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Abstract

The whole computer hardware industry embraced multicores. For
these machines, the extreme optimisation of sequential algorithms is no
longer sufficient to squeeze the real machine power, which can be only
exploited via thread-level parallelism. Decision tree algorithms exhibit
natural concurrency that makes them suitable to be parallelised. This
paper presents an approach for easy-yet-efficient porting of an implemen-
tation of the C4.5 algorithm on multicores. The approach is based on the
FastFlow parallel programming environment. The strength of our porting
consists in minimal changes to the original sequential code. In addition
to the tree building algorithm, we consider also the so far unaddressed
problem of parallelising the error-based pruning with grafting algorithm
of C4.5. We devise lower bounds for the forms of parallelisations adopted,
and achieve performances close to such bounds.

Keywords Parallel classification, multicores, C4.5, error-based prun-
ing, structured parallel programming, streaming parallelism.

1 Introduction

Computing hardware has evolved to sustain an insatiable demand for high-end
performances along two basic ways. On the one hand, the increase of clock
frequency and the exploitation of instruction-level parallelism boosted the com-
puting power of the single processor. On the other hand, many processors
have been arranged in multi-processors, multi-computers, and networks of geo-
graphically distributed machines. This latter solution exhibits a superior peak
performance, but it incurs in significant software development costs. In the last
two decades, the parallel computing research community has aimed at design-
ing languages and tools to support the seamless porting of applications and the
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tuning of performances (e.g. Blumofe et al (1996); Pacheco (1996); Thies et al
(2002)). These languages, apart from few exceptions that also focus on code
portability, require a redesign of the application logic in an explicitly parallel
language or model.

Up to now, clock speed and algorithmic improvements have exhibited a bet-
ter performance/cost trade-off than application redesign, being the possibility
to preserve the existing code its most important component. Data mining is
not an exception in this regard. By surveying the papers in the main confer-
ences and journals (Kargupta, 2011), there has been a diminishing number of
proposals for parallel implementations of data mining algorithms in the last few
years. After all, only a small fraction of data analysis projects can afford the
cost of buying and maintaining a parallel machine and a data mining software
capable of exploiting it. In most cases, data reduction techniques (such as sam-
pling, aggregation, feature selection) can mitigate the problem while waiting the
advancement in computational power of low-cost workstations.

Nowadays, however, this vision should be reinterpreted. After years of con-
tinual improvement of single core chips trying to increase instruction-level par-
allelism, hardware manufacturers realised that the effort required for further
improvements is no longer worth the benefits eventually achieved. Microproces-
sor vendors have shifted their attention to thread-level parallelism by designing
chips with multiple internal cores, known as Multicore or Chip Multiprocessors
(Sodan et al, 2010). However, this process does not always translate into greater
CPU performance: multicore are small-scale but full-fledged parallel machines
and they retain many of their usage problems. In particular, sequential code
will get no performance benefits from them. A workstation equipped with a
quad-core CPU but running sequential code is wasting 3/4 of its computational
power. Developers, including data miners, are then facing the challenge of
achieving a trade-off between performance and human productivity (total cost
and time to solution) in developing and porting applications to multicore. Par-
allel software engineering have engaged this challenge trying and design tools,
in the form of high-level sequential language extensions and coding patterns,
aiming at simplifying the porting of sequential codes while guaranteeing the
efficient exploitation of concurrency (e.g Park et al, 2001; Vanneschi, 2002; Intel
Corp., 2011).

This paper focuses on achieving this trade-off on a case study by adopting a
methodology for the easy-yet-efficient porting of an implementation of the C4.5
decision tree induction algorithm (Quinlan, 1993) onto multicore machines. We
consider the YaDT (Yet another Decision Tree builder) implementation of C4.5
(Ruggieri, 2004), which is a from-scratch and efficient C++ version of the well-
known Quinlan’s entropy-based algorithm. YaDT is the result of several data
structure re-design and algorithmic improvements over Efficient C4.5 (Ruggieri,
2002), which is in turn is a patch to the original C4.5 implementation improv-
ing its performance mainly for the calculation of the entropy of continuous
attributes. In this respect, we believe that YaDT is a quite paradigmatic ex-
ample of sequential, already existing, complex code of scientific and commercial
interest. In addition, YaDT is an example of extreme algorithmic sequential op-
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timisation, for which the effort in designing further improvements would result
in a minimal impact on the overall performances. Nevertheless, the potential
for improvements is vast, and it resides in the idle core CPUs on the user’s
machine.

Our approach for parallelising YaDT is based on the FastFlow program-
ming framework (Aldinucci and Torquati, 2011), a recent proposal for paral-
lel programming over multicore platforms that provides a variety of facilities
for writing efficient lock-free parallel patterns, including pipeline parallelism,
task parallelism and Divide&Conquer computations. Besides technical features,
FastFlow offers an important methodological approach that will lead us to paral-
lelise YaDT with minimal changes to the original sequential code, yet achieving
up to 7× boost in performance on a Intel dual-quad core. Nevertheless, MIPS,
FLOPS and speedup have not to be the only metrics in software development.
Human productivity, total cost and time to solution are equally, if not more,
important (see e.g., Reed (2009)).

This paper includes considerable advancements over its conference version
(see Aldinucci et al (2010b)). In addition to providing an extensive coverage of
the FastFlow environment, and a in-depth description and experimental analysis
of the tree building algorithm and of its parallelisation, we tackle the problem
of parallelising the error-based tree pruning phase of C4.5. Such a phase is
considerably faster than tree building on sequential algorithms, but it becomes
the next bottleneck once the building phase has been parallelised and sped up.
To the best of our knowledge, this is the first work to deal with parallel pruning.
Moreover, we devise lower bounds for the forms of parallelisations adopted in
both the building and pruning phases, and show how the performances achieved
are close to such bounds. On the side of the experimental setup, we move from
a 32-bit to a 64-bit compilation of all software, both sequential and parallel, as
64-bit machines are becoming the norm nowadays. Also, up-to-date hardware
architectures are adopted in experiments.

The rest of the paper is organised as follows. In Sect. 2, the FastFlow pro-
gramming environment is introduced. We recall in Sect. 3 the C4.5 decision tree
building algorithm, including the main optimisations that lead to YaDT. The
parallelisation of YaDT tree building is presented in detail in Sect. 4, followed
by an experimental evaluation in Sect. 5. Similarly, the tree pruning algorithm
is presented in Sect. 6, parallelised in Sect. 7, and experimented in Sect. 8. Fi-
nally, we discuss related works in Sect. 9, and summarise the contribution of
the paper in the conclusions.

2 The FastFlow Parallel Programming Environ-
ment

FastFlow is a parallel programming framework aiming at simplifying the devel-
opment of applications for multicore platforms, being these applications either
brand new or ports of existing legacy codes. FastFlow promotes pattern-based
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programming and it has been specifically designed to efficiently support fine-
grained parallel computations.

The key vision underneath FastFlow is that effortless development and ef-
ficiency can be both achieved by raising the level of abstraction in application
design, thus providing designers with a suitable set of parallel programming
patterns that can be compiled onto networks of parallel activities on the target
platforms. FastFlow restricts the kind and the number of paradigms imple-
mented in the library in such a way that a small but significant pattern set is
implemented. The limited size of the library helps in keeping the implementa-
tion relatively easy to tune and maintain but does not affect expressivity: since
patterns are implemented as C++ templates they can be extended using stan-
dard object oriented techniques without having to learn any exotic programming
model.

Basically, parallel patterns implement structured synchronisations among
concurrent entities where shared memory pointers are passed in a consumer-
producer fashion. In particular, the FastFlow run time support takes care of
all the synchronisations needed and related to the communication among the
different parallel entities resulting from the compilation of the high level Fast-
Flow pattern(s) used in an application. Those patterns model most of the typical
stream based parallelism exploitation forms, including: farm, farm-with-feedback
(suitable for implementing Divide&Conquer computations), pipeline, and their
arbitrary nesting and composition.

Thanks to the efficient synchronisation mechanisms provided by FastFlow,
data parallel computations may also be implemented using the framework, as an
example by transforming a data parallel computation (e.g. do-independent loop,
map-reduce, etc.) into computations on a stream of items, each one correspond-
ing to one or more pieces of data in which the data parallelism is exploited (i.e.
sub-tasks). The possibility to efficiently handle both stream parallel and data
parallel computations using the same general programming model represents a
key advantage of FastFlow with respect to other frameworks that support either
stream or data parallel computations.

The FastFlow patterns can be arbitrarily nested to model increasingly com-
plex parallelism exploitation patterns. FastFlow implementation guarantees an
efficient execution of the skeletons on currently available multicore systems by
building the skeletons themselves on top of a library of lock free producer/con-
sumer queues.

2.1 FastFlow Architecture

As shown in Fig. 1, FastFlow is conceptually designed as a stack of layers that
progressively abstract the shared memory parallelism at the level of cores up
to the definition of useful programming constructs and patterns. At the lowest
tier of the FastFlow system we have the architectures that it targets: cache-
coherent multiprocessors, and in particular commodity homogeneous multicore
(e.g. Intel core, AMD K10, etc.).

The second tier provides mechanisms to define simple streaming networks
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Figure 1: FastFlow layered architecture with pattern examples.

whose run-time support is implemented through correct and efficient lock-free
Single-Producer-Single-Consumer (SPSC) queues. This kind of queues do not
requires any lock or memory barrier,1 solid ground for a low-latency synchronisa-
tion mechanism for multicore. These synchronisations, which are asynchronous
and non-blocking, do not induce any additional cache invalidation as it happens
in mutual exclusion primitives (e.g. locks and interlocked operations), and thus
do not add any extra overhead. SPSC FIFO queues is effectively used to build
networks of communicating threads, which behave in a dataflow fashion. The
formal underpinning of these networks dates back to Kahn Process Networks
by Kahn (1974) and Dataflow Process Networks by Lee and Parks (1995).

The third tier generalises one-to-one to one-to-many (SPMC), many-to-one
(MPSC), and many-to-many (MPMC) synchronisations and data flows, which
are implemented using only SPSC queues and arbiter threads. This abstraction
is designed in such a way that arbitrary networks of activities can be expressed
while maintaining the high efficiency of synchronisations. The next layer up,
i.e., high-level programming, provides a programming framework based on paral-
lelism exploitation patterns. They are usually categorised in three main classes:
Task, Data, and Stream Parallelism. FastFlow specifically focuses on Stream
Parallelism. The skeleton disciplines concurrency exploitation within the gener-
ated parallel code: the programmer is not required to explicitly interweave the
business code with concurrency related primitives.

The FastFlow patterns are implemented using the queues provided in Fast-
Flow lower layers. As an example, a farm is implemented as shown in Fig. 1,
mid right schema. An SPMC queue is used to dispatch tasks appearing onto the
input stream towards a pool of worker threads. These, in turn, deliver results
to a MPSC queue that eventually delivers the results onto the output stream.

As previously stated, the behaviour of patterns can be modified via object-
oriented inheritance and polymorphism. As an example, in case ad-hoc schedul-
ing and collection policies are needed with respect to the ones provided by the

1for Total Store Order processors, such as Intel core, AMD K10.
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framework, the emitter (E) and the collector (C) node classes may be extended
with application specific user policies (possible examples are FIFO ordering or
priority scheduling/collection for the tasks, as we shall see in Sect. 4). The farm
implementation can actually be seen as a three stage pipeline, the three stages
being the emitter, the string of workers and the collector. The implementation
of the high level parallel patterns has been designed to exploit the underlying
mechanisms in such a way that high-level, efficient parallel constructs can be
used by application programmers without being concerned by any of the related
implementation details.

