UNIVERSITA DI PIsa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-10-11

Porting Decision Tree
Algorithms to Multicore
using FastFlow

Marco Aldinucci Salvatore Ruggieri Massimo Torquati

May 18th, 2010

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: 439 050 2212726

Porting Decision Tree Algorithms to Multicore
using FastFlow

Marco Aldinucci* Salvatore Ruggieri Massimo Torquati

May 18th, 2010

Abstract

The whole computer hardware industry embraced multicores. For
these machines, the extreme optimisation of sequential algorithms is no
longer sufficient to squeeze the real machine power, which can be only
exploited via thread-level parallelism. Decision tree algorithms exhibit
natural concurrency that makes them suitable to be parallelised. This
paper presents an approach for easy-yet-efficient porting of an implemen-
tation of the C4.5 algorithm on multicores. The parallel porting requires
minimal changes to the original sequential code, and it is able to exploit
up to 7x speedup on an Intel dual-quad core machine.

Keywords Parallel classification, C4.5, multicores, structured parallel
programming, streaming.

1 Introduction

Computing hardware has evolved to sustain an insatiable demand for high-end
performances along two basic ways. On the one hand, the increase of clock
frequency and the exploitation of instruction-level parallelism boosted the com-
puting power of the single processor. On the other hand, many processors
have been arranged in multi-processors, multi-computers, and networks of geo-
graphically distributed machines. This latter solution exhibits a superior peak
performance, but it incurs in significant software development costs. In the last
two decades, the parallel computing research community aimed at designing lan-
guages and tools to support the seamless porting of applications and the tuning
of performances [13, 3, 21, 20]. These languages, apart from few exceptions that
also focus on code portability [13, 21], require a redesign of the application logic
in an explicitly parallel language or model.

Up to now, clock speed and algorithmic improvements have exhibited a bet-
ter performance/cost trade-off than application redesign, being the possibility
to preserve the existing code its most important component. Data mining is

*Computer Science Department, University of Torino, Italy. Email: adinuc@di.unito.it

not an exception in this regard. By surveying the papers in the main scientific
conferences and journals, there is a diminishing number of proposals for parallel
implementations of data mining algorithms in the last few years. After all, only
a small percentage of data analysis projects can afford the cost of buying (and
maintaining) a parallel machine and a data mining software capable of exploit-
ing it. In most cases, data reduction techniques (such as sampling, aggregation,
feature selection) can mitigate the problem while waiting the advancement in
memory and computational power of low-cost workstations.

Nowadays, however, this vision should be reinterpreted. After years of con-
tinual improvement of single core chips trying to increase instruction-level par-
allelism, hardware manufacturers realised that the effort required for further
improvements is no longer worth the benefits eventually achieved. Microproces-
sor vendors have shifted their attention to thread-level parallelism by designing
chips with multiple internal cores, known as Multicore or Chip Multiprocessors.
However, this process does not always translate into greater CPU performance:
multicore are small-scale but full-fledged parallel machines and they retain many
of their usage problems. In particular, sequential code will get no performance
benefits from them. A workstation equipped with a quad-core CPU but run-
ning sequential code is wasting 3/4 of its computational power. Developers,
including data miners, are then facing the challenge of achieving a trade-off be-
tween performance and human productivity (total cost and time to solution) in
developing and porting applications to multicore. Parallel software engineering
engaged this challenge trying to design tools, in the form of high-level sequen-
tial language extensions and coding patterns, aiming at simplifying the porting
of sequential codes while guaranteeing the efficient exploitation of concurrency
[13, 3, 21, 2].

This paper focuses on achieving this trade-off on a case study by adopting a
methodology for the easy-yet-efficient porting of an implementation of the C4.5
decision tree induction algorithm [15] onto multicore machines. We consider the
YaDT (Yet another Decision Tree builder) [17] implementation of C4.5, which is
a from-scratch and efficient C++ version of the well-known Quinlan’s entropy-
based algorithm. YaDT is the result of several data structure re-design and
algorithmic improvements over Efficient C4.5 [16], which is in turn is a patch to
the original C4.5 implementation improving its performance mainly for the cal-
culation of the entropy of continuous attributes. In this respect, we believe that
YaDT is a quite paradigmatic example of sequential, already existing, complex
code of scientific and commercial interest. In addition, YaDT is an example
of extreme algorithmic sequential optimisation, which makes it unpractical to
design further optimisations. Nevertheless, the potential for improvements is
vast, and it resides in the idle core CPUs on the user’s machine.

