery in semistructured data sets (parallel query execution 
engine), Question Answering, Search Engines (our Department), 

∑ a Data Mining framework for Customer Relationship Management platforms: 
this complex application, developed by our group in the SAIB Project (MIUR 
and Schlumberger SEMA SpA), will be illustrated in the next section. 

These applications allow us to test the validity of the ASSIST approach, which has to 
be evaluated not only in terms of choice of the coordination language constructs, but 
also in terms of a complex, interrelated set of outstanding requirements concerning 
modularity, software reuse, interoperability with many standard tools, feasibility to 
define efficient external objects, as well as in terms of the global efficiency of the 
implementation. The next section is an illustration of these ASSIST features. 

 

3.5. Example of complex application in ASSIST: a User Modeler Server 
for Customer Relationship Management platforms 

SAIB (System for Internet Banking Applications) is a large research project which 
brings together some Italian academic institutions and industrial partners in the effort 
of producing an open-source based Customer Relationship Management (CRM) 
solution for financial applications. We describe the User Modeler Server (UMS), a 
parallel Knowledge Discovery in Databases (KDD) system designed to be integrated 
within the SAIB system. Among the requirements there are flexibility and 
programmability, as well as high-performance customer profiling functionalities. 

Our KDD system provides to the marketing analysts the Data Mining (DM) services 
needed to build customer profiles from a customer database. Knowledge models can 
then be deployed to the CRM main core, where they can be used to customize user 
interaction at different levels. The UMS performs both batch operations (heavyweight 
Data Mining algorithms, out of the main business flow) and on-line ones (per-user 
knowledge queries), which are subject to near-real-time constraints.  

In developing a parallel KDD system we are faced with different issues:  
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∑ to deal with databases of several Gigabytes in size; 

∑ to develop efficient parallel mining algorithms, managing both sustained and 
irregular demands of  I/O and computation, scalable with available computing 
resources to higher performance and throughput; 

∑ to ensure a high internal degree of integration of the system, as well as 
simplicity and performance of the interaction between the parallel mining 
algorithms, data management and KDD support modules for knowledge 
management and visualization 

∑ to ensure system interoperability and ease of cooperation with different software 
technologies. Industry standard languages and technologies like XML, Java/EJB 
and ODBC have to be exploited to integrate advanced parallel modules within 
larger applications.  

In the architecture of the UMS, these goals were accomplished with a portable, high-
level software design thanks to the programming approach of ASSIST, to the features 
of its coordination language and of its supporting environment. The architecture of the 
UMS, shown in Fig. 7, is made up of a few basic elements, namely: (1) Activity 
Scheduler, i.e. control and visualization interface (UI, the User Interface), (2) a set of 
mining algorithms (MA), (3) data management module (DR, the Data Repository) 
and (4) knowledge and meta-data management module (KR, the Knowledge 
Repository). 
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Fig. 7 - Overall architecture of the UMS module 

The UI in our case is a gateway to the rest of the SAIB system, with no visualization 
and low level user interaction tasks. Instead, it exports to the CRM system a Java RMI 
interface for all of the supported KDD operations, and schedules them to the parallel 
mining engine. The UI is not performance critical, thus to speed up the 
implementation process we exploited the interoperability of ASSIST with Java, 
implementing the UI directly with this language. The UI cooperates with the rest of 
the UMS by means of Java native methods, file system I/O and calls to the ASSIST 
program loader. 
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The set of MAs contains ASSIST parallel programs, some of them described later on, 
that perform actual mining tasks, and simpler ones used to manage the DR data (e.g. 
selection and sorting). We reused parallel mining applications designed in our 
previous research [14], which were based on skeleton structures and data-flow stream 
cooperation, and we extended them with new functionalities. Taking advantage of the 
modular structure of ASSIST programs, we have evolved them so that they (1) 
interface to the DR module for most of the I/O, and (2) benefit from more 
sophisticated features like external objects, or control of nondeterminism. 

The DR module is implemented as an external object of ASSIST. It provides high 
performance I/O support for large files with a simple record structure of typed fields 
(the kind of regular data tables we have to host in a mining warehouse), and a 
mechanism of block-oriented views to allow large grain, parallel operation on the 
same file. The DR is built on top of the PVFS parallel file system, and it is integrated 
within the ASSIST programs as an external object. Each code module can thus access 
the data, with the implementation layers of the DR coordinating their efforts, and the 
PVFS implementation layer moves data blocks in and out of each process memory, 
wrapping the actual file system layer. This design exploits parallel file system 
performance and bandwidth from within portable ASSIST programs. 