FastFlow is available as open source software under LGPLv3. Implemen-
tation details as well as performance comparisons against other programming
tools such as POSIX, Cilk, OpenMP, and Intel TBB have been reported in
Aldinucci and Torquati (2011) and Aldinucci et al (2010a).

2.2 Parallel Programming with Patterns: Background

Parallel programming patterns, also known as “algorithmic skeletons” (Cole,
1989), have been proposed as a vehicle to raise the level of abstraction of parallel
programming aiming at simplifying the development of efficient parallel appli-
cations. Ideally, parallel patterns tackle with the difficult problems of parallel
programming (i.e. concurrency exploitation, orchestration, mapping, tuning)
moving them from the application design to development tools by capturing
and abstracting the common paradigms of parallel programming and provid-
ing them with an efficient implementation, i.e., a toolkit of code generation
techniques and a pre-optimised run-time support.

Traditionally, in parallel pattern-based programming the computation is or-
ganised according to application-independent high-level paradigms, which are
usually categorised in three classes:

1. Data Parallelism is a method for parallelising a single task by processing
independent data elements in parallel. Data parallelism also supports
loop-level parallelism where successive iterations of a loop working on
independent or read-only data are paralleled in different flows-of-control
and concurrently executed.

2. Task Parallelism consists of running the same or different code on different
executors (cores, machines, etc.). Task parallelism is usually explicit in
the algorithm. Different flows-of-control (threads, processes, etc.) may
communicate with one another as they work. Communication usually
takes place to pass data from one thread/process to one or many others.

3. Stream Parallelism consists in the parallel processing of different items
of a data stream, which can be either the input data or generated by
the application internal programming mechanisms (e.g. via asynchronous
function calls). It can be used when there exists a partial or total order
in a computation; the pipeline is a paradigmatic stream parallel pattern.
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Pragmatically, a given computational problem typically admits several algorith-
mic solutions exploiting patterns in different classes, or a different compositions
of them. In addition, in many cases, patterns in different classes can be simu-
lated one another. The extent of this generality is actually dependent by the
set of patterns provided by a specific framework, which can also be designed
to target one or more applicative scenarios (Asanovic et al, 2009; Dean and
Ghemawat, 2008).

After (Cole, 1989) seminal work, early proposals of pattern-based program-
ming frameworks have mainly focused on distributed memory platforms (e.g.
clusters of workstations, grid); some of them, e.g. Google’s MapReduce (Dean
and Ghemawat, 2008), have evolved in mainstream of programming tools (Hadoop,
2011). Recent proposals, following the platform architecture trend, have shifted
the focus to include multicores and shared address model; in addition to aca-
demic initiatives, such as FastFlow, it is worth mentioning consolidated indus-
trial products such as the Intel Threading Building Block (TBB) library (Intel
Corp., 2011), and to a limited extent the Microsoft Task Parallel Library (Leijen
and Hall, 2007). These framework and their main features are surveyed in the
related work section (Sect. 9).

Among this latter class of frameworks we selected FastFlow for the parallel
implementation of YaDT for three main reasons:

1. As previously mentioned, the FastFlow framework puts forward stream
parallelism as the primary class of patterns; they are then used to im-
plement patterns from other classes by way of the layered architecture.
In particular, the Divide&Conquer pattern, which is extensively used in
YaDT, is naturally implemented by the farm-with-feedback FastFlow pat-
tern. This pattern can be also realised with other frameworks directly
using asynchronous function calls and recursion, but none of the most
popular ones natively expose it as a pattern.

2. FastFlow is specifically designed to support the porting of existing soft-
ware through the local refactoring of limited portions of code. This aim
is shared with other programming framework, such as TBB and OpenMP
that, however, mainly support the exploitation of loop-level data paral-
lelism (e.g., do independent) whereas the exploitation of other patterns of
parallelism may require a substantial re-factoring of the code.

3. Thanks to the lock-free synchronisation mechanisms, FastFlow has shown
a superior speedup on fine and very-fine grain tasks with respect to other
frameworks, such as TBB and OpenMP (Aldinucci et al, 2010a)2. This
flexibility is a key feature for application scalability in highly dynamic
applications such as YaDT, where parallel tasks exhibit a large range of
sizes, especially for data set leading to unbalanced decision trees.

2On a standard Intel core 2 FastFlow exhibits a reasonable speedup for tasks with execution
time on the range of dozen of nanoseconds, whereas TBB requires a minimum granularity that
is three orders of magnitude higher.
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3 Decision Tree Building

Classification models, or simply classifiers, are induced by supervised learning
from a relation T called the training set. An attribute C of the relation is
called the class, while the remaining ones A1, . . . , Am are called the predictive
attributes. Tuples in T are called cases. The overall objective of a classifier
is to predict or to explain the value of the class on the basis of the values of
predictive attributes by generalising the dependencies occurring in the cases
from the training set. The domain of an attribute dom(Ai) can be discrete,
namely a finite set of values, or continuous, namely the set of real numbers.
Also, the special value unknown is allowed in dom(Ai) to denote unspecified or
unknown values. The domain of the class dom(C) = {c1, . . . , cNC} is discrete
and it does not include the unknown value.

A decision tree is a classification model in the form of a tree consisting of
decision nodes and leaves. A leaf specifies a class value. A decision node specifies
a test over one of the predictive attributes, which is called the attribute selected
at the node. For each possible outcome of the test, a child node is present. A test
on a discrete attribute A has h possible outcomes A = d1, . . . , A = dh, where
d1, . . . dh are the known values in dom(A). A test on a continuous attribute has
2 possible outcomes, A ≤ t and A > t, where t is a threshold value determined
at the node.

3.1 The C4.5 Tree-Induction Algorithm

The C4.5 decision tree induction algorithm by Quinlan (1993) is a constant
reference in the development and analysis of novel proposals of classification
models (see e.g., the comparison paper by Lim et al (2000)), and it is commonly
considered among the top algorithms in data mining (see Wu et al (2008)).
The core algorithm constructs the decision tree top-down in the growing phase,
then prune branches by a bottom-up transversal in the pruning phase. Here, we
concentrate on the growing phase, while the pruning phase will be presented in
Sect. 6.

In the growing phase, each node is associated with a set of weighted cases,
where weights are used to take into account unknown attribute values. At the
beginning, only the root is present, with associated the whole training set T and
all weights set to 1. At each node a Divide&Conquer algorithm is adopted to
select an attribute for splitting. We refer the reader to the method node::split

in Fig. 2 from the YaDT implementation of the algorithm.
Let T be the set of cases associated at a node. For every c ∈ dom(C), the

weighted frequency freq(c, T ) of cases in T whose class is c is computed (§2. —
throughout the paper, we use the §M.n to reference line n from the pseudo-code
in Fig. M). If all cases in T belong to the same class or the number of cases in T is
less than a certain user specified threshold then the node is set to a leaf (§2.-).
If T contains cases belonging to two or more classes, then the information gain
of each attribute at the node is calculated (§2.-). Since the information gain
of a discrete attribute selected in an ancestor node is necessarily 0, the number
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void node::split () {
2. computeFrequencies();

if (onlyOneClass() || fewCases())
2. set as leaf () ;

else {
2. for(int i=0;i<getNoAtts();++i)

gain[ i]= gainCalculation(i) ;
2. int best = argmax(gain);

if (attr [best ]. isContinuous())
2. findThreshold(best);

ns=attr[best ]. nSplits () ;
2. for(int i=0;i<ns;++i)

childs .push back(
2. new node(selectCases(best,i)));

}
2. }

Figure 2: The original YaDT node
splitting procedure.

bool node::splitPre() {
3. computeFrequencies();

if (onlyOneClass() || fewCases()) {
3. set as leaf () ;

return true;
3. }

return false;
3. }

void node::splitAtt( i ) {
3. gain[ i]= gainCalculation(i) ;
}

3. void node::splitPost() {
int best = argmax(gain);

3. if (attr [best ]. isContinuous())
findThreshold(best);

3. ns=attr[best ]. nSplits () ;
for(int i=0;i<ns;++i)

3. childs .push back(
new node(selectCases(best,i)));

3. }

Figure 3: Partitioning of the node::

split method into three steps.

of attributes to be considered at a node is variable (denoted by getNoAtts in
§2.).

For a discrete attribute A, the information gain of splitting T into subsets
T1, . . . , Th, one for each known value of A, is calculated3. For a continuous
attribute A, cases in T with known value for A are first ordered ascending
w.r.t. such an attribute. Let v1, . . . , vk be the ordered values of A for cases in
T . Consider for i ∈ [1, k − 1] the value v = (vi + vi+1)/2 and the splitting of
T into cases T v1 whose value for the attribute A is lower or equal than v, and
cases T v2 whose value is greater than v. For each value v, the information gain
gainv is computed by considering the splitting above. The value v′ for which
gainv′ is maximum is called the local threshold and the information gain for the
attribute A is defined as gainv′ .

The attribute A with the highest information gain is selected for the test at
the node (§2.). When A is continuous, the threshold of the split is computed
(§2.-) as the greatest value of A in the whole training set T that is below the
local threshold. Finally, let us consider the generation of the child nodes (§2.-

). When the selected attribute A is discrete, a child node for each known value
from dom(A) is created, and cases in T are partitioned over the child nodes on
the basis of the value of the attribute A. When A is continuous two child nodes
are created, and cases from T with known value of A are partitioned according
to the boolean result of the test A ≤ t, where t is the threshold of the split.
Cases in T whose value for A is unknown are added to the set of cases of every
child, but their weights are rebalanced.

3as follows: gain(T, T1, . . . , Th) = info(T ) −
∑h

i=1

|Ti|
|T | × info(Ti), where info(S) =

−
∑NC

j=1

freq(cj ,S)

|S| × log2(
freq(cj ,S)

|S| ) is the entropy function.
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3.2 From C4.5 to YaDT

The original Quinlan’s implementation of C4.5 (Release 8, the latest) is written
in ANSI C. It stores the training set in main-memory as an array of cases, and
each case as an array of attribute values. The decision tree is grown depth-
first. The computation of information gain takes O(r) operations for discrete
attributes, where r = |T | is the number of cases at the node; and O(r log r)
operations for continuous attributes, where sorting is the predominant task.
Finally, searching for the threshold of the selected continuous attribute (§2.)
requires O(|T |) operations, where T is the whole training set, since the data
structure holding the training set allows only for a linear search. This prevents
the implementation being truly a Divide&Conquer computation.

Efficient C4.5 (EC4.5, Ruggieri (2002)) is a patch software improving the
efficiency of C4.5 in a number of ways. Continuous attribute values in a case are
stored as indexes to the pre-sorted elements of the attribute domain. This allows
for adopting a binary search of the threshold in the set of domain values at §2.,
with a computational cost of O(log d) operations where d = maxi|dom(Ai)|. At
each node, EC4.5 calculates the information gain of continuous attributes by
choosing the best among three strategies according to an analytic comparison
of their efficiency: the first strategy adopts quicksort; the second one adopts
counting sort, which exploits the fact that in lower nodes of the tree ranges of
continuous attributes tend to be narrow; the third strategy calculates the local
threshold using a main-memory version of the RainForest algorithm without any
sorting (Gehrke et al, 2000). C4.5 and EC4.5 are tied to a depth-first growth
of the decision tree since they use a single array for storing cases, and they
rearrange the cases of a child node to the initial segment of the array.

