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Abstract

We explore the possibilities offered by a programming madglporting components, workflows and skeletons. In
particular we describe how®M, an already existing programming model supporting comptmand workflows,
can be extended to also provide algorithmic skeleton cdasceProgrammers are therefore enabled to assembly
applications specifying both temporal and spatial refetiamong components and instantiating predefined skeleton
composite components to implement all those applicatiotsghat can be easily be modelled with the available
skeletons. We discuss preliminary results as well as theflierderiving from Skm adoption in a couple of real
applications.

1 Introduction

Grids as well as recent large scale parallel machines peopdsuge amount of computational power as well as of
storage. Therefore, it is possible to envision scientifidecooupling applications that take into account more playsic
phenomena. A major issue still to be solved is to define alsleifrogramming model to ease application development
and to efficiently exploit resources.

From the many properties such a programming model shoulgeplet us list on some of them. A first property
is to face the complexity of software management, and iriqudair to enable code re-use. Second, it should support
strong coupling algorithms which are often present in higfgrmance applications. Third, as resources are more and
more shared, the programming model should enable an effiegage of resources, in particular through the support
of loose coupling between the application elements. Foutrtthould abstract resources to achieve two important
goals: let programmers to only deal with functional conserrand so non functional concerns must be hidden — and
applications should be portable to a wide range of architest i.e., abstractions that can be adapted to resourcgs mu
be provided.

There are many programming models that attempt to easegoging large complex scientific applications and
hide the complexity of underlying execution resources eigllg Grid infrastructures. This report focuses on those
based on assembly/composition principle, as programmyngdsembly is gaining more and more acceptance to
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deal with complex scientific applications. In particulardéeals with three well known families of models: software
component models, workflow languages and skeleton basepigmoning. Each family attempts to respond to the
presented properties to deal with the complexity of apfilices and/or resources. Depending on a given model,
the properties are more or less handled. For example, maidtware engineering practices promote the usage
of software component models [28] to deal with code re-usepdrticular components enable to easily build an
application made of piece of codes written in different laages. While component models appear adequate for strong
coupling composition, workflow models seems more tailoddose coupling composition. However, algorithmic
skeletons are considered more well suited to provide a simpstraction that then be optimized by the system with
respect to the resources [16]. Hence, there is not a modedfiicdently handles all these properties. Though all these
properties are relevant, they should be all and well comseitiby a single programming model. As far as we know,
there is not such a model. Nonetheless, there are some psawiarks that aimed to bring closer these families. For
example, $cMm (Spatio-Temporal Component Model) [13] is a model comlgraomponent models and workflows.
Similar efforts have been carried out for skeletons and acomept models [2, 19].

This report explores the feasibility of a programming maz@hbining the three families — components, workflows
and skeletons. Rather than proposing a programming moai@l $cratch, it studies how to combine &v— which
already unifies components and workflows — with skeletons.diticome should be a programming model supporting
all the presented properties.

The remainder of this report is organized as follows. Sest®and 3 recap main features and technical background
of component-and-workflow and skeleton-and-componenhattiogies, respectively; 1 €m andbehavioral skele-
tonsare presented as paradigmatic examples of the two methgideJavhich are compared in Section 4. Section 5
introduces $kM (Spatio-Temporal sKeleton Model), where the two methogiele are stacked in an two-tiered ar-
chitecture aiming at raising the level of abstraction offbodmponent-based and workflow-based parallel/distribute
programming approaches. The benefits of the approach isrshgweasoning about the design of two real-world
applications (biometric identification and climatolog$ection 7 concludes the report and presents future works.

2 STCM: Merging Component Models and Workflow Languages

In [13], we proposed a Spatio-Temporal Component Modelc(®). This model appears as a combination of two
technologies: software component models and workflow nedis aim is to allow a designer to express the behavior
of an application by assembly. This behavior considers boghtemporal logic of the application execution, based
on reusing workflow concepts, and the spacial dependertti¢sitay exist between components, based on reusing
component models concepts.

Before giving an overview of cM [13], let introduce software component models and workflamguages. The
introduction is done according to a generic view of existidghnologies and to the main properties that motivate the
combination of the two approaches im@&u.

2.1 Software Component Models

Independently of existing technologies, like £[10], Ccm [25], Gcm [17] or SCA [8], a software componentappears

as a black box unit of a reusable, composable and deployati&e @he composition is done through the connection of
well-defined ports that allow a component to interact withestcomponents. The interaction between two components
often follows aprovide-useparadigm. According to existing component models, thisgaym is mainly based on one

of the following communication models: operation/methalls; message passing, document passing (Web Services),
events or streams. Itis used in most of proposed assemblglstmddefine a spatial relationship between components.
That means, during the time a relationship between two compis is valid, these components are concurrently
active. That is true, as in general, the frequency of theaatéon is not known. Therefore, an application assembly
corresponds to its architecture at execution. This archite can be captured by UML component diagrams [26].