The KR module manages the knowledge extracted by the mining algorithms, 
represented using the standard PMML 2.0 language. The KR is designed to allow 
storing, retrieving, refining and tracking the history of knowledge models produced 
by the mining algorithms. To manage the different states and attributes of models, that 
condition their use inside the SAIB system, we adopted a composite structure. A 
standard CVS server is used to store the XML textual data, access being mediated by 
a custom server process which performs additional controls and attribute caching, and 
is used from within ASSIST code. A client-side linked library provides XML parsing 
and serialization on models, as well as interface to the servers. 

In composing the UMS modules we have exploited the features of interoperability of 
ASSIST, mixing Java, C and C++ code, stream and RMI cooperation. We describe 
some of the parallel modules performing the Data Mining functions. High 
performance and dynamic adaptiveness of these parallel applications rely on the 
parallel structure that is described at high level, supported by the ASSIST run-time. 

Classification is performed with a decision tree induction algorithm, shown in Fig. 4. 
After a first, data parallel phase of the execution, we should switch to a task-parallel 
behavior, and below a certain node size to sequential computation. We have evolved 
the structure reported in [14] following the idea outlined before and in [41]. The same 
parmod implements all the different functionalities related to the Divide part of the 
algorithm. Another parmod with one topology acts as a controller and performs the 
Conquer steps. Dynamic load balancing in the task-parallel case is granted by the on-
demand distribution. Stream guards controlled by shared variables make it clear and 
manageable the transition among the different behaviors. Access to the data is 
supported by the external object paradigm, both in distributed shared memory (node 
statistics are kept there) and in the DR module (which provides the input data).  
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Association Rules are computed by an Apriori-like algorithm. Its parallelization [14] 
is based on the partitioning method, which requires two phases of anonymous workers 
with load-balancing. Its structure has been shown in Fig. 3, expressed with traditional 
skeletons: actually, the farm and sequential skeletons are replaced by corresponding 
parmods. On the other hand, by exploiting the DR External Object, the input dataset is 
accessible to all the processes, removing the file transfer bottleneck, with relatively 
minor changes to the code. 

The Clustering application is built around the association rules module. Following 
[32], we group together records that satisfy the most popular association rule of a 
dataset. Rules are mined again and again on unclustered records until a given 
threshold is reached. The parallel implementation fully reuses the association rule 
ASSIST modules. The program graph becomes cyclic, a controller module is in 
charge of recycling data (also applying a rearranging strategy to enhance locality and 
reduce the amount of I/O), nevertheless the change can be kept hidden to the 
contained modules. 

 

4. ASSIST implementation 

4.1. Modular design of ASSIST compiler 

The ASSIST environment has been designed both to produce fast object code and to 
be modifiable on the need. It has been designed and implemented exploiting well-
known software engineering techniques that have enabled the easy extension of 
programming environment features along several ASSIST versions.  

Overall, the ASSIST compiler (namely astcc) produces code for plain POSIX/TCP 
workstation networks/clusters. We briefly outline the ASSIST implementation 
structure. The whole ASSIST-CL compiling tools have a three tier design:  

∑ front-end (the top tier) parses ASSIST-CL syntax and produces an internal 
representation of the program; 

∑ core (the middle tier) that is the compiler core. It translates the internal 
representation of a program into the task code. The task code represents a sort of 
C++ template-based, high-level and parallel assembly language. The step 
transforming internal representation into task code is completely implemented 
exploiting design pattern technology [27]. A faÁade pattern decouples compiler 
internals from the compiler engine; a builder is being used to actually produce the 
task code; 

∑ back-end (the bottom tier) compiles task code down to the ASSIST abstract 
machine (CLAM, the Coordination Language Abstract Machine) object code. 
The CLAM is built on top of POSIX processes/threads and communication 
(SysV and TCP/IP sockets) primitives. All those primitives are used via the ACE 
(Adaptive Communication Environment) library [37].  

The whole compilation process is illustrated in Fig. 8.  
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Fig. 8 - ASSIST compiler at work. 
 