Our approach for parallelising YaDT is based on the FastFlow programming
framework [1], a recent proposal for parallel programming over multicore plat-
forms that provides a variety of facilities for writing efficient lock-free parallel
patterns, including pipeline parallelism, task parallelism and Divide&Conquer
(D&C) computations. Besides technical features, FastFlow offers an important
methodological approach that will lead us to parallelise YaDT with minimal

Applications

Efficient applications for multicore and manycore uses : ::
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, . T @ 2,
R -
Al imulati P &
Behav.Skeletons Prd —

Si Accelerator
Montecarlo || self-offloading
Streaming networks patterns o S S
[Skeletons: Pipeline, farm, D&C, . 1 input_,- -,output
stream & stream
[Arbitrary streaming networks (building blocks)] iy

Lock-free SPSC, SPMC, MPSC, MPMC queues o~
Simple streaming networks (building blocks) o @9@ 3 :
Lock-free SPSC queues and general threading model | SPMC MPSC
N

Hardware Multi-core and many-core T m— ®— @»@

Problem Solving
Environment

High-level
programming

Low-level
programming

FastFlow

Run-time
support

cc-UMA or cc-NUMA featuring sequential or weak consistency

lock-free SPSC queue Producer Consumer

Figure 1: FastFlow layered architecture with pattern examples.

changes to the original sequential code, yet achieving up to 7x boost in perfor-
mance on a Intel dual-quad core. MIPS, FLOPS and speedup have not to be
the only metrics in software development. Human productivity, total cost and
time to solution are equally, if not more, important.

The rest of the paper is organised as follows. In Sect. 2, the FastFlow pro-
gramming environment is introduced. We recall in Sect. 3 the C4.5 decision tree
construction algorithm, including the main optimisations that lead to YaDT.
Then the parallelisation of YaDT is presented in detail in Sect. 4, followed by ex-
perimental evaluation and discussion in Sect. 5. Finally, we report related works
in Sect. 6, and summarise the contribution of the paper in the conclusions.

2 The FastFlow Parallel Programming Environ-
ment

FastFlow is a parallel programming framework aiming to simplify the develop-
ment of efficient applications for multicore platforms, being these applications
either brand new or ports of existing legacy codes. The key vision underneath
FastFlow is that effortless development and efficiency can be both achieved
by raising the level of abstraction application design, thus providing designers
with a suitable set of parallel programming patterns that can be compiled onto
efficient networks of parallel activities on the target platforms. To fill the ab-
straction gap, as shown in Fig. 1, FastFlow is conceptually designed as a stack
of layers that progressively abstract the shared memory parallelism at the level
of cores up to the definition of useful programming constructs and patterns.

At the lowest tier of the FastFlow system we have the architectures that it
targets: cache-coherent multiprocessors, and in particular commodity homoge-
neous multicore (e.g. Intel core, AMD K10, etc.).

The second tier provides mechanisms to define simple streaming networks
whose run-time support is implemented through correct and efficient lock-free

Single-Producer-Single-Consumer (SPSC) queues. This kind of queues do not
requires any lock or memory barrier,! and thus they constitute a solid ground
for a low-latency synchronisation mechanism for multicore. These synchronisa-
tions, which are asynchronous and non-blocking, do not induce any additional
cache invalidation as it happens in mutual exclusion primitives (e.g. locks and
interlocked operations), and thus do not add any extra overhead.

The third tier generalises one-to-one to one-to-many (SPMC), many-to-one
(MPSC), and many-to-many (MPMC) synchronisations and data flows, which
are implemented using only SPSC queues and arbiter threads. This abstraction
is designed in such a way that arbitrary networks of activities can be expressed
while maintaining the high efficiency of synchronisations.

The next layer up, i.e., high-level programming, provides a programming
framework based on parallelism exploitation patterns (a.k.a. skeletons [5]).
They are usually categorised in three main classes: Task, Data, and Stream
Parallelism. FastFlow specifically focuses on Stream Parallelism, and in partic-
ular provides: farm, farm-with-feedback (i.e. Divide&Conquer), pipeline, and
their arbitrary nesting and composition. These high-level skeletons are actually
factories for parametric patterns of concurrent activities, which can be instan-
tiated with sequential code (within white circles in Fig. 1) or other skeletons,
then cross-optimised and compiled together with lower FastFlow tiers. The
skeleton disciplines concurrency exploitation within the generated parallel code:
the programmer is not required to explicitly interweave the business code with
concurrency related primitives.