YaDT (Ruggieri, 2004) is a from scratch C++ implementation of C4.5. It
inherits the optimisations of EC4.5, and adds further ones, such as searching the
local threshold for continuous attributes by splitting at boundary values (Fayyad
and Irani, 1992). Concerning data structures, the training set is now stored by
columns, since most of the computations scan data by attribute values. Also,
the cases at a node and their weights are stored as an array of pairs: the row-
id’s w.r.t. the training set, and the weight value. This and the object oriented
design of YaDT allow for encapsulating the basic operations on nodes into a
C++ class, with the advantage that the growing strategy of the decision tree can
now be a parameter (depth first, breadth first, or any other top-down growth).
By default, YaDT adopts a breadth first growth — which has a less demanding
memory occupation. Its pseudo-code is shown in Fig. 4 as method tree::build.
The call to the method get cases (§4.) builds the array of case row-id’s and
weights for a child node starting from the same data structure at the parent
node. The method release cases (§4.) releases the data structure at the
parent node once all children are queued. Experiments from Ruggieri (2002,
2004) show that YaDT reaches up to 10× improvement over C4.5 with only 1/3
of its memory occupation.
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void tree :: build() {
4. queue<node ∗> q;

root = new node( allCases );
4. q.push(root);

while( !q.empty() ) {
4. node ∗n = q.front();

q.pop();
4. n−>split();

for(int i=0;i<n−>nChilds();++i) {
4. node ∗child = n−>getChild(i);

child−>get cases();
4. q.push( child ) ;

}
4. n−>release cases();

}
4. }

Figure 4: YaDT tree growing proce-
dure.

void tree :: build ff () {
5. root = new node( allCases );

E=new ff emitter(root,PAR DEGREE);
5. std :: vector<ff worker∗> w;

for(int i=0;i<PAR DEGREE;++i)
5. w.push back( new ff worker());

ff farm<ws scheduler>
5. farm(PAR DEGREE∗QSIZE);

farm.add workers(w);
5. farm.add emitter(E);

farm.wrap around();
5. farm.run and wait end();
}

Figure 5: YaDT-FF tree building
setup.

4 Parallelising YaDT: Tree Building

We propose a parallelisation of YaDT, called YaDT-FF, obtained by stream
parallelism. In this section, we concentrate on the growing phase. Each de-
cision node is considered a task that generates a set of sub-tasks; these tasks
are arranged in a stream that flows across a farm-with-feedback skeleton which
implements the Divide&Conquer paradigm. The FastFlow Divide&Conquer
schema is shown in the top-right corner of Fig. 1. Tasks in the stream are
scheduled by an emitter thread towards a number of worker threads, which
process them in parallel and independently, and return the resulting tasks back
to the emitter. For the parallelisation of YaDT, we adopt a two-step strategy:
first, we accelerate the tree::build method (see Fig. 4) by exploiting task par-
allelism among node processing, and we call this strategy Nodes Parallelisation
(NP); then, we add the parallelisation of the node::split method (see Fig.
2) by exploiting parallelism also among attributes processing, and we call such
a strategy Nodes & Attributes Parallelisation (NAP). The two strategies share
the same basic setup method, tree::build ff shown in Fig. 5, which creates
an emitter object (§5.-) and an array of worker objects (§5.-). The size of
the array, PAR DEGREE, is the parallelism degree of the farm. The root node
of the decision tree is passed to the constructor of the emitter object, so that
the stream can be initiated from it. The overall farm parallelisation is man-
aged by the FastFlow layer through a ff farm object, which creates feedback
channels between the emitter and the workers (§5.-). Parameters of ff farm

include: the size QSIZE of each worker input queue, and the scheduling pol-
icy (ws scheduler), which is based on tasks weights. Basically, such a policy
assigns a new task to the worker with the lowest total weight of tasks in its
own input FIFO queue. The emitter class ff emitter and the worker class
ff worker define the behaviour of the farm parallelisation through the class
method svc (short name for service) that is called by the FastFlow run-time
to process input tasks. Different parallelisation strategies can be defined by
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void ∗ ff emitter :: svc(void ∗ task) {
6. if (task == NULL) {

task=new ff task(root);
6. int r = root−>getNoCases();

setWeight(task, r) ;
6. return task;
}

6. node ∗n = task−>getNode();
int nChilds = n−>nChilds();

6. for(int i=0; i < nChilds; i++) {
node ∗child = n−>getChild(i);

6. ctask=new ff task(child);
child−>get cases();

6. int r = child−>getNoCases();

setWeight(ctask, r) ;
6. ff send out(ctask);

}
6. n−>release cases();

if (!nChilds && noMoreTasks())
6. return NULL;

return FF GO ON;
6. }

6. void ∗ ff worker :: svc(void ∗ task) {
node ∗n = task−>getNode();

6. n−>split();
return task;

6. }

Figure 6: Emitter and Worker definition for the NP strategy.

changing only these two methods. The implementation of the NP and the NAP
strategies are shown in Fig. 6 and Fig. 8 respectively. Let us describe them in
detail.

NP strategy (Fig. 6). At start-up the ff emitter::svc method is called
by the FastFlow run-time with a NULL parameter (§6.). In this case, a task
for processing the root node is built (recall that the root node is passed to the
constructor of the emitter, hence it is accessible), and its weight is set to the
number of cases at the root (§6.-). By returning the task, the emitter queues it
to some worker according to the weighted scheduling strategy. Upon receiving in
input a task coming from a worker, the emitter produces in output the sub-tasks
corresponding to the children of the node (§6.-). The ff send out method
of the FastFlow runtime allows for queueing tasks without returning from the
method. Notice that child nodes call the get cases method to retrieve their
cases from the parent node, and, finally, the parent node calls release cases

to free its cases. If there are no child node and no more tasks in worker queues
(§6.-), the emitter returns NULL as to signal that the computation is fin-
ished. Otherwise, the FF GO ON tag in the return statement (§6.) tells the
run-time that further tasks must be waited for from the input channel. The
ff worker::svc method for a generic worker (§6.-) merely calls the node
splitting algorithm node::split, and then it immediately returns the computed
task back to the emitter. The overall coding is extremely simple and intuitive
— almost a rewriting of the original tree::build method. Moreover, it is quite
generalisable to any top-down tree-growing algorithm with greedy choice of the
splitting at each node. The weighted scheduling policy is the most specific part;
in particular, for the use of weights that are linear in the number of cases at the
node. This is motivated by the experimental results of (Ruggieri, 2002, Fig. 1),
showing that the YaDT implementation of node::split exhibits a low-variance
elapsed time per case for the vast majority of nodes. Finally, Fig. 7 shows a
snapshot of the NP strategy execution with two workers. A partially built tree
is shown on the left hand side, with nodes 4 and 5 being processed by worker W1

and W2 respectively, and nodes 1, 2 and 3 already queued by the emitter. After
processing node 4, worker W1 delivers the task to the emitter MPSC queue, and
it starts processing node 1 from its input queue. Similarly, worker W2 delivers

12



4 5

6 7

3

1 2

Finished

To be done

W1 W2
4 5

1 3

2

E

W1 W2
1

2

3

E

54

W1 W2
1

2

3

E

6

7

W1 finishes 4

W2 finishes 5
E works on  4

FI
FO

 q
ue

ue
s

4

5

Figure 7: Example emitter and worker states in the NP strategy.

node 5, and it starts processing node 3. Assume that the emitter reads first
node 4 from its MPSC input queue. Since node 4 has two child nodes, namely
node 6 and 7, the emitter generates tasks for them, and delivers the tasks in the
SPMC workers queues. The scheduling policy determines which worker each
task is assigned to. Notice that, since queues are FIFO, the scheduling policy
does not affect the order of tasks within a worker’s queue.

NAP strategy (Fig. 8). The NAP strategy builds over NP. For a given
decision node, the emitter follows a Divide&Conquer parallelisation over its
children, as in the case of the NP strategy. In addition, for each child node,
the emitter may decide to parallelise the calculation of the information gains
in the node::split method (§2.-). In such a case, the stopping criterion at
§2. must be evaluated prior to the parallelisation, and the creation of the child
nodes must occur after all the information gains are computed. This leads to
partitioning the code of node::split into three methods, as shown in Fig. 3.

For the root node, attribute parallelisation is always the case (§8.-). A
task with label BUILD ATT is constructed for each attribute, with the field att

recording the attribute identifier (the index i). Tasks are weighted and queued.
The information about how many tasks are still to be completed is maintained
in the child cnt field of the decision node — such a field is added to the original
node class. Upon receiving in input a task coming from a worker, the emitter
checks whether it concerns the processing of an attribute (§8.). If this is the
case (§8.-), the child cnt counter is decremented until the last attribute
task arrives, and then the node::splitPost method is called to evaluate the
best split. At this point (§8.), the emitter is provided with a processed node,
either from a worker, or as the result of the node::splitPost call. For every
child node, the cases are retrieved from the parent node (§8.), and then the
test buildAttTest at §8. controls whether to generate a single node processing
task, or one attribute processing task for each attribute at the child node. In
the former case (§8.-), we proceed as in the NP strategy; in the latter case
(§8.-), we proceed as for the root node4. Once child nodes are generated,
the parent node can free cases at the node (§8.). Finally, if there are no child
node and no more tasks in worker queues (§8.-), the emitter returns NULL
as to signal that the computation is finished. Otherwise, it returns FF GO ON,

4Notice that tasks for node processing are labelled with BUILD NODE, while tasks for at-
tribute processing are labelled with BUILD ATT
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void ∗ ff emitter :: svc(void ∗ task) {
8. if (task == NULL ) {

if (root−>splitPre()) return NULL;
8. int r = root−>getNoCases();

int c = root−>getNoAtts();
8. for(int i=0;i<c;++i) {

task=new ff task(root,BUILD ATT);
8. task−>att = i;

setWeight(task, r) ;
8. ff send out(task);

}
8. root−>child cnt = c;

return FF GO ON;
8. }

node ∗n = task−>getNode();
8. if (task−>isBuildAtt()) {

if (−−n−>child cnt>0)
8. return FF GO ON;

n−>splitPost();
8. }

int nChilds = n−>Childs();
8. for(int i=0; i < nChilds; i++) {

node ∗child = n−>getChild(i);
8. child−>get cases();

int r = child−>getNoCases();
8. int c = child−>getNoAtts();

if (!buildAttTest(r,c)) {

8. ctask=new ff task(child,BUILD NODE);
setWeight(ctask, r) ;

8. ff send out(ctask);
} else {

8. if (child−>splitPre()) continue;
for(int j=0;j<c;++j) {

8. ctask=new ff task(child,BUILD ATT);
ctask−>att = j;

8. setWeight(ctask, r) ;
ff send out(ctask);

8. }
child−>child cnt = c;

8. }
n−>release cases();

8. if (!nChilds && noMoreTasks())
return NULL;

8. return FF GO ON; }

8. void ∗ ff worker :: svc(void ∗ task) {
node ∗n = task−>getNode();

8. if (task−>isBuildAtt())
n−>splitAtt(task−>att);

8. else
n−>split();

8. return task;
}

Figure 8: Emitter and Worker definition for the NAP strategy.

thus waiting for other tasks. Concerning workers, based on the task label, the
ff worker::svc method (§8.-) merely calls the node splitting procedure or
the information gain calculation for the involved attribute.