The result of compilation consists of two distinct items:  

comp1) a set of object code/DLLs including the code needed to execute all 
application modules and run-time support. Each code may be produced in 
different version, each of them targeting a different platform; 

comp2) a configuration file including module and run-time ì coordinationî  
information. Coordination information are represented in XML format; they 
include two main classes of information: static and dynamic. Static information 
include parallel activities description, the description of (initial) modules graph, 
external libraries description and their bindings to modules. Dynamic information 
includes machine names, parallel degree of parallel modules, and modules-
machines mapping.   

A CLAM master process scans the XML configuration file produced by astcc 
compiler and arranges things in such a way that the CLAM slave processes, running 
on the target architecture processing nodes, load and execute the suitable code (either 
coming from ASSIST-CL source code or belonging to external libraries properly 
named by the programmer in the ASSIST-CL source code). A detailed description of 
the ASSIST implementation can be found in [1, 3]. As CLAM (and the object code 
itself) access POSIX features via ACE wrappers, and as ACE is available on different 
operating systems (such as Linux, MacOSX and Windows), CLAM actually behaves 
as the fourth tier of the compile/run process and guarantees a high degree of 
portability of the whole programming environment. 

The compiler design allows efficient code to be generated, as each tier may take the 
most appropriate and efficient choices related to object code production. Furthermore, 
the heavy usage of well known software engineering techniques, such as the design 

1) ASSIST builders are generated through proper factories and arranged in a work-flow. 
Compiler features may be easily extended adding new builders (e.g. a F90 code builder 
producing Fortan code). 2) The ASSIST program is processed by all builders producing a 
XML configuration file and a number of source and object files. Eventually they are 
compiled through suitable standard compilers. 
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patterns, insulate all the individual parts of the compiler in such a way that 
modifications in one compiler part neither affect the whole compilation process (but 
for the new features introduced/modified) nor require changes in other compiler parts. 
Eventually, ASSIST-CL compiled code is run by means of a dedicated loader (the 
assistrun command), that in turn activates CLAM run-time support.  

A first example of modifiability of the ASSIST support has been represented by the 
integration of mathematical MPI libraries belonging to the ScaLAPACK, FFTW and 
PAMIHR packages, directly in ASSIST, i.e. they are available to the programmer as 
ASSIST constructs [19]. The whole library code has then been wrapped in such a way 
that it looks like a normal parmod code to the programmer. 
 

4.2. Supporting heterogeneity 

The first design of ASSIST was targeted to homogeneous clusters of Linux machines. 
The items needed to produce code for heterogeneous architectures were basically two: 
the inclusion of some kind of XDR (external data representation) wrapping messages 
flowing between heterogeneous processing elements, and the generation of proper 
makefiles to compile final object code. Both these problems have been solved 
exploiting the ASSIST-CL compiling tools structure. The astcc compiler uses a 
builder pattern both to generate the actual task code and to generate the makefiles 
needed to compile task code to object code. Thanks to this modularity, the only 
interventions needed to support Operating System and Hardware heterogeneity was to 
modify these builders in the following way: 

∑ on the one side, communication routines are produced that either process memory 
communication buffers with XDR routines during marshaling and unmarshaling, 
or do not process them with XDR. The former routines will be used in case 
processing elements using different data representations (e.g. little/big endian 
machines) are involved in the communication. The latter routines instead will be 
used in those cases when homogeneous processing elements are involved in the 
communications. Proper makefiles are generated consequently; 

∑ on the other side, the XML configuration file is arranged in such a way that XDR 
communication libraries are used when different architectures are involved and 
non-XDR routines are used in all the other cases. 

Currently, heterogeneous clusters of Intel Linux and MacOSX platforms are 
supported. However, the technique we rely on is fully general: in order to add yet 
another architecture, it is sufficient to add the builder that produces code suitable for 
the new architecture. In the case this architecture includes a POSIX API, the proper 
builder may be produced with minor revisions of existing ones.  