2.2 Workflow Languages

There exist many environments [32] that offer workflow bageafjramming models to develop and execute scientific
applications. Examples are Askalon [21], Triana [29], Kepb] and BPEL [6]. Independently of an existing environ-
ment, building an application according to a workflow is ddayedescribing the order of actions, often nantasks
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Figure 1: A component-task as a combination of a componehttask concepts.

to be executed and their data dependencies. For that, tatvcand data flow models are proposed. A control flow
model allows the description of the execution order of tdsksising control constructs such as sequences, branches
or loops. A data flow model focuses on data dependencies brtieks. To define data dependencies, a task specifies
its inputs and outputs ports. Thus, describing connectidrmgitput ports of some tasks to input ones of a task’
defines data dependencies betwgeand?. Therefore, workflow models deal with temporal composiiofhis kind

of composition can be captured by UML activity diagrams [26]

2.3 STCM

Component models offer well founded concepts for code ranseapplications complexity management. However,
while the spatial property of component models make themerappropriate to develop strong coupled applications,
the temporal property of workflow models ease programmiedeémporal logic of an application that can be moreover
captured from the assembly to enable efficient resourcesgament. In order to group the advantages of the two
programming approachesy&m proposes a combination of component models and workflomiagegs. For that,

it defines the concept afomponent-taska spatio-temporal assembly model and life cycle managerhehgive an
overview of these concepts.

Component-task As shown in Figure 1, a component-task is a component thatastgpthe concept of task. Thus,

in addition to classical ports, namspgatialports in S'cM, a component-task can define input and output ports, named
temporalports. Temporal ports and task behave like in workflow mad@élse difference is that the life-cycle of a
component-task may be longer than the one of a task in a warkfihich usually corresponds to its execution. In
addition, a task in &cm can communicate with other component-tasks through dcligatial ports. More details about
the specification of task and temporal ports concepts caninadfin [13]. This specification is presented through an
extension of a @M (Grid Component Model) component.

Spatio-temporal assembly model The assembly model proposed for@u is inspired from theAbstract Grid
Workflow Languagg21] (AcwL)!. AcwL offers a hierarchical model made of atomic and compositkstasA
composition is done with respect to both data flow and coffiwal compositions. The control flow supports several
control constructs like sequences, brancliearidswitch, loops or andwhile) and parallel constructpérallelFor
andparallelForEach), etc. The assembly model of &M is mainly based on replacing arcAvL task by a component-
task, including the addition of spatial composition.

Figure 2 gives an example of a composition using a simplifiedMbassembly language (the original syntax is in
XML format for which a grammar is presented in [13]). The texpeait shows the assembly inside thar al | el
control structure. As can be shown, the proposed languag@sato declare component-task typ&s (ines6 to 8,
and( C), lines9 to 11) and component-task instancds (ine 12, and( C), line 13), describe a data flow (lineg

10ther workflow languages can be chosen. The principle of fyiogj them to define a spatio-temporal assembly model islaimi
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conmponent Exanple {

1

2 C

3 parallel parCrl {

4 datal n Doubl e inPar <= a.outA

5 /1 decl arations

6 conmponent B { dataln Double inB;

7 clientPort Conpute pB;
8

h
component C { dataln Doubl e inC;

©

Fmmmm—— -2

:parallel 10 serverPort Conpute pC
i 11 ;

: 12 instance B b;
! 13 instance C c;
: 14 connect b.inB to parCrl.inPar;
I 15 connect c.inCto parCrl.inPar;
Lo - 16 connect b.pB to c.pC

17

18 /'l instructions

19 section : exectask (b);

20 section : exectask (c);

21 } // end parallel
22
23 }

Figure 2: Simplified example of an assembly recalling thagple of Srcm.

14 and15), describe the order of execution of tasksandc in parallel, linesl9, 20) and spatial dependencies (line

16). Means are then offered to a designer to build by assembajigarithmic logic, including temporal and spatial

dependencies at the same level of a composition. That isai@ot only to simplify the design but also to increase
code reuse and be able to envisage solutions for efficiegeusiexecution resources.

Life cycle of a component-task To manage the life cycle of component-tasks during an agiidino execution, 5cMm
defines a dedicated model. The management relies on they abiiapturing the algorithmic logic directly from the
assembly and ensure for example safe destruction of compdaek instances. For thaty&m defines a state machine
diagram corresponding to the life cycle of a single compoitask and an assembly semantic to reflect as much as
possible a deterministic application behavior.

The state machine is recalled in Figure 3. From this diagriaman be noted that the activation duration of
a component-task instance can be longer than a task exeacltiation. This is required when a component-task
provides functionality on which other component-tasksatahin the assembly.

The semantic associated to anc assembly is determined with respect to simple composititesrto be taken
into account when building an application. The main rulesthe following:

o If a component-tasi uses (composition in space) a functionality provided bytl@ocomponent-task, then
B must be concurrently active withand remains active as long @sis active.