Let us now discuss in detail two relevant issues in the NAP strategy. Let r
be the number of cases and c the number of attributes at a node.

The first issue is concerned with task weights. Node processing tasks are
weighted with r (§8.), as for the NP strategy. Attribute processing tasks
have a finer grain, which suggests that they show be assigned a lower weight.
However, we point out that, although attribute tasks are executed in parallel,
there is a synchronisation point: all attribute tasks of a node must have been
processed before the emitter could generate tasks for the child nodes. By giving
a lower weight to attribute tasks, we run the risk that two or more of them are
scheduled to the most unloaded worker, thus resulting in a sequential execution.
For this reason, also attribute processing tasks are weighted with r (§8.,§8.).

The second issue is concerned with the test buildAttTest, which discrim-
inates between nodes parallelisation and attributes parallelisation. Since the
latter is finer grained, a test should select attributes parallelisation for larger
nodes, and nodes parallelisation for smaller ones — where the size of a node is
measured in terms of r and c. We have designed and experimented three test
strategies. Attribute parallelisation is chosen respectively when:

• (α < r) the number of cases at the node is above some hand-tuned thresh-
old value α;

• (|T | < c r log r) the average grain of node processing (sorting c attributes
by quicksort algorithm, which is r log r on average) is higher than a thresh-
old that is dependent on the training set. Intuitively, the threshold should
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Table 1: Training sets used in experiments, and size of unpruned decision trees.

No. of attributes Unpruned decision tree

T name |T | NC discr. contin. total size depth unbalancing

Census-Income 299,285 2 33 7 40 122,306 31 0.43
U.S. Census 2,458,285 5 67 0 67 125,621 44 0.49
KDD Cup 99 4,898,431 23 7 34 41 2,810 29 0.65
Forest Cover 581,012 7 44 10 54 41,775 62 0.42
SyD10M9A 10,000,000 2 3 6 9 169,108 22 0.37
SyD10M9A-05 10,000,000 2 3 6 9 184,325 24 0.32
SyD10M9A-005 10,000,000 2 3 6 9 128,077 23 0.45

be such that the test is satisfied at the root node, which is the coarser-
grained task, and for nodes whose size is similar. Since the average grain
of processing a single attribute at the root is |T | log |T |, we fix the thresh-
old to a lower bound for such a value, namely to |T |— which turns out to
be a lower bound for processing a single attribute at the root (attribute
values must be scanned at least once);

• (|T | < c r2) the worst-case grain of node processing (quicksort is r2 in the
worst-case) is higher than a threshold that is dependent on the training
set. As in the previous case, the threshold is set to the lower bound |T |
for processing a single attribute at the root node. The higher value cr2 in
the right-hand-side, however, leads to selecting attributes processing more
often than the previous case, with the result of over-provisioning, namely
the creation of an higher number of (finer-grained) concurrent tasks.

As we will see in Sect. 5, the third test strategy shows the best performance.

5 Performance Evaluation I

In this section we show the performances obtained by YaDT-FF in the growing
phase. The datasets used in experiments and their characteristics are reported
in Table 1, including the number of discrete and continuous attributes, the size
and depth of the decision tree, and its unbalancing factor (described later on).
The datasets are publicly available from the UCI Machine Learning repository
by Frank and Asuncion (2011), apart from datasets SyD10M9A-xxx which are
synthetically generated using function 5 of the QUEST data generator by IBM
Almaden (2003). We generated 3 distinct synthetic datasets by varying the
distribution of the binary class as follows: 20%–80% for SyD10M9A; 50%–50%
for SyD10M9A-05 ; and 5%–95% for SyD10M9A-005. SyD10M9A will be our
reference synthetic dataset. All experimental results are taken by performing 5
runs, excluding the highest and the lowest values obtained and computing the
average of the remaining ones.

Experimental framework. All experiments are executed on two differ-
ent workstation architectures: Nehalem) a dual quad-core Intel Xeon E5520
Nehalem (16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of

15



Table 2: YaDT elapsed time (in seconds): 32-bit vs 64-bit compilation.

Nehalem Magny-Cours

32-bit 64-bit 32-bit 64-bit

T name build prune build prune build prune build prune

Census-Income 3.55 0.97 3.16 0.79 4.63 1.09 4.62 1.09
U.S. Census 14.24 1.47 12.67 1.15 17.16 1.68 17.25 1.72
KDD Cup 99 17.16 6.5 15.39 5.85 22.67 10.81 22.62 10.86
Forest Cover 16.4 11.8 13.53 8.97 19.1 13.63 19.27 13.63
SyD10M9A 106.23 21.49 114.15 21.12 133.41 35.45 134.36 35.47

main memory with Linux x86 64; and Magny-Cours) a single 12 cores AMD
Magny-Cours Opteron 6174 @2.2GHz with 12MB L3 cache and 128 GBytes of
main memory, with Linux x86 64. They are quite standard representatives of
current mid-to-high-end workstations.

The Nehalem-based machine exploits Simultaneous MultiThreading (SMT,
a.k.a. HyperThreading) with 2 contexts per core and the novel Quickpath in-
terconnect equipped with a distributed cache coherency protocol. The SMT
technology makes a single physical processor appear as two logical processors
for the operating system, but all execution resources are shared between the
two contexts: caches of all levels, execution units, etc.

32-bit vs. 64-bit YaDT compilation. Preliminary results of the par-
allelisation of YaDT are reported in our conference paper by Aldinucci et al
(2010b). There, we presented experiments on 32-bit compiled executables run-
ning on 64-bit Intel-based architectures. It is legitimate to ask ourselves whether
the performances of YaDT are affected by a 64-bit compilation or on a different
architecture. In Table 2 we show the sequential execution time obtained from
both 32-bit and 64-bit versions of the YaDT building and pruning phases when
running on 64-bit Intel and AMD architectures. As it can be observed, the 64-
bit executable is moderately faster than the 32-bit one for almost all the datasets
considered. One exception is the synthetic dataset (for the build phase), which
shows a performance penalty of about 7%. The better performances of the 64-
bit compilation can be justified by the fact that it provides better support of
64-bit integers (long data types in C/C++) and better utilisation of the un-
derling 64-bit architecture. As a general rule, 64-bit code may benefit of extra
registers not available for 32-bit code. On the other hand, the 64-bit compila-
tion mode implies larger data types (mainly due to larger pointer representation
and larger padding in data structures) hence more cache-misses. The tradeoff
between this two aspects produces, in most cases, better performance results
for the 64-bit code.

Since almost all newer server and workstations are 64-bit architectures and
compilers running on 64-bit OSs produce 64-bit executable by default, in the
rest of the paper we consider only 64-bit executions.

Parallel performance of the NP strategy. Let us start considering the
parallelisation of nodes processing. The obtained speedup is shown in Fig. 9.
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Figure 9: NP strategy speedup. Nehalem box (left), Magny-Cours box (right).
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Figure 10: Elapsed over lower-bound time ratio of the tree build phase on the
Nehalem box (left) and Magny-Cours box (right).

The maximum speedup is similar on both architectures, and quite variable from
a dataset to another; it ranges from 1.31 for KDD Cup 99 on the Magny-
Cours box to 3.6 for the Census-Income dataset on the Nehalem box. As one
would expect, exploiting inter-nodes parallelism alone is not enough to reach
a close to optimal speedup, because a large fraction of the computing time is
spent in the coarse-grained sequential computation of nodes, thus lacking enough
parallelism. This phenomenon has been already observed in previous work on
the (so called, task) parallelisation of decision tree construction over distributed
memory architectures (see e.g., Srivastava et al (1999), and the related work
Sect. 9). Let us provide here a meaningful justification by introducing a lower
bound for any parallelisation strategy exploiting concurrency on the grain of
nodes. Intuitively, the computation of a node can only start after its father has
been processed, which, in turn, can only start after all of its ascendants have
been processed. As a consequence, the elapsed time needed for the tree path with
the highest computational cost is a lower bound for any nodes parallelisation
strategy. In symbol, we write:

lbb(n) = tb(n) +maxm∈child(n)lbb(m)
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Figure 11: Speedup of the build phase for synthetic datasets with different
unbalancing factors. Nehalem box (left), Magny-Cours box (right).

where tb(n) is the time for sequential processing (i.e., to execute node::split) of
node n, and child(n) is the set of child nodes of n. Observe that the lower bound
is strict, since it assumes an oracle scheduler that gives priority to nodes along
the path with the highest computational cost, a number of workers sufficient to
compute in parallel all other nodes, and zero-time synchronisations.

From the experimental side, we have instrumented the sequential code to
compute lbb(root) for the root node of the tree, after it has been completely
built. Fig. 10 reports the ratio of the elapsed time of the NP strategy over
the lower bound time. Notably, our implementation reaches a good efficiency,
requiring at most twice the lower bound time. This confirms the effectiveness
both of our design, in particular of the weighted scheduling policy as an online
approximation of the oracle scheduler, and of the underlying FastFlow layer.

From the theoretical side, we observe that since tb(n) is proportional to
the number of cases at node n, the path with the highest computational cost
turns out to be the largest path, where the size of a path is measured as the
sum of the number of cases at nodes in the path. In other words, the more a
tree is unbalanced (cases are concentrated along a single path), the less a nodes
parallelisation is efficient, independently from the number of worker threads and
from the scheduling policy. In Table 1, the unbalancing column reports the ratio
between the size of the largest path and the overall sum of the number of cases
in all nodes of a tree. Notice that the three synthetic datasets SyD10M9A-
05, SyD10M9A and SyD10M9A-005 are similar as for number of cases and
attributes, but they are purposely generated with increasing unbalance ratios.
This was obtained by unbalancing the distribution of class values. Fig. 11
reports the speedups for the three synthetic datasets, confirming the theoretical
analysis.

Summarising, although modest, the speedup of the NP strategy is notably
close to the limit of its form of parallelisation, and, equally notably, it was
achieved by a minimal effort to port the sequential code.

Parallel performance of the NAP strategy. The NAP strategy aims
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Total Execution Time (sec.)

T name |T | < cr2 α < r |T | < cr log r

Census-Income 0.76 0.77 0.68
U.S. Census 2.1 2.14 2.19
KDD Cup 99 3.46 3.45 3.60
Forest Cover 1.83 1.93 1.85
SyD10M9A 17.07 20.11 19.39

Effectiveness of buildAttTest(c,r) for different at-
tributes cost models. |T | = no. of cases in the
training set, c = no. of attributes at the node, r =
no. of cases at the node, and α = 1000.

Figure 12: Attributes parallelisation
tests (Nehalem, 7 worker threads,
best figures in boldface).
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Figure 14: NAP strategy speedup. Nehalem box (left), Magny-Cours box
(right).

at increasing the available parallelism by exploiting concurrency also in the
computation of the information gain of attributes. This is particularly effective
for nodes with many cases and/or attributes, because it reduces the sequential
fraction of the execution. As discussed in Sect. 4, the emitter relies on a cost
model in order to decide whether to adopt attributes parallelisation. We have
tested the three cost models presented in Sect. 4. Fig. 12 shows that the test
|T | < cr2 provides the best performance for almost all datasets. This is justified
by the fact that the test produces an higher number of finer-grained tasks when
compared to the test |T | < cr log r, and it is dataset-tailored when compared
to the test α < r. In all of the remaining experiments, we use that model.