We refer to [1] for implementation details. FastFlow is open source avail-
able at http://sourceforge.net/projects/mc-fastflow/ under LGPLv3 li-
cense.

3 Decision Trees: From C4.5 to YaDT

A decision tree is a classifier induced by supervised learning from a relation
T called the training set. Tuples in 7 are called cases. An attribute C of
the relation is called the class, while the remaining ones Aj, ..., A,, are called
the predictive attributes. The domain of an attribute dom(A;) can be discrete,
namely a finite set of values, or continuous, namely the set of real numbers.
Also, the special value unknown is allowed in dom(A4;) to denote unspecified or
unknown values. The domain of the class dom(C) = {c1,...,cnc} is discrete
and it does not include the unknown value.

A decision tree is a tree data structure consisting of decision nodes and
leaves. A leaf specifies a class value. A decision node specifies a test over one of
the predictive attributes, which is called the attribute selected at the node. For
each possible outcome of the test, a child node is present. A test on a discrete
attribute A has h possible outcomes A = dy, ..., A = dj, where d1,...d), are
the known values in dom(A). A test on a continuous attribute has 2 possible
outcomes, A < t and A > t, where t is a threshold value determined at the node.

Lfor Total Store Order processors, such as Intel core, AMD 10.

3.1 The C4.5 Tree-Induction Algorithm

The C4.5 decision tree induction algorithm [15] is a constant reference in the
development and analysis of novel proposals of classification models [12]. The
core? algorithm constructs the decision tree top-down. Each node is associ-
ated with a set of weighted cases, where weights are used to take into account
unknown attribute values. At the beginning, only the root is present, with as-
sociated the whole training set 7. At each node a D&C algorithm is adopted to
select an attribute for splitting. We refer the reader to the method node: :split
in Fig. 2 from the YaDT implementation of the algorithm.

Let T be the set of cases associated at the node. For every ¢ € dom(C), the
weighted frequency freq(c,T) of cases in T whose class is ¢ is computed (§2.2 —
throughout the paper, we use the §M.N to reference line N from the pseudo-code
in Fig. M). If all cases in T belong to the same class or the number of cases
in T is less than a certain value then the node is set to a leaf (§2.3-4). If T
contains cases belonging to two or more classes, then the information gain of
each attribute at the node is calculated (§2.6-7). Since the information gain of
a discrete attribute selected in an ancestor node is necessarily 0, the number
of attributes to be considered at a node is variable (denoted by getNoAtts in
§2.6).

For a discrete attribute A, the information gain of splitting 7" into subsets
Ty,..., Ty, one for each known value of A, is calculated 3. For A continuous,
cases in T with known value for A are first ordered w.r.t. such an attribute. Let
v1,...,v be the ordered values of A for cases in T. Consider for i € [1,k — 1]
the value v = (v; + v;+1)/2 and the splitting of T into cases T} whose value for
the attribute A is lower or equal than v, and cases T3 whose value is greater
than v. For each value v, the information gain gain, is computed by considering
the splitting above. The value v’ for which gain,s is maximum is set to be the
local threshold and the information gain for the attribute A is defined as gain,.

The attribute A with the highest information gain is selected for the test at
the node (§2.8). When A is continuous, the threshold of the split is computed
(§2.9-10) as the greatest value of A in the whole training set 7 that is below
the local threshold. Finally, let us consider the generation of the child nodes
(§2.12-14). When the selected attribute A is discrete, a child node for each
known value from dom(A) is created, and cases in T are partitioned over the
child nodes on the basis of the value of attribute A. When A is continuous two
child nodes are created, and cases from T" with known value of A are partitioned
accordingly to the boolean result of the test A < ¢, where ¢ is the threshold of
the split. Cases in T" whose value for attribute A is unknown are added to the
set of cases of every child, but their weights are rebalanced.