From the performance viewpoint, we experienced a fairly limited impact of 
marshaling routines on overall application code. Current benchmarks experience a 
slowdown of normalized performances, ranging from 1% (short messages) to 15% 
(long messages), for heterogeneous architectures with respect to homogenous ones. 
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4.3. ASSISTconf and the Grid 

As seen, the ASSIST compiler decouples data needed to run compiled applications in 
two main classes, denoted by comp1 and comp2 in Sec. 4.1. Exploiting this feature, 
ASSIST-CL programs can be run on a Grid performing the following three steps: 

1. the XML configuration file (comp 2) is analyzed and the resources needed to 
execute the program are individuated; 

2. the resources needed to execute the program are gathered, and reserved, using the 
normal Grid middleware tools (e.g. those provided by the Globus toolkit); 

3. the XML file is modified in such a way that the resources gathered are used to 
run the ASSIST code. 

In order to demonstrate the feasibility of the approach, the ASSISTconf tool [8] has 
been developed in collaboration with the group of ISTI-CNR. ASSISTconf supports 
such kind of manipulation of the original XML configuration file. Actually, the tool 
only supports decisions taken directly by the programmer via a GUI: starting from 
information gathered from the Grid, the tool proposes to the programmer a set of 
choices. Afterward, the tool produces a new XML configuration file describing the 
new mapping of program entities onto Grid resources.  

ASSISTconf just represents an intermediate step toward full Grid support in ASSIST. 
In order to automatically and effectively targeting the Grid, many factors have to be 
taken into account, which are traditionally handled by expert programmers: resource 
co-allocation, code and data staging, task scheduling, and the alike.  

The extension to the general automatized solution is allowed by the global approach 
to the Grid programming environment stressed in this document, and by the design 
methodology of the ASSIST definition and implementation modularity. The structure 
of the existing ASSIST programming environment is exploited as follows: 

1) resource co-allocation is decided on the basis of the contents of the XML 
configuration file produced by the ASSIST-CL compiling tools. In particular, the 
compiler already devises the number and the kind of resources needed to execute 
the code, mostly exploiting user provided parameters. A CLAM version targeting 
the Grid can easily process the XML configuration file in such a way that the 
proper resources are selected; 

2) code and data staging are also managed by the CLAM setup process. Also on 
clusters, the first phase in the execution of an ASSIST-CL program consists in 
deploying the proper object/library code to the interested processing nodes;  

3) task scheduling is completely under the control of CLAM and follows the 
directives taken from the XML configuration file.  
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5. ASSIST-CORBA interoperability 

ASSIST provides various opportunities for interoperability, owing to its definition 
and implementation. For example, in Sec. 3.5 we saw the possibility of effectively 
mixing Java, C and C++ code, stream and RMI cooperation in complex parallel 
applications. 

ASSIST provides full interoperability with CORBA objects. In this way we have 
achieved a first concrete result that combines the benefits of software reuse and 
interoperability with those of high-level parallel programming. CORBA, a distributed 
object-based middleware, is a well established commercial standard, and offers 
interoperability with several sequential languages. Recent studies recognized that 
CORBA technology could be leveraged to support the development of advanced Grid 
applications [35, 36]: the CORBA CoG kit [34], for example, provides CORBA 
applications with access to the Grid services provided by the Globus Toolkit.  

ASSIST can easily import (or use) other pieces of software encapsulated in external 
CORBA objects, as in a traditional sequential language (i.e. C++). Most important for 
the sake of this paper, ASSIST can export parallel algorithms and applications as 
well. For example, a computation intensive component of a large application can be 
conveniently expressed in ASSIST to exploit parallelism and achieve good 
performance; it can be automatically encapsulated in a CORBA object, so that it can 
interact (e.g. be invoked) with the rest of the application (coded in any language 
supported by CORBA) by means of standard CORBA invocation mechanisms. This 
enables the construction of complex, scalable applications in an easy way. 

We devised two possible ways of interconnecting an ASSIST subprogram to a 
distributed application, to address two different classes of problems: 

a) RMI-like synchronous invocation of a subprogram (with arguments and return 
values), when the task that should be carried in parallel is well defined and 
insulated; 

b) stream-like asynchronous data passing (realized using the standard CORBA 
event channel mechanism), when the production of data can be overlapped with 
the elaboration, or when we want to deal with partial data or results (for 
example when rendering images or videos). 

An ASSIST subprogram, in order to be exported to the CORBA world, must be a 
composition of ASSIST modules (at the extreme, it can be a single module) in which 
one input stream and one output stream are left unconnected and are elected to be the 
input and output of the entire exported component. In the RMI-like case, a further 
constraint to be satisfied (that cannot be statically checked) is that, for every datum 
received from the input source, the program must produce one and only one datum on 
the output stream. 