The speedup of YaDT-FF with the NAP strategy is shown in Fig. 14. It
ranges from 4.1 to 7.4 on the Nehalem architecture and from 3.63 to 7.18 on the
Magny-Cours box. The speedup gain over the NP strategy is remarkable. Only
for the Census-Income dataset, the smallest dataset as for number of cases, the
speedup gain is just +15% over NP on the Nehalem, and just +8% over NP on
the Magny-Cours machine. Notice that the SyD10M9A dataset apparently ben-
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Figure 15: Speedup vs no. of attributes for 1M sample cases from SyD10M9A.
Nehalem box (left), Magny-Cours box (right).
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Figure 16: Speedup vs no. of sample cases (T ) from SyD10M9A. Nehalem box
(left), Magny-Cours box (right).

efits from a super-linear speedup. Actually, this happens because the speedup
is plotted against the number of farm workers. Hence, the fraction of work done
by the emitter thread is not considered, yet not negligible as shown in Fig. 13.
As a matter of a fact, the FastFlow farm-with-feedback pattern implicitly ex-
ploits pipeline parallelism between the emitter and the generic worker (see also
Zaki et al (1999)).

YaDT-FF also exhibits a good scalability with respect to both the number
of attributes (Fig. 15) and to the number of cases (Fig. 16) in the training
set. The plots refer to subsets of the SyD10M9A dataset possibly joined with
randomly distributed additional attributes. In the former case, a speedup boost
is obtained as soon as the number of attributes doubles the available hardware
parallelism (18 attributes for 8 physical cores). In the latter case, the achieved
speedup seamlessly increases with the number of cases in the training set.

Finally, we point out that a lower bound for the elapsed time of any paral-
lelisation strategy exploiting attributes parallelism can be devised by the same
reasonings as in the analysis of the NP strategy. Intuitively, the lower bound is
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Figure 18: Nodes (white) vs attributes
(black) parallelisation choices.

obtained by the elapsed time of the tree path with the highest computational
cost, where the cost of processing a node is now the maximal sequential time
for processing a single attribute at the node. Such a lower bound, however,
results to be too strict, due to the fact that computing the information gain of
an attribute for a small number of cases has a very fine-grain (for that reason,
we switch to nodes parallelisation for smaller nodes), which is the order of the
synchronisation overhead of any parallel approach.

Task scheduling. The parallelisation of decision tree construction algo-
rithms may suffer from load balancing issues due to the difficulties in predicting
the time needed for processing a node or a sub-tree. For example, the binary
search of the threshold (§2.) has to be performed only when a continuous at-
tribute is selected for the test at a node. Fig. 13 shows that load balancing is
not a critical issue for YaDT-FF with the NAP strategy. We motivate the good
performance obtained by two main reasons: 1) the NAP strategy produces a
significant over-provisioning of tasks with respect to the number of cores; these
tasks continuously flow (in a cycle) from the emitter to the workers and they
are subject to quite efficient online scheduling within the emitter; 2) FastFlow
communications are asynchronous and exhibit very low overhead also for fine-
grained tasks (see Aldinucci et al (2010a)). This makes it possible to sustain
all the workers with tasks to be processed for the entire computation. The low
overhead of the communications helps to reduce the dependence of the achieved
speedup from the effectiveness of the scheduling policy. Nevertheless, such a
dependence exists.

Fig. 17 shows results for three different scheduling policies: 1) Dynamic
Round-Robin (DRR); 2) On-Demand (OD); 3) Weighted Scheduling (WS). The
DRR policy schedules a task to a worker in a round-robin fashion, skipping
workers with full input queue (with queue size set to 4096). The OD policy is
a fully online scheduling, i.e., a DDR policy where each worker has an input
queue of size 1. The WS policy is a user-defined scheduling that can be set up
by assigning weights to tasks through calls to the setWeight method. We recall
that YaDT-FF adopts a WS policy, with the weight of a task set to the number
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r of cases at the node. It is immediate to observe from Fig. 17 that all the
scheduling policies are fairly efficient. WS exhibits superior performance because
it is tailored over the YaDT-FF algorithm; it actually behaves as a quite efficient
online scheduling. A possible variant of WS with FIFO queues for workers’ input
would consist in re-arranging tasks that have already been scheduled to workers
(e.g., via priority MPMC queues or work stealing strategies) on the basis of
the their weights. However, since re-arranging cannot be implemented using
solely the lock-free and fence-free mechanisms of FastFlow, it is likely that the
additional overhead may easily overcome possible gains.

Finally, we show in Fig. 18 how often nodes parallelisation has been chosen
by the emitter against the attributes parallelisation in the NAP strategy (we
recall that the test |T | < cr2 was fixed). Black stripes lines in the figure denote
attributes parallelisation choices whereas white stripes denote nodes parallelisa-
tion ones. As expected, the former occurs more often when processing the top
part of the decision tree (from left to the right, in the figure).

Simultaneous MultiThreading. Let us briefly evaluate the benefits achieved
using the Nehalem HyperThreaded box which may execute 2 threads simulta-
neously. SMT is essentially a memory latency hiding technique that is effective
when different threads in a core exhibit a shared working set that induces high
cache hit rate. However, even in non-ideal conditions, SMT is able to moder-
ately increase instructions per clock-cycle count, hence the overall performance,
by partially hiding costly main memory accesses with threads execution. Ald-
inucci et al (2010b) report a performance improvement attributable to SMT
in the range 12% to 30%. From the plots in Fig. 14 is it possible to observe
that the maximum speedup on both machines are very close, and that the Hy-
perThreaded machine obtains a performance improvement for the U.S. Census,
SyD10M9A and Forest Cover datasets that ranges from 22% to 29%, thus con-
firming the benefit of SMT.

6 Decision Tree Pruning

Decision trees are commonly pruned to improve accuracy and to alleviate for the
over fitting problem. Surveys and empirical comparisons of pruning strategies
are reported in Breslow and Aha (1997); Esposito et al (1997); Quinlan (1999);
Hall et al (2003). The C4.5 system adopts a post-processing error-based pruning
(EBP) strategy, which, like the tree building algorithm, is a standard reference
for novel proposals.Traditionally, efficiency of the pruning phase has not been a
major concern, since pruning was by far computationally less expensive than tree
building. Research in sequential optimisation and parallelisation of the building
phase, however, has lead to the nowadays situation where the pruning time is in
the order of magnitude of the building time5. A line of research has concentrated
on the integration of the two phases, as in the PUBLIC system by Rastogi and
Shim (2000), which during tree growing evaluates a sufficient condition (a lower

5The 7× speedup of the NAP strategy (Fig. 14) leads to an elapsed time for the building
phase that is comparable to the time of the pruning phase (Table 2).
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void tree :: prune() {
19. root−>prune();
}

double node::prune() {
19. get cases () ;

double n err = error est();
19. int nChilds = nChilds();

if ( nChilds == 0 ) {
19. release cases () ;

set err (n err) ;
19. return n err;

}
19. double tree err = 0;

for(int i=0; i < nChilds; i++) {
19. node ∗child = getChild(i);

tree err += child−>prune();
19. }

node ∗large = getLargestChild();
19. double l err = large−>graft(n, true);

release cases () ;
19. if (n err <= l err

&& n err <= tree err) {
19. set leaf () ;

set err (n err) ;
19. return n err;

}

19. if ( l err <= tree err) {
replace with son(large) ;

19. return prune();
}

19. set err ( tree err ) ;
return tree err;

19. }

19. double node::graft(node ∗father,
bool subst) {

19. node ∗n = clone();
n−>set father(father);

19. if (subst) n−>get father cases()
else n−>get cases();

19. int nChilds = n−>nChilds();
double tree err = 0;

19. if ( nChilds == 0 )
tree err = error est () ;

19. else
for(int i=0; i < nChilds; i++) {

19. node ∗child = n−>getChild(i);
tree err += child−>graft(n, false);

19. }
n−>release cases();

19. delete n;
return tree err;

19. }

Figure 19: Error-based pruning with grafting.

bound on the MDL pruning strategy) that allows for concluding that a subtree
would be subsequently pruned. This line is orthogonal with the objective of this
paper, which consists of devising a parallelisation of the pruning strategy. To
the best of our knowledge, there is no previous attempt at this in the literature.

The YaDT implementation of the C4.5 pruning strategy is reported in Fig. 19.
It consists of a bottom-up transversal of the decision tree implemented by the
method node::prune. At each decision node, cases at the node are first re-
trieved from the father node by a call to get cases (§19.). Then a pessimistic
estimates is calculated: (1) of the error6 in case the node is turned into a leaf
(§19.); and (2) of the sum of errors of child nodes in case the node is left as
a decision node (§19.-). For a leaf node, (1) is set as the error estimate
(§19.-). For a decision node, if (1) is lower or equal than (2) then the node is
turned into a leaf (§19.-). In addition, it is estimated also: (3) the error of
grafting a child sub-tree in place of the node (§19.-). More in detail, given
the child node with the maximum number of cases associated, which we call
the largest child, (3) is calculated by “moving downwards” the cases associated
to the parent node towards the largest child. If (3) is lower than (1) and (2)
then the subtree rooted at the node is replaced by the subtree rooted at the
largest child (§19.-) and the pruning procedure is repeated on such subtree
(§19.) — since the cases of the ex-parent node now distribute differently in the
subtree. Cases at the node are released before returning from the visit of the
node (§19.,§19.). Fig. 20 shows the effects of grafting on a sample tree: the

6Without entering the details of EBP, it is sufficient here to notice that the method
node::error est takes constant time, since it makes calculations on summarisation and statis-
tics already computed in the node::get cases method.
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child node 3 replaces its father node 2, and the subtrees rooted at the siblings
of 3 are discarded.

As observed by Ruggieri (2004), grafting is time and memory consuming.
YaDT offers an option whether to do or not to do grafting, with the result that
performances are an order of magnitude better without it both in terms of time
and memory, while classifier accuracy is slightly worse. Let us compare the two
options on a ideal complete binary tree of depth d. Without grafting, EBP visits
each node once, for a total of V (d) = 2d − 1 nodes visited. With grafting, the
number of node visited Vg(d) is described by the recurrence relation:

Vg(1) = 1 Vg(d+ 1) = 2Vg(d) + 2d

since at each node, its left and right children are visited as well as the whole
subtree rooted at the largest child. The explicit solution of the relation is
Vg(d) = d2d−1, which is an order of magnitude higher than V (d) in terms of the
tree depth d.

Beyond this theoretical analysis, we observe that (1+2) requires a simple
bottom-up transversal, where each node computes its error estimate and passes
it upwards to the father node, whereas (1+2+3) requires for each node to com-
pute, in addition, the error estimate of the sub-tree rooted at the largest child.
Since the estimate is done with reference to the cases at the parent node, this
requires to clone the data structures of the (largest!) subtree as it is being recur-
sively visited in the node::graft procedure (§19.-). As a consequence, the
additional visits of grafting are at higher running time and memory occupation
costs.

7 Parallelising YaDT: Tree Pruning

In this section, we extend YaDT-FF by parallelising the pruning phase with a
strategy that resembles the NP strategy of Sect. 4. Specifically, each decision
node visited during pruning with grafting is considered a task that generates a
set of sub-tasks; these tasks are arranged in a stream that flows across a farm-
with-feedback skeleton. The setup method tree::prune ff is shown in Fig. 21.
Basically, it is the same code of the setup method in Fig. 5, apart from the
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void tree :: prune ff() {
21. E=new ff prune emitter(root,

PAR DEGREE);
std :: vector<ff prune worker∗> w;

21. for(int i=0;i<PAR DEGREE;++i)
w.push back( new ff prune worker());

21. ff farm<ws scheduler>
farm(PAR DEGREE∗QSIZE);

21. farm.add workers(w);
farm.add emitter(E);

21. farm.wrap around();
farm.run and wait end();

21. }

Figure 21: Parallelisation of EBP with
grafting: setup.
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Figure 22: Parallelisation of EBP with
grafting: task types.

creation of the root note (§5.), since now the tree already exists. Also, notice
that the WS policy (ws scheduler) is adopted here as well.