2In this paper, we concentrate on the growth phase of the algorithm. The subsequent prune
phase is computationally less expensive.
3as follows: gain(T,T1,...,Ty) = info(T) — Zi;l ‘Igf‘l x info(T;), where info(S) =

— Z;v:ci freq‘éij 9 o logg(fm(]lg:‘j’s)) is the entropy function.

void node::split () { bool node::splitPre() {

2.2 computeFrequencies(); 3.2 computeFrequencies();
if (onlyOneClass() || fewCases()) if (onlyOneClass() || fewCases()) {
2.4 set.as_leaf (); 3.4 set_as_leaf ();
else { return true;
2.6 for(int i=0;i<getNoAtts();++i) 3.6 }
gain[i]= gainCalculation(i); return false;
2.8 int best = argmax(gain); 3.8 }
if (attr [best]. isContinuous()) void node::splitAtt (i) {
2.10 findThreshold(best); 3.10 gain[i]= gainCalculation(i);
ns=attr[best]. nSplits () ;
2.2 for(int i=0;i<ns;++1i) 3.12 void node::splitPost () {
childs . push_back(int best = argmax(gain);
2.14 new node(selectCases(best,i))); 3.14 if (attr [best].isContinuous())
} findThreshold(best);
2.16 } 3.16 ns=attr[best]. nSplits();

for(int i=0;i<ns;++1i)
3.18 childs . push_back(
new node(selectCases(best,i)));

3.20 }
Figure 2: The original YaDT node split- Figure 3: Partitioning of the
ting procedure. node: :split method into three
steps.

3.2 From C4.5 to YaDT

The original Quinlan’s implementation of C4.5 maintains the training set as an
array of cases. Each case is an array of attribute values. The decision tree is
grown depth-first. The computation of information gain takes O(r) operations
for discrete attributes, where r = |T| is the number of cases at the node; and
O(rlogr) operations for continuous attributes, where sorting is the predominant
task. Finally, searching for the threshold of the selected continuous attribute
(§2.10) requires O(|7|) operations, where |7 | is the number of cases in the whole
training set. This linear search prevents the implementation being truly a D&C
computation.

Efficient C4.5 (EC4.5) [16] is a patch software improving the efficiency of
C4.5 in a number of ways. Continuous attribute values in a case are stored
as indexes to the pre-sorted elements of the attribute domain. This allows for
adopting a binary search of the threshold in the set of domain values at §2.10,
with a computational cost of O(log d) operations where d = max;|dom(A;)|. At
each node, EC4.5 calculates the information gain of continuous attributes by
choosing the best among three strategies accordingly to an analytic comparison
of their efficiency: the first strategy adopts quicksort; the second one adopts
counting sort, which exploits the fact that in lower nodes of the tree continuous
attributes ranges tend to be narrow; the third strategy calculates the local
threshold using a main-memory version of the RainForest [7] algorithm, without
any sorting.

YaDT [17] is a from scratch C++ implementation of C4.5. It inherits the
optimisations of EC4.5, and adds further ones, e.g., searching the local threshold
for continuous attributes by considering splittings at boundary values (Fayyad
and Irani method). Concerning data structures, the training set is now stored

void tree:: build() {
4.2 queue<node *> q;
node *root = new node(allCases);
4.4 q.push(root);
while(!q.empty()) {
4.6 mnode xn = q.front();
q.pop();
4.8 n—>split();
for(int i=0;i<n—>nChilds();++1i)
4.10 q.push(n—>getChild(i));

4.2 }

Figure 4: YaDT tree growing proce-
dure.

void * ff_emitter :: svc(void * task) {
6.2 if (task == NULL) {
task=new ff_task(root,BUILD_NODE);
6.4 int r = root—>getNoCases();
setWeight(task, r);
6.6 return task;

6.8 node #n = task—>getNode();
nChilds = n—>nChilds();

6.10 if (noMoreTasks() && !nChilds)
return NULL;

6.12 for(int i=0; i < nChilds; i++) {
node *child = n—>getChild(i);

void tree:: build_ff () {
5.2 node xroot = new node(allCases);
E=new ff_emitter(root, PAR_.DEGREE);
5.4 std:: vector<ff_workerx> w;
for(int i=0;i<PAR_-DEGREE;++i)
5.6 w.push_back(new ff_worker());
ff_farm <ws_scheduler>
5.8 farm(PAR-DEGREE«*QSIZE);
farm.add_workers(w);
5.10 farm.add_emitter(E);
farm.wrap_around();
5.1z farm.run_and_wait_end();

Figure 5: YaDT-FF D&C setup.