The process of exporting an ASSIST program in the CORBA world has been 
automatized: the ASSIST program undergoes an initial phase in which it is analyzed 
to verify that the conditions stated earlier are met. It is transformed (ì wrappedî ), 
according to the option RMI-synchronous (a) vs stream-asynchronous (b) interaction 
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chosen by the programmer, adding support code to interact with the CORBA runtime 
and services: 

case a) The program is exported as a CORBA object with a single method: a module 
that acts as a bridge towards CORBA is attached to the program input and 
output stream; it implements the method invocation by delivering every 
request to the program input stream and then waiting for a response from the 
output stream, that will be returned to the caller; 

case b) The program interacts through CORBA event channels: two modules are 
added, one that intercepts ingoing events and sends them to the input stream 
of the program, and the other that receives messages from the output stream 
and forwards them as outgoing events. 

As a final step, suitable CORBA IDL interfaces are generated. This process is 
simplified by the fact that, in the module interfaces, ASSIST recognizes the standard 
CORBA types, which are mapped to native types following the standard CORBA 
type mapping. The generated interfaces, then, can be processed by CORBA compliant 
IDL compilers, to produce suitable stub code to invoke the ASSIST CORBA object 
(RMI-like case), or to publish or subscribe the events that are recognized as inputs or 
produced as outputs by the ASSIST component (stream-like case). 

Two basic experiments demonstrate that the methodology is a viable solution to 
parallel software integration: 

i) we have compared the service time of a data-parallel algorithm expressed in 
ASSIST and exported as a CORBA object (invoked from an external C++ 
application) to an equivalent solution expressed in the ASSIST-CL language. The 
ASSIST program is a synthetic data-parallel algorithm, operating on large 
matrices (the argument and result are 700 x 700 floats) in order to estimate the 
overhead introduced by CORBA communication mechanisms. The algorithm 
performs a O(n3) computation involving transcendental function evaluation; 

ii) to evaluate the event-based asynchronous interaction, we have compared a 
stream-parallel algorithm expressed in ASSIST and exported via CORBA with an 
ASSIST implementation that uses only ASSIST native streams. The ASSIST 
program is a classical Mandelbrot set computation as a task farm, in which each 
task is a set of contiguous points that must be evaluated.  

In both cases, the overhead introduced by the program transformation is comparable 
in absolute value to the one in the sequential case; this means that the implementation 
doesnít introduce inefficiencies. Moreover, the overhead affects the service time for a 
small percentage, allowing a good speed-up up to 16 processors (< 5% degradation). 

 

6. Dynamically adaptive applications 

Let us now come back to the discussion of Sec. 2.3 and 2.4 about the possibility of 
using ASSIST not only for parallelizing single components, but also, more in general, 
for expressing the global dynamic adaptation strategies in Grid-aware applications. 
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The research project Grid.it will develop, on top of available standard services (GT), 
a Grid Abstract Machine (see Sec. 1) based on an Application Manager (AM) for 
parallel and distributed applications according to the Grid-awareness principles. AM, 
that logically is a centralized entity whose implementation may be decentralized, will 
exploit the functionalities made available by 

∑ Performance Model 

∑ Monitoring 

∑ Resource Discovery 

∑ Scheduling strategies, both local to single nodes and global to Grid 

∑ Allocation strategies of codes and data. 

The current implementation of ASSIST for heterogeneous networks and Grids, 
described in Sec. 4, will be extended in order to support the dynamic allocation of 
ASSIST programs [20, 21]: this affects the run-time support of parmod and of shared 
objects, so that parts of the same parallel components can be re-allocated dynamically 
to different nodes according to the decisions of AM. 

As discussed in Sec. 2, subgraphs of ASSIST programs will be wrapped into standard 
components and, in general, made interoperable with other non-ASSIST components 
in order to build Grid applications. Moreover, each component will provide a 
scripting annotation about the ì performance contractî  to be established with the Grid 
Abstract Machine. 

The following example could serve to clarify the ASSIST-based approach to the 
design of dynamically adaptive applications. The application consists of the 
component composition shown in Fig. 9. 