Let us provide some intuitions on the parallelisation of the tree::prune

method from Fig. 19. The visit of a node can be in one of the following states:
(1) get cases at the node and compute EBP estimate (§19.-); (2) if the node is
not a leaf, recursively visit its child nodes and sum their EBP estimates (§19.-

); (3) recursively visit the subtree rooted at the largest child (§19.-); (4)
release cases at the node, and test whether to transform the node into a leaf or
to graft the largest child (§19.-). These states are handled by the emitter
for the purpose of generating new tasks in the stream, and by workers for the
purpose of performing computation. Tasks in the stream must then refer to the
state of the visit at the node under consideration. This is somewhat similar to
the use of BUILD NODE and BUILD ATT tags in the NAP strategy. Fig. 22 shows
the tags of tasks flowing from the emitter towards the workers and vice-versa.
For the emitter: PRUNE DOWN means that the recursive visit at state (2) must
be initiated for the child nodes; PRUNE UP means that a child node has finished
its recursive visit, and the parent node must decide whether to wait for other
children, or to start (3) for the largest child; and PRUNE GRAFT means that the
recursive visit at state (3) must be initiated for the child nodes. For the workers:
PRUNE DOWN asks for performing the computation at state (1); PRUNE GRAFT asks
for performing the computation at state (3), namely (§19.-); and PRUNE JOB

asks for performing the computation at state (4).
Both the emitter and the workers source codes are then structured as a

switch-case to perform actions on the basis of the task tag. The emitter code is
reported in Fig. 23. At start-up the ff prune emitter::svc method is called
by the FastFlow runtime with a NULL parameter (§23.). A task for PRUNE DOWN

processing of the root node is built and its weight is set (§23.-). In general,
the weight of a task will be fixed to the number of cases at the parent node.
This is motivated by the fact that computation at a node basically consists of
getting cases from the parent node, since, as noted in footnote 6, the calculation
of error estimates takes constant time. Upon receiving in input a task coming
from a worker, the emitter enters the switch-case on the basis of the task type.
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void ∗ ff prune emitter :: svc(void ∗ task) {
23. if (task == NULL) {

task=new ff task(root,PRUNE DOWN);
23. root−>father = NULL;

int r = root−>getNoCases();
23. setWeight(task, r) ;

return task;
23. }

node ∗n = task−>getNode();
23. int nChilds = n−>Childs();

switch( task−>getType() ) {
23. case PRUNE DOWN:

n−>prune err = 0;
23. n−>child cnt = nChilds;

int r = n−>getNoCases();
23. for(int i=0; i < nChilds; i++) {

node ∗child = n−>getChild(i);
23. child−>father = n;

ctask=new ff task(child,
23. PRUNE DOWN);

setWeight(ctask, r) ;
23. ff send out(ctask);

}
23. break;

case PRUNE UP:
23. node ∗fthr = n−>father;

if (fthr == NULL)
23. return NULL;

fthr−>prune err += node−>err;
23. if(−−fthr−>child cnt > 0)

return FF GO ON;
23. node ∗child = fthr−>get largest child();

task=new ff task(child,
23. PRUNE GRAFT);

fthr−>cloned = fthr;
23. task−>subst = true;

task−>subroot = fthr;
23. fthr−>graft err = 0;

fthr−>graft cnt = 1;
23. fthr−>child cnt = 2;

int r = fthr−>getNoCases();
23. setWeight(task, r) ;

ff send out(task);
23. break;

case PRUNE GRAFT:
23. node ∗subroot = task−>subroot;

node ∗fthr = task−>father;
23. −−subroot−>graft cnt;

if(−−fthr−>child cnt == 0) {
23. fthr−>cloned−>release cases();

delete fthr−>cloned;
23. }

if (nChilds == 0 || task−>done) {
23. subroot−>graft err += n−>graft err;

if (subroot−>graft cnt == 0) {
23. task=new ff task(subroot,

PRUNE JOB);
23. int r = subroot−>getNoCases();

setWeight(task, r) ;
23. return task;

}
23. }

subroot−>graft cnt += nChilds;
23. node ∗fthr = n−>cloned;

int r = fthr−>getNoCases();
23. fthr−>child cnt = nChilds;

for(int i=0; i < nChilds; i++) {
23. node ∗child = n−>getChild(i);

ctask=new ff task(child,
23. PRUNE GRAFT);

ctask−>subst = false;
23. ctask−>subroot = subroot;

setWeight(ctask, r) ;
23. ff send out(ctask);

}
23. break;

}
23. return FF GO ON;

}

Figure 23: Parallelisation of EBP with grafting: emitter.

In a PRUNE DOWN task the emitter simply creates a task for each child (§23.-

). To track the number of child tasks still to be processed, the counter
node::child cnt, introduced in the parallelisation of the building phase, is
used. Additional members are added to the node structure and set: prune err

is used to accumulate the errors of child nodes; father is a pointer from a child
back to its father node, needed in the PRUNE UP state to reference fields in the
father node.

In a PRUNE UP task, we have the following sub-cases. If the node is the root
(§23.-) we are finished. Otherwise, we accumulate the estimated error of
the node in the prune err field of the father node (§23.). If the node is not
the last processed child, the emitter simply returns, awaiting for other child
tasks (§23.-). Otherwise, let n be the last processed child, and let us call
the top node its father node. A task is build for initiating the recursive visit of
the subtree rooted at the largest child of the top node (§23.-). This visit
accumulates the estimates of nodes in the subtree into a field of the top node.
The following members are added to the node structure for the purpose and set:
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void ∗ ff prune worker :: svc(void ∗ task) {
24. node ∗n = task−>getNode();

int nChilds = n−>Childs();
24. switch( task−>getType() ) {

case PRUNE JOB:
24. double n err = error est();

double tree err = n−>prune err;
24. double l err = n−>graft err;

if (n err <= l err
24. && n err <= tree err) {

n−>release cases();
24. set leaf () ;

set err (n err) ;
24. task−>type = PRUNE UP;

return task;
24. }

if ( l err > tree err) {
24. n−>release cases();

set err ( tree err ) ;
24. task−>type = PRUNE UP;

return task;
24. }

node ∗large = n−>getLargestChild();
24. n−>replace with son(large);

nChilds = n−>Childs();
24. task−>type = PRUNE DOWN;

// no break here
24. case PRUNE DOWN:

node ∗fthr = n−>father;
24. if (fthr && fthr−>getNoCases()

<MIN PRUNE) {
24. n−>err = n−>prune();

n−>set father recursive(fthr) ;
24. task−>type = PRUNE UP;

return task;

24. }
n−>get cases();

24. if (nChilds == 0) {
double n err = n−>error est();

24. n−>release cases();
n−>set err(n err);

24. task−>type = PRUNE UP;
}

24. break;
case PRUNE GRAFT:

24. node ∗fthr = n−>father−>cloned;
task−>done = false;

24. if (fthr−>getNoCases()
<MIN GRAFT) {

24. n−>graft err = n−>graft(father,
task−>subst);

24. task−>done = true;
return task;

24. }
node ∗n2 = n−>clone();

24. n2−>set father(fthr);
n−>cloned = n2;

24. if (task−>subst)
n2−>get father cases();

24. else n2−>get cases();
if (nChilds == 0) {

24. n−>graft err = n2−>error est();
n2−>release cases();

24. delete n2;
}

24. break;
}

24. return task;
}

Figure 24: Parallelisation of EBP with grafting: worker.

graft cnt is a counter of the number of tasks still to be processed during the
visit of the subtree; graft err is the accumulator of the estimates. Also, the
task structure has a member subroot to allow a node in the subtree to locate
the top node in order to accumulate its error estimate. The task structure has a
member subst to simulate the role of the subst parameter in the node::graft

method from Fig. 19. Finally, since the visit builds a clone of the subtree, the
member cloned is added to node to host a clone of the node. The top node
provides the initial cases, and its field cloned is not needed to be a clone. The
node::child cnt member is used to set the number of child tasks still to be
processed for a node. This is needed later on to release cases when all child
nodes have retrieved their ones. Actually, since the subtree is cloned, the whole
deletion of the cloned father is performed (§23.-). This must not occur for
the top node, which is not cloned. We prevent this by setting child cnt to 2
(§23.).

In a PRUNE GRAFT task, the top node that originated the subtree visit is
referenced in the subroot variable (§23.). Starting from it, the number of
tasks still to be processed in the subtree can be updated (§23.,§23.). If the
node is a leaf, or all its subtree has been processed by the worker, then in the if
block (§23.-) the grafting error of the top node is updated and, if there are
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Figure 25: Example of parallelisation of the pruning phase.

no more task around, the grafting is finished and a task PRUNE JOB is initiated
for the top node. If the node is not a leaf, then the emitter creates a task for
each child (§23.-). Notice that in this case, the subst member of the child
task is set to false (§23.).

The worker code is reported in Fig. 24. As for the emitter code, workers
enter a switch-case on the basis of the input task type.

In a PRUNE DOWN task, the worker has to calculate the estimated error. This
can be done for the entire subtree, or for the single node only, on the basis
of the number of cases at the father node. The parameter MIN PRUNE sets the
threshold for switching to sequential pruning (§24.-). Otherwise, the error
estimate is calculated (§24.-) by cut & paste of the sequential code (§19.-

). Notice that for leaf nodes (§24.) and in case of sequential pruning (§24.),
the worker changes the task type to PRUNE UP to denote that the visit of the
subtree is finished.

Similarly, in a PRUNE GRAFT task there is a parameter MIN GRAFT for switch-
ing to sequential grafting (§24.-). In such a case, the done member of the
task is set to true to let the emitter aware that the entire subtree has been
processed. Otherwise, we proceed to clone the current node and to store a ref-
erence in the cloned member (§24.-). The rest of the code (§24.-) is
cut & paste from the sequential method graft from Fig. 19.

In a PRUNE JOB task, the following error estimates are available (§24.-):
estimate of the node as a leaf; estimate of the whole subtree; and, estimate of
grafting the largest child. We can now cut & paste sequential code for testing
whether to turn the subtree into a leaf or whether to do grafting (§24.-).
With respect to (§19.-), however, the second test is complemented. In fact,
if grafting is performed, the recursive call (§19.) has to be implemented by
performing the worker actions of the PRUNE DOWN case. This is the actual result
of complementing the second test and not inserting a break statement (§24.).

Fig. 25 shows example snapshots of a parallel execution. Starting from a
PRUNE DOWN task for node 1, the emitter yields PRUNE DOWN tasks for its child
nodes 2 and 3. Since both are leaves, workers eventually process them and
return to the emitter a PRUNE UP task (in the figure, this is shown for node 2).
After receiving the task from the last child, the emitter queues a PRUNE GRAFT

task for the largest child, node 3 in the example. A worker processes the task
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Table 3: Execution time (in seconds) varying MIN PRUNE and MIN GRAFT (Ne-
halem, 7 worker threads).