6.14 ctask=new ff_task(child, BUILD_NODE);
int r = child—>getNoCases();

6.16 setWeight(ctask, r);
ff_send_out(ctask);

6.18 }
return FF_GO_ON;

6.20 }

6.22 void * fl_worker :: sve(void * task) {
node *n = task—>getNode();

6.24 n—>split();
return task;

6.26 }

Figure 6: Emitter and Worker definition for the NP strategy.

by columns, not by rows, since most of the computations scan data by attribute
values. Most importantly, the object oriented design of YaDT allows for encap-
sulating the basic operations on nodes into a C++ class, with the advantage
that the growing strategy of the decision tree can now be a parameter (depth
first, breadth first, or any other top-down growth). By default, YaDT adopts
a breadth first growth — which has a less demanding main memory occupation.
Its pseudo-code is shown in Fig. 4 as method tree: :build. Experiments from
[16, 17] show that YaDT reaches up to 10x improvement over C4.5 with only
1/3 of its memory occupation.

4 Parallelising YaDT

We propose a parallelisation of YaDT, called YaDT-FF, obtained by stream
parallelism. Each decision node is considered a task that generates a set of
sub-tasks; these tasks are arranged in a stream that flows across a farm-with-
feedback skeleton which implements the D&C paradigm. The FastFlow D&C
schema is shown in the top-right corner of Fig. 1. Tasks in the stream are sched-
uled by an emitter thread towards a number of worker threads, which process
them in parallel and independently, and return the resulting tasks back to the

void * ff_emitter ::svc(void * task) {

int ¢ = child—>getNoAtts();

7.2 if (task == NULL) { 7.28 if (!buildAttTest(r,c)) {

if (root—>splitPre()) return NULL; ctask=new ff_task(child, BUILD_.NODE);
7.4 int r = root—>getNoCases(); 7.30 set Weight(ctask, r);

int ¢ = root—>getNoAtts(); ff_send_out(ctask);
7.6 for(int i=0;i<c;++1i) { 7.32 } else {

task=new ff_task(root,BUILD_ATT); if (child —>splitPre()) continue;
7.8 task—>att = i; 7.34 for(int j=0;j<c;++j) {

set Weight (task, r); ctask=new ff_task(child,BUILD_ATT);
7.10 ff_send_out(task); 7.36 ctask—>att = j;

setWeight(ctask, r);

7.12 root—>attTasks = c; 7.38 ff_send_out(ctask);

return FF_GO_ON;
T.14 7.40 child —>attTasks = c¢;

node *n = task—>getNode();
if (task—>isBuildAtt()) {
if (——n—>attTasks>0) }
return FF_GO_ON; 7.44
n—>splitPost(); void * ff_worker :: svc(void x task) {
7.46 node *n = task—>getNode();
if (task—>isBuildAtt())
n—>splitAtt(task—>att);
else n—>split();
7.50 return task;

}
return FF_GO_ON;

}

nChilds = n—>Childs();

if (noMoreTasks() && !nChilds)
return NULL;

for(int i=0; i < nChilds; i++) {
node *child = n—>getChild(i);
int r = child—>getNoCases();

7.48

Figure 7: Emitter and Worker definition for the NAP strategy.

emitter. For the parallelisation of YaDT, we adopt a two-phases strategy: first,
we accelerate the tree::build method (see Fig. 4) by exploiting task paral-
lelism among node processing, and we call this strategy Nodes Parallelisation
(NP); then, we add the parallelisation of the node::split method (see Fig.
2) by exploiting parallelism also among attributes processing, and we call such
a strategy Nodes & Attributes Parallelisation (NAP). The two strategies share
the same basic setup method, tree: :build_ff shown in Fig. 5, which creates
an emitter object (§5.2-3) and an array of worker objects (§5.4-6). The size of
the array, PAR _DEGREE, is the parallelism degree of the farm. The root node
of the decision tree is passed to the constructor of the emitter object, so that
the stream can be initiated from it. The overall farm parallelisation is man-
aged by the FastFlow layer through a £ff_farm object, which creates feedback
channels between the emitter and the workers (§5.7-11). Parameters of £f_farm
include: the size QSIZE of each worker input queue, and the scheduling pol-
icy (ws_scheduler), which is based on tasks weights. Basically, such a policy
assigns a new task to the worker with the lowest total weight of tasks in its
own input FIFO queue. The emitter class ff_emitter and the worker class
ff _worker define the behaviour of the farm parallelisation through the class
method svc (short name for service) that is called by the FastFlow run-time
to process input tasks. Different parallelisation strategies can be defined by
changing only these two methods. The implementation of the NP and the NAP
strategies are shown in Fig. 6 and Fig. 7 respectively.