¢ If a component-task instandeor if another component-tadk that usesA is no more reachable by a control
flow, thenA becomes useless and can be destroyed

e A component-task instance must be activated at the latest tie control flow reaches the execution of its task
and input data are received or when it is used by another carapbtask instance.

e The execution of a task is assumed to produce not more thaouipet data on a same output port

In addition to the proposed assembly constructs, thess arke expected to help a designer to easily express a
suited behavior. They aim also to ease automatic manageshemt application structure with efficient resources
usage.

3 Skeleton Based Programming

Structured parallel programming models based on the dlgoit skeleton concept are around since the '90s since
skeleton concept introduction by Cole [15]. Later on, sele¥search groups developed programming environments,
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Figure 3: Life cycle of a component-task.

systems and libraries based on the skeleton concept [7,2®,22, 30]. Skeleton based programming models
allow programmers to express parallelism using a set ofgfneeld patterns, the skeletons, that model common par-
allelism exploitation patterns. Typical skeletons aréeitstream or data parallel. Classical stream parallebsies

are pipelines (modeling computations performed in stagaed)farms (embarrassingly parallel computations). They
exploit parallelism between computations of differentubfasks of the input stream to produce a stream of results.
Typical data parallel skeletons are map (independentljpratiuce (summing up of a collection of data via an associa-
tive and commutative operator) and stencil (forall with elegencies). They all exploit parallelism in the computatio
of a single input task.

The skeletons are parametric and programmers can therefigstemize them by defining the kind of primitive
computation used by the skeleton (e.g. a pipeline stageayndihap worker), its parallelism degree or any other kind
of skeleton specific features (e.g. whether or not a farmlshguarantee input/output ordering). Most likely, skefeto
programming environments and systems allow programmaearssbskeletons (e.g. a pipeline stage can be expressed
as a farm/map skeleton) and therefore skeleton based appfis happen to b&tructuredas a skeleton nestingus
some sequential code used as a parameter for the leaf sieleto

Once applications have been structured via proper skefegsting, the implementation of the skeleton framework
takes care of all the aspects relative to parallelism elqtion. Parallel activities setup, mapping and scheduling
communication and synchronization handling and perfogeadnning are all aspects that are dealt with at the skeleton
implementation level rather that in the programmer apgilicecode. Being the skeletons known and efficient patterns
of parallelism exploitation, this results in very efficiarid scalable application implementation, independeritiye
model chosen for the implementation, that traditionallgither template based [27] or macro data flow [18]. Overall
the whole process results in a complete and wsetbaration of concerrnisetween application programmers and system
programmers. The former are in charge of recognizing palrath exploitation patterns in the application at hand and
of modeling them with suitable skeletons (or skeleton mg3ti The latter are in charge of solving, once and for all,
when the skeleton framework is designed and implementegrtbblems related to the efficient implementation of the
different parallelism exploitation patterns and to théiirogent composition. This separation of concerns has ableta
list of positive side effects: i) it consistently contrilestin supporting rapid application development and tuniing,
applications programmers are not required specific knogéezh parallelism exploitation techniques, iii) programs
can be seamlessly ported to different architectures pealitiat system programmers have already studied, designed
and implemented proper skeleton implementation for the tagget, just to mention a few.

Algorithmic skeletons can be quite easily associated towso€ components. A skeleton is a building block for
parallel applications exactly the same way a componentusidibg block for a generic application. As a consequence,
skeleton technology has recently been used in the compdmaeeid programming scenario [1, 22]. In this case,
(composite) components are provided to the user that modefron parallelism exploitation patterns and accept other
components as parameters modeling the skeleton inner datigns (e.g. the pipeline stages or the farm workers).

The last step we want to mention here in the algorithmic $kaleoncept evolution has been the introduction of
autonomic managementaspects in skeletons. Skeletonrimeptation was in charge of handling all the non functional
aspect of parallelism exploitation since the very begignirlowever, the advent of significantly new architectures,
such as Grids, with highly dynamic and unreliable featungsased some more evolved approach to non functional
aspect handling. Therefore, autonomic management oftskefeatures has been introduced [3, 2] that dynamically
adapt skeleton execution to the varying features of theetaaigchitecture considered. Using this “last” version of
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the skeletons (namdakhavioral skeletondo explicitly mention they have managers taking care ofaigit behav-
ior of the skeleton implementation) users can develop (Gjublications that seamlessly amithout any kind of
user/application programmer interventioeact to node faults, additional node loads, network inefficies and keep
(in a “best effort” way) the application running accordirgat user specified QoS contract.

4 STCM vs Skeletons: Discussion

Despite the ability of $cM to abstract the behavior of an application to be expressdtslassembly, the level of
abstraction remains low. This is the case in particular fmaplel programming. In this context, two issues are arisen
This section introduces and discusses these issues andatadtie work presented in this report.

The first issue is related to the design of parallel prograngparadigms usingi®M. The relations that can be
expressed between component-tasksTieis remain simple. In the spatial dimension, only relationsypfet1-to-1
or 1-to-N can be expressed between an assembly of component-taskig. ilMime temporal dimension, only sim-
ple tasks and data parallelism can be