MIN PRUNE-MIN GRAFT

100-100 1000-1000 1000-4000 4000-4000 16000-1000 16000-16000

Census-Income 0.22 0.18 0.23 0.32 0.23 0.23
U.S. Census 0.43 0.32 0.40 0.44 0.43 0.37
KDD Cup 99 3.64 3.46 3.62 3.50 3.58 3.55
Forest Cover 2.77 2.14 2.46 2.62 2.63 2.16
SyD10M9A 7.26 5.95 6.99 7.33 6.70 5.98

and returns it back to the emitter. Since node 3 is a leaf, the emitter generates
a PRUNE JOB task for the top node 1. The worker processing the task decides
not to prune (making it a leaf, or grafting the largest child), and it returns a
PRUNE UP task towards the emitter.

8 Performance Evaluation II

In this section we discuss the performances obtained by YaDT-FF on the pruning
phase. The experimental framework is the same described in Sect. 5.

Parallel performance. First, let us consider the setting of the thresholds
MIN PRUNE and MIN GRAFT that control the switching from parallel to sequen-
tial execution. Differently from the parallelisation of the building phase, where
switching to sequential execution was not contemplated, the task granularity
can now reach very small values. In fact, the computation of a worker could
simply consist of a call to get cases, whose grain may be in the order of the
overhead of the FastFlow runtime for task generation and scheduling. For this
reason, we adopted a simple and effective strategy (previously used in Coppola
and Vanneschi (2002) for the parallelisation of the build phase), which consists
of setting machine-tailored thresholds for switching to sequential execution. Ta-
ble 3 reports the execution times obtained using different threshold values for
MIN PRUNE and MIN GRAFT. As it can be noticed, performances are not very sen-
sitive for the architecture considered (Nehalem, 7 worker threads). Nevertheless,
we have observed that the gap enlarges with the increasing of the parallelism
. On the two experimented architectures (Nehalem and Magny-Cours), lower
values show better performances, mainly because they lead to the generation of
more tasks to be computed in parallel. However, there is a bottom line after
which performances degrade due to excessive overhead. For all the following
tests, we fixed both MIN PRUNE and MIN GRAFT to 1000.

Analogously to the performance analysis of the NP strategy, let us introduce
now a lower bound for the elapsed time of the parallelisation of EBP pruning
with grafting. Consider the sequential algorithm in Fig. 19. A lower bound for
the parallelisation of the node::graft method is imposed by the path with the
highest computational cost, since a node cannot return its error estimate until
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Figure 26: Elapsed over lower-bound time ratio of the tree pruning phase on
the Nehalem box (left) and Magny-Cours box (right).

the last of its child nodes has returned. In symbol, we write:

lbg(n) = tg(n) +maxm∈child(n)lbg(m)

where tg(n) is the time for sequential computations at node n (§19.-), and
child(n) is the set of child nodes of n. Similarly, a lower bound for the par-
allelisation of the node::prune method is imposed by the path with the high-
est computational cost, since a node cannot return its error estimate until the
largest of its child nodes has returned and7 the error estimate of grafting the
largest child has been calculated. In symbol, we write:

lbp(n) = tp(n) + lbg(largest(n)) + lbp(largest(n))

where tp(n) is the time for sequential computations at node n (§19.-), and
largest(n) is the largest child of n. From the experimental side, we have instru-
mented the sequential code to compute lbp(root) for the root node of the tree
to be pruned. From the theoretical side, since tg(n) and tp(n) are proportional
to the number of cases at node n, the path with the highest computational cost
turns out to be the largest path, as in the NP strategy.

The plots in Fig. 26 show, for the two reference architectures, the ratio
between the elapsed time and the experimentally computed lower bound time
for all the datasets. Apart from Census-Income, the elapsed time obtained by
the parallelisation of the pruning phase is below or close to twice the lower-
bound time. As observed for the NP strategy, such a lower bound is a strict
limit, reachable only by an oracle scheduler. This confirms the effectiveness of
the proposed parallelisation strategy.

The speedup obtained for the three synthetic datasets is shown in Fig. 27.
We recall that they are similar apart from the unbalancing factor of the decision
tree induced from them (see Table 1). As expected, the lower the unbalancing
factor, the better the speedup.

7node::graft cannot be called before the largest child has returned, since during the visit
of the largest child its subtree could be changed by grafting descendants.
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Figure 28: Pruning phase speedup vs no. of sample cases (T ) from SyD10M9A.
Nehalem box (left), Magny-Cours box (right).

Let us consider now scalability with respect to the number of cases. In order
to plan a controlled experiment, we cannot resort to building and then pruning
decision trees on a variable number of cases, as done in Fig. 16, since the decision
trees in input to the pruning phase would be of different sizes and balancing
factors. Rather, we first fix the decision tree to be pruned, by growing a tree
from the whole SyD10M9A dataset, and then we prune it by starting from a
subset of cases at the root node. This is a controlled experiment, where one input
(the decision tree to be pruned) is fixed, and the other (the number of cases)
is varied. Fig. 28 shows that the speedup slightly increases with the number of
cases. Due to the lower-bound on parallel execution lb(root), however, speedups
are upper-bounded, and the maximum speedup is reached with about 8 workers.

Finally, we point out that the performances of the pruning phase are not af-
fected by the number of attributes, since there is no attribute-dependent compu-
tation (see footnote 6). Therefore, it is not worth studying scalability w.r.t. the
number of attributes, as done in the building phase (see Fig. 15).

Task scheduling. We tested the same scheduling policies as in the build
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Figure 31: Memory usage over time on Nehalem box (using 7 workers) for YaDT
(left) vs YaDT-FF (right) for the Forest Cover dataset. The vertical line denotes
the end of the building phase and the beginning of the pruning phase.

phase: 1) Dynamic Round-Robin; 2) On-Demand; 3) Weighted Scheduling.
Fig. 29 shows the ratio of the elapsed time over the lower-bound time for the
SyD10M9A dataset. All policies are quite efficient. Here again, the weighted
policy exhibits the best performance.

Although the intrinsically unbalanced nature of the computation in the prun-
ing phase puts an upper-bound on the maximum attainable speedup, load bal-
ancing is not, instead, a critical issue. Fig. 30 shows the thread execution
breakdown for SyD10M9A and Forest Cover.

Memory occupation. Fig. 31 reports memory occupation over time for
YaDT (left) and YaDT-FF (right) for both the building and pruning phases over
the Forest Cover dataset. Memory footprint has been traced reading Linux’s
/proc/pid/statm memory statistic file every 10ms. In the case of sequential
execution, it is interesting to point out that the pruning phase requires consid-
erable additional memory with respect to the building phase, and that there is
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an high number of interleaved allocation and deallocation operations due to the
depth-first visit of the tree. The same proportion in the memory occupation
applies also to the parallel execution, showing that the proposed parallelisa-
tion strategy is able to obtain close to optimal execution time without using
a significant amount of additional memory. This result can be explained by
the parallelisation of the node::grafting method, the one that clones sub-
trees. Consider the PRUNE GRAFT case in the emitter (Fig. 23). The counter
child cnt is used to deallocate a cloned node once that all of its child nodes
have retrieved their cases (§23.-). Since cases at the father node are parti-
tioned among child nodes, the overall number of cases at the nodes in the task
queues is at most twice the total number of cases (this does not consider cases
with unknown value of the tested attribute, which are replicated among child
nodes). Therefore, memory occupation is upper-bounded and independent from
the degree of parallelism. The same reason also justifies the more stable memory
usage of the parallel version.

9 Related Work

We first review the literature on parallelisation of the decision tree building
phase, commenting on how existing proposals relate to our approach. As al-
ready observed, to the best of our knowledge, there is no related work on the
parallelisation of the pruning phase. Next, we review existing (pattern-based)
parallel programming frameworks, and relate them to the FastFlow framework.

9.1 Parallelising Decision Tree Building

Parallel computing research aimed at addressing three main classes of data min-
ing issues: 1) solve inherently distributed problems, e.g., mining datasets that
are bound to specific sites due to privacy issues; 2) manage larger datasets by ex-
ploiting the aggregate memories of several machines; 3) decrease the processing
time of algorithms. We observe that (1) hardly promotes the reuse of existing
sequential code and it often requires the redesign of sequential algorithms. Con-
cerning (2), the ever-increasing availability of main memory space is making this
class of approaches loosing interest. Finally, (3) has to face with the current
state of the art of hardware architecture, namely multicores, and, at the same
time, with the challenging problem of code reuse. Our approach clearly belongs
to this class. According to the parallelisation paradigms presented in Sect. 2.2,
related work can be categorised as follows.

Task Parallelism. It consists of splitting the processing of different sub-
trees into independent tasks in a Divide&Conquer fashion. The NP strategy
presented in Sect. 4 fully adheres to this approach, despite task parallelism is
realised via stream parallelism. In distributed implementations, the approach is
also referred to as partitioned tree construction (Srivastava et al, 1999), since tree
construction consists of dynamically distributing the decision nodes among the
processors for further expansion. The approach suffers from load balancing prob-
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lems due to the possible different sizes of the trees constructed by each processor.
In distributed implementations, this is a not trivial issue since load balancing
strategies are typically communication intensive and complex to be integrated
in the code. As example, in the early work by Darlington et al (1997) the whole
training set is replicated in the memory of all the processors, in order to avoid
communication costs due to moving cases across processing nodes. In Coppola
and Vanneschi (2002), a distributed shared tree data container is introduced to
reduce the coding complexity, while the Divide&Conquer paradigm is realised
with a farm-with-feedback skeleton, as in the present work. The distributed
implementation requires a non trivial porting and tuning effort in order to find
a suitable trade-off between load balancing and computation-to-communication
ratio. Narlikar (1998) proposed a Pthread-based Divide&Conquer parallelisa-
tion on a shared-memory architecture. The approach differs from YaDT-FF in
using a parallel quicksort, in relying on the dynamic creation of a large number
of concurrent threads (which might seriously impair the run-time efficiency —
the implementation is actually tested on a single synthetic dataset), and in the
hand-made code porting and tuning process. As a general advancement over
related work, we have characterised a lower bound for any task parallelisation
strategy, and shown that the NP strategy reaches performances very close to
the lower bound.

Data Parallelism. It consists in distributing the training set among the
processors by partitioning attributes or cases. The two options are referred to
as vertical or horizontal data partitioning (Amado et al, 2001).

In vertical data partitioning, each processor computes the gain calculations
for a subset of the attributes, e.g., in distributed implementation, for the at-
tributes assigned at the processor node (Freitas and Lavington, 1997). Gain
calculations are then exchanged between nodes to determine the best split.
This solution suffers both from load balancing problems, since the cost of gain
calculation is not uniform across (discrete vs continuous) attributes, and, for
distributed implementations, from high communication costs. The NAP strat-
egy in our approach adopts a similar method for gain calculations. As already
observed, however, load balancing is tackled by switching to the NP strategy on
the basis of a cost model, communication costs are negligible in a shared mem-
ory environment, and synchronisation costs are minimum due to the design of
the FastFlow framework.