NP strategy (Fig. 6). At start-up the ff_emitter::svc method is called
by the FastFlow run-time with a NULL parameter (§6.2). In this case, a task
for processing the root node is built, and its weight is set to the number of cases
at the root (§6.3-5). Upon receiving in input a task coming from a worker, the
emitter checks the termination conditions (§6.10), and then produces in out-
put the sub-tasks corresponding to the children of the node (§6.12-18). The
ff_send_out method of the FastFlow runtime allows for queueing tasks without
returning from the method. Finally, the FF_GO_ON tag in the return statement
(§6.19) tells the run-time that the computation is not finished (this is stated by
returning NULL), namely further tasks must be waited for from the input chan-
nel. The ff _worker::svc method for a generic worker (§6.22-25) merely calls
the node splitting algorithm node: :split, and then it immediately returns the
computed task back to the emitter. The overall coding is extremely simple and
intuitive — almost a rewriting of the original tree: :build method. Moreover,
it is quite generalisable to any top-down tree-growing algorithm with greedy
choice of the splitting at each node. The weighted scheduling policy is the most
specific part?; in particular, for the use of weights that are linear in the num-
ber of cases at the node. This is motivated by the experimental results of [16,
Fig. 1], which show how the YaDT implementation of node: :split exhibits a
low-variance elapsed time per case for the vast majority of nodes.

NAP strategy (Fig. 7). The NAP strategy builds over NP. For a given
decision node, the emitter follows a D&C parallelisation over its children, as in
the case of the NP strategy. In addition, for each child node, the emitter may
decide to parallelise the calculation of the information gains in the node: :split
method (§2.6-7). In such a case, the stopping criterion at §2.3 must be evaluated
prior to the parallelisation, and the creation of the child nodes must occur after
all the information gains are computed. This leads to partitioning the code of
node: :split into three methods, as shown in Fig. 3.

For the root node, attribute parallelisation is always the case (§7.3-10). A
task with label BUILD_ATT is constructed for each attribute, with the field att
recording the attribute identifier (the index i). Tasks are weighted and queued.
The information about how many tasks are still to be completed is maintained
in the attTasks field of the decision node — such a field is added to the original
node class. Upon receiving in input a task coming from a worker, the emitter
checks whether it concerns the processing of an attribute (§7.16). If this is the
case (§7.17-20), the attTasks counter is decremented until the last attribute task
arrives, and then the node: :splitPost method is called to evaluate the best
split. At this point, the emitter is given a processed node (either from a worker,
or as the result of the node: : splitPost call). Unless the termination conditions
occur (§7.22), the emitter proceeds with outputing tasks. The buildAttTest at
§7.28 controls for each child node whether to generate a single node processing
task, or one attribute processing task for each attribute at the child node. In
the former case (§7.29-31), we proceed as in the NP strategy; in the latter case

41t was not among FastFlow strategies, and it has been added as a result of YaDT-FF.

(§7.33-38), we proceed as for the root node®. Based on the task label, the
ff _worker: :svc method for a generic worker (§7.46-50) merely calls the node
splitting procedure or the information gain calculation for the involved attribute.

Let us discuss in detail two relevant issues. Let r be the number of cases
and ¢ the number of attributes at the node.

The first issue concerns task weights. Node processing tasks are weighted
with 7 (§7.30), as in the NP strategy. Although attribute processing tasks have
a finer grain, which suggests a lower weight, there exists a synchronisation point
— all attribute tasks must be processed before the emitter can generate tasks
for the child nodes. By giving a lower weight, we run the risk that all attribute
tasks are assigned to the most unloaded worker, thus obtaining a sequential
execution of the attribute tasks! For these reasons, attribute processing tasks
are weighted with r as well (§7.9,§7.37).