 

 

 

 

 

 
 

Fig. 9 ñ Example of an adaptive application expressed by parallel components 

a) Component C1 is an interface towards a Grid memory hierarchy, that virtualizes 
and transforms data sets available on the Grid into two streams of objects, the one 
(whose elements have an elementary type) is sent to C2, and the other (whose 
elements have array type) is sent to C3. C1 may be an existing component 
available on the Grid, virtualized by an ASSIST program, for example by using 
external objects and/or the CORBA facility. 

C1 

C2 

C3 

C4 

C5 
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b) C2 is a component encapsulating an ASSIST program. The ì performance 
contractî  of C2 specifies that  

∑ by default C2 is a sequential module (parmod with topology one) executing a 
certain function F;  

∑ when the Monitoring and Performance Model services generate the event 
that signals the need or opportunity to adjusting the current performance 
level (on restructuring), C2 is transformed into a farm computation (parmod 
with topology none and data distribution on-demand) whose workers execute 
the same function F. AM of the Grid Abstract Machine determines the actual 
number of workers and their allocation to Grid resources: these may belong 
to the same Grid node (cluster) or to different Grid nodes. This is consistent 
with our conceptual framework (Sec. 2, Fig. 2), according to which the high-
level version of the application is expressed by the structured parallel 
formalism with annotations, and all the allocation strategies are delegated to 
the Grid Abstract Machine. 

c) C3 is a component encapsulating an ASSIST data-parallel program operating on 
each stream element of array type (parmod with topology array, proper 
distribution for the specific data parallel algorithm, and possibly a stencil 
expressed in the virtual processors section). Similarly to the approach described 
for C2, the ì performance contractî  of C3 specifies that, by default, the ASSIST 
program has to be executed on a single Grid node with cluster internal 
architecture, while on restructuring it can modify (increase) the parallelism 
degree (amount of real processors onto which the virtual processors are mapped). 
The re-allocation may exploit resources belonging to one Grid node or to distinct 
Grid nodes. 

d) C4 is a component encapsulating an ASSIST program which, by default, is a 
sequential module, while on restructuring it is transformed into a parmod 
operating on the input stream according to a data-parallel or a farm style, 
depending on the values of the parmod state and on the input values themselves. 
In this case the adaptation principle is applied at two levels: at the program level 
and at the allocation level. 

e) C5 is a component encapsulating an ASSIST program operating 
nondeterministically on the input values received from C3 or C4, and 
transforming the two streams into a data set. The ì performance contractî  of C5 
specifies that C5 can be allocated and executed only on a certain Grid node and 
that no reconfiguration can occur. This may be due to security, or privacy, 
reasons, or to requirements related to the specific resource kinds needed to 
operate on the data set. 

Let us assume that at a certain time C2 is becoming a bottleneck that causes a 
substantial degradation of performance of the whole application. AM provides to 
transform C2 into a version with the proper parallelism degree and to re-schedule and 
re-allocate this new version, assumed that, interacting with the Grid Resource 
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Management services, the necessary resources can be found. In case of restructuring 
of data-parallel components, the AM strategy must be applied also to the re-
distribution of the data constituting the internal state of parmod. 

 

7. Current and future work 

We have shown how ASSIST can be used as a valid research framework in the 
definition and realization of innovative programming environments for high-
performance Grid platforms. Our current research activity includes:  

i) experiments on standard component frameworks, notably CCM and Web 
Services. Several benchmarks will be tested in order to verify the performance 
features especially when components are used to wrap ASSIST programs; 

ii) realization of the full ASSIST implementation on top of the Globus toolkit, as 
discussed in Sec. 4.3. 

The result of these short-time experiments will be exploited in the main tracks of our 
research: 

a) dynamic ASSIST; i.e. definition and realization of ASSIST support to achieve the 
dynamic reallocation and restructuring of ASSIST programs on the Grid nodes. 
Recent experiences have proven the feasibility of this track [20, 21]; 

b) performance model for Grid-aware applications: performance models that, 
relying upon the cost model of ASSIST structured parallel programs, evaluate the 
performance of the Grid application. For this purpose, basic Middleware 
mechanisms, such as monitoring, will be exploited; 

c) Application Manager: definition and realization of this fundamental component 
of the Grid Abstract Machine, according to the ASSIST-based approach 
introduced in this paper; 

d) the results of activities a), b), c) will be exploited to design, according to the 
principles stated in Sec. 1 and 2, the first version of the Grid.it programming 
environment, whose release is expected by the end of 2004 / beginning of 2005. 
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