In horizontal data partitioning, cases are evenly distributed among the pro-
cessing nodes. Each processor computes the aggregate values (of its cases)
needed for information gain calculation, and it exchanges them with the other
nodes to determine the best split. This solution suffers from a heavy re-coding
of the node splitting procedure (see Fig. 2), and, for distributed implementa-
tions, from high communication costs. Horizontal data distribution is exploited
in the SPRINT classifier (Shafer et al, 1996), which stores the training set ac-
cording to the SLIQ layout (Mehta et al, 1996). The authors show a superior
performance with respect to vertical data distributions in the direct paralleli-
sation of the SLIQ sequential classifier. ScalParC (Joshi et al, 1998) improves
on SPRINT by adopting a distributed hash table that mitigates the communi-
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cation cost problems. Concerning shared-memory machines, Zaki et al (1999)
propose a porting of SPRINT to several data parallel versions, from BASIC
to the Moving-Windows-K (MWK) algorithm, exhibiting progressively weaker
coupling: a global barrier for BASIC and a conditional variable per node for
MWK. They also propose a hybrid version. All versions are implemented on
top of a master-worker infrastructure, that is similar to one used in YaDT-FF,
thus also exploiting pipeline parallelism between the master and workers. How-
ever, synchronisations among master and workers happen via Pthread mutexes
and conditional variables, and therefore exhibit low scalability for fine grained
tasks. The work also highlights the limits of mutual exclusion as synchronisation
mechanism in this class of algorithms. A variant of ScalParC for shared memory
ccNUMA systems is proposed by Bradford and Fortes (2001), together with a
deep investigation of the impact of data locality and cache misses. The Rain-
Forest sequential algorithm (Gehrke et al, 2000), which is adopted as one of the
strategies of YaDT for handling continuous attributes, has been parallelised by
Jin and Agrawal (2003). The approach builds a decision tree by levels, with an
horizontal data partitioning for computing aggregate values needed in the gain
calculation. Synchronisation occurs in order to sum up the partial aggregates
and decide the best split. Finally, an adaption of horizontal data partitioning
to streaming datasets has been recently proposed in Ben-Haim and Tom-Tov
(2010).

Hybrid Task and Data Parallelism. The hybrid task and data paral-
lelism has been explored as a means to control the communication overhead.
In the hybrid parallel formulation (Srivastava et al, 1999) and in pCLOUDS
(Sreenivas et al, 1999), a data parallel approach is used for the top levels of the
tree, i.e., when the grain of decision node computation is large, and a task par-
allel approach for the low levels. Coppola and Vanneschi (2002) classify tasks
as large, intermediate or small. Large tasks process a single decision node. In-
termediate tasks process a sub-tree up to a maximum number of decision nodes.
Small tasks sequentially process the whole sub-tree of a decision node. YaDT-
FF, and in particular the NAP strategy, takes inspiration from the two latter
works and distinguish from them since: it does not need the redesign of the se-
quential algorithm but rather an easy-yet-efficient porting of the existing code;
it targets multicore rather than distributed memory machines; it adopts an ef-
fective cost model for deciding whether to parallelise on nodes (task parallelism)
or on attributes (data parallelism); the two parallel approaches are not used in
successive phases as in mentioned works but they are temporally inter-waved
and executed on the same stream parallel infrastructure.

Finally, we mention that the interest of the data mining community on
algorithms for multicore platforms is blooming, see e.g., Choudhary et al (2011);
Chu et al (2006); Jin et al (2005); Buehrer (2008). The general problem of
designing advanced locking schemas for decreasing the synchronisation overhead
in shared memory machines has been considered by Jin et al (2005) and by
Ravi and Agrawal (2009). YaDT-FF overcomes the problem via the FastFlow
lock-free synchronisation mechanisms: all synchronisations in the decision tree
building and pruning phases happen asynchronously in the emitter as the result
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of data-dependencies among tasks.

9.2 (Pattern-based) Parallel Programming Frameworks

Early proposals of pattern-based parallel programming frameworks have been
mainly focused on distributed memory platforms, such as clusters of work-
stations and grids. We mention ASSIST (Vanneschi, 2002), Münster skele-
ton library (Kuchen, 2002), and Google MapReduce (Dean and Ghemawat,
2008), which brings to mainstream of out-of-core data processing the map-
reduce paradigm. All these skeleton frameworks provide several parallel pat-
terns (algorithmic skeletons) covering mostly task and data parallelism. These
patterns can usually be nested to model more complex parallelism exploita-
tion patterns according to the constraints imposed by the specific programming
framework. More recent pattern-based frameworks, following the platform ar-
chitecture trend, have shifted the focus on multicores and shared address model;
in addition to FastFlow, it is worth to mention the Intel Threading Build-
ing Block (TBB) library (Intel Corp., 2011), and to a limited extent the Mi-
crosoft Task Parallel Library (Leijen and Hall, 2007). All of them are definitely
higher-level compared with the Pthread library that has been used in the shared
memory implementations of classification algorithms previously mentioned. The
main features of these frameworks, as well as many other experimental ones, are
surveyed in González-Vélez and Leyton (2010).

In addition to pattern-based frameworks, other high-level programming frame-
works also aim at simplifying the design of efficient applications on multi-cores
and thus are related with FastFlow and to the present work. StreamIt (Thies
et al, 2002) is an explicitly parallel programming language based on the Syn-
chronous Data Flow model that enables the assembly of program modules (called
filters) in a pipeline fashion, possibly with a FeedbackLoop, or according to a
SplitJoin data-parallel schema. Streaming applications are also targeted by
TBB through the pipeline construct, which also provides programmers with
thread-safe containers and some parallel patterns (called “algorithms”); TBB
does not support any kind of non-linear streaming network, which therefore has
to be embedded in a pipeline with significant programming and performance
drawbacks. Intel’s Concurrent Collections (CnC), which declaratively mod-
els concurrent activities as data streams and control dependencies, has been
recently proposed as candidate substrate for parallel patterns (Newton et al,
2010). OpenMP (Park et al, 2001) is a popular thread-based framework for
multi-core architectures mostly targeting data parallel programming even if it is
currently being extended to incorporate stream processing. OpenMP supports,
by way of language pragmas, the low-effort parallelisation of the sequential pro-
grams; however, these pragmas are mainly designed to exploit loop-level data
parallelism (e.g. do independent). CnC and OpenMP do not natively support
neither farm nor Divide&Conquer patterns, even tough they can be simulated
with lower-level features.
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1E+1W 1E+2W 1E+3W

T name Seq.Time (S) Time (S) Max Boost

Census-Income 3.95 4.01 2.1 1.45 2.72×
U.S. Census 13.82 18.67 8.40 5.83 2.37×
KDD Cup 99 21.24 23.20 11.83 9.20 2.31×
Forest Cover 22.50 25.26 12.50 8.37 2.69×
SyD10M9A 135.27 123.20 57.69 41.66 3.24×

Table 4: YaDT vs YaDT-FF on a Nehalem quad-core. Build time plus EBP
pruning with grafting time is considered (E=Emitter, W=Worker).

10 Conclusions

Nowadays, and for foreseeable future, the performance improvement of a single
core will no longer satisfy the ever increasing computing power demand. For
this reason, the computer hardware industry shifted to multicore, and thus the
extreme optimisation of sequential algorithms is no more sufficient to squeeze
the real machine power. Software designers are then required to develop and
to port applications on multicore. In this paper, we have presented the case
study of decision tree building and pruning algorithms, porting YaDT to mul-
ticores using the FastFlow parallel programming framework. The strength of
our approach consists in the minimal change of the original code with, at the
same time, non-trivial parallelisation strategies. We have characterised lower
bounds for the forms of parallelisations adopted, and obtained performances
close to such bounds. This confirms the effectiveness both of our design and of
the underlying FastFlow layer. Parallelisation of the pruning phase is a totally
novel contribution of this paper. Eventually, we want to stress the results in
the case of a low cost quad-core architecture that may be currently present in
the desktop PC of any data analyst. Table 4 shows that the parallelisation of
YaDT, including both building and pruning, boosts up in the 2.3− 3.2× range,
with no additional cost for a dedicated parallel hardware.

Acknowledgements

We thank the Competence Center Gateway for HPC of the IT Center, University
of Pisa, for the use of the Magny-Cours box.

References

Aldinucci M, Torquati M (2011) FastFlow website. http://mc-fastflow.

sourceforge.net/

Aldinucci M, Meneghin M, Torquati M (2010a) Efficient Smith-Waterman on
multi-core with FastFlow. In: Danelutto M, Gross T, Bourgeois J (eds) Proc.
of Intl. Euromicro Conf. on Parallel Distributed and Network-based Process-
ing (PDP 2010), IEEE, pp 195–199

37

http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/


Aldinucci M, Ruggieri S, Torquati M (2010b) Porting decision tree algorithms
to multicore using FastFlow. In: Proc. of European Conf. on Machine Learn-
ing and Knowledge Discovery in Databases (ECML/PKDD 2010), Springer,
LNCS, vol 6321, pp 7–23

Amado N, Gama J, Silva F (2001) Parallel implementation of decision tree learn-
ing algorithms. In: Brazdil P, Jorge A (eds) Progress in Artificial Intelligence,
LNCS, vol 2258, Springer, pp 34–52

Asanovic K, Bodik R, Demmel J, Keaveny T, Keutzer K, Kubiatowicz J, Morgan
N, Patterson D, Sen K, Wawrzynek J, Wessel D, Yelick K (2009) A view of
the parallel computing landscape. CACM 52(10):56–67

Ben-Haim Y, Tom-Tov E (2010) A streaming parallel decision tree algorithm.
Journal of Machine Learning Research 11:849–872

Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y
(1996) Cilk: An efficient multithreaded runtime system. Journal of Parallel
and Distributed Computing 37(1):55–69

Bradford JP, Fortes JAB (2001) Characterization and parallelization of decision-
tree induction. Journal of Parallel and Distributed Computing 61(3):322–349

Breslow LA, Aha DW (1997) Simplifying decision trees: A survey. The Knowl-
edge Engineering Review 12:1–40

Buehrer GT (2008) Scalable mining on emerging architectures. Phd thesis,
Columbus, OH, USA

Choudhary AN, Kumar P, B BO, Misra S, Memik G (2011) Accelerating data
mining workloads: Current approaches and future challenges in system archi-
tecture design. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1:41–54

Chu CT, Kim SK, Lin YA, Yu Y, Bradski GR, Ng AY, Olukotun K (2006) Map-
reduce for machine learning on multicore. In: Proc. of the Annual Conference
on Neural Information Processing Systems (NIPS 2006), MIT Press, pp 281–
288

Cole M (1989) Algorithmic Skeletons: Structured Management of Parallel Com-
putations. Research Monographs in Parallel and Distributed Computing, Pit-
man

Coppola M, Vanneschi M (2002) High-performance data mining with skeleton-
based structured parallel programming. Parallel Computing 28(5):793–813

Darlington J, Guo Y, Sutiwaraphun J, To HW (1997) Parallel induction algo-
rithms for data mining. In: Proc. of 2nd Intl. Symposium on Advances in
Intelligent Data Analysis, Reasoning about Data (IDA), Springer, LNCS, vol
1280, pp 437–445

38



Dean J, Ghemawat S (2008) MapReduce: Simplified data processing on large
clusters. CACM 51(1):107–113

Esposito F, Malerba D, Semeraro G (1997) A comparative analysis of meth-
ods for pruning decision trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(5):476–491

Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes
in decision tree generation. Machine Learning 8:87–102

Frank A, Asuncion A (2011) UCI machine learning repository. URL http://

archive.ics.uci.edu/ml

Freitas AA, Lavington SH (1997) Mining Very Large Databases with Parallel
Processing, 1st edn. Kluwer Academic Publishers, Norwell, MA, USA

Gehrke JE, Ramakrishnan R, Ganti V (2000) RainForest — A framework for
fast decision tree construction of large datasets. Data Mining and Knowledge
Discovery 4(2/4):127–162
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