The second issue concerns the test buildAttTest, which decides whether to
perform nodes or attributes parallelisation. We have designed and experimented
three cost models. Attribute parallelisation is chosen respectively when:

e (a < r) the number of cases is above some hand-tuned threshold value «;

e (|T] < crlogr) the average grain of node processing (quicksort is rlogr
on average) is higher than a threshold that is dependent on the training
set. Intuitively, the threshold should be such that the test is satisfied at
the root node, which is the coarser-grained task, and for nodes whose size
is similar. Since the average grain of processing an attribute at the root is
|7 |log|T|, we fix the threshold to a lower bound for such a value, namely
to |T];

e (|7] < cr?) the worst-case grain of node processing (quicksort is 72) is
higher than a threshold that is dependent on the training set. As in the
previous case, the threshold is set to |7|. The higher value cr?, however,
leads to selecting attributes processing more often than the previous case,
with the result of task over-provisioning.

All tests are monotonic in the number r of cases at the node. Hence, if the
nodes parallelisation is chosen for a node, then it will be chosen for all of its
descendants. As we will see in Sec. 5, the third cost model shows the best
performance.

5 Performance Evaluation

In this section we show the performances obtained by YaDT-FF. The datasets
used in the tests with their characteristics are reported in Table 1. They are
publicly available from the UCI KDD archive, apart from SyD10M9A which
is synthetically generated using function 5 of the QUEST data generator. All

5Notice that tasks for node processing are labelled with BUILD_NODE, while tasks for at-
tribute processing are labelled with BUILD_ATT

10

No. of attributes Tree

T name |T| NC discr. contin. total size depth
Census PUMS 299,285 2 33 7 40 122,306 31
U.S. Census 2,458,285 5 67 0 67 125,621 44
KDD Cup 99 4,898,431 23 7 34 41 2,810 29
Forest Cover 581,012 7 44 10 54 41,775 62
SyD10M9A 10,000,000 2 3 6 9 169,108 22

Table 1: Training sets used in experiments, and size of the induced decision
tree.

/ ideal ideal
7L Forest Cover - 1 7 L. _Forest Cover -+ 1
Census PUMS - Census PUMS -
6 KDD Cup 99 = d 6 KDDCup99 --x d
SyD10M9A = SyD10M9A =
5 U.S. Census ---=---] 5. US.Census ---u- |
o o
3 3
@ 4 @ 4
Q S Q
[N e @ 3
2 N 2
1 o 1
123456 7 8 910111213141516 1 2 3 4 5 6 7
FastFlow’s worker threads FastFlow’s worker threads

Figure 8: NP strategy speedup. Nehalem box (left), Harpertown box (right).

presented experimental results are taken performing 5 runs, excluding the higher
and the lower value obtained and computing the average of the remaining ones.

Experimental framework. All experiments were executed on two different
Intel workstation architectures: Nehalem) a dual quad-core Xeon E5520 Ne-
halem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of
main memory with Linux x86_64. Harpertown) a dual quad-core Xeon E5420
Harpertown @2.5GHz 6MB L2 cache and 8 GBytes of main memory, with Linux
x86_64. They are a quite standard representative of current and immediately
preceding generation of (low-cost) server boxes. The Nehalem-based machine
exploits Simultaneous MultiThreading (SMT, a.k.a. HyperThreading) with 2
contexts per core and the novel Quickpath interconnect equipped with a dis-
tributed cache coherency protocol. SMT technology makes a single physical
processor appear as two logical processors for the operating system, but all
execution resources are shared between the two contexts: caches of all levels,
execution units, etc.

Performance. Let us start considering the NP strategy, i.e., the parallelisa-
tion of nodes processing. The obtained speedup is shown in Fig. 8. The maxi-
mum speedup is similar on both architectures, and quite variable from a dataset
to another; it ranges from 1.34 to 3.54 (with an efficiency of 45%). As one would
expect, exploiting inter-nodes parallelism alone is not enough to reach a close to
optimal speedup, because a large fraction of the computing time is spent in the

11

coarse-grained nodes (those in the higher levels of the tree), thus lacking par-
allelism. This phenomenon has been already observed in previous work on the
parallelisations of decision tree construction over distributed memory architec-
tures [9]. These systems, however, suffer from load balancing problems, which
we will handle later on, and high costs of communications, which in shared
memory architectures do not occur. Summarising, although the NP strategy
yields a modest speedup, it is worth noting that the effort required to port the
sequential code was minimal.

The NAP strategy aims at increasing the available parallelism by exploiting
concurrency also in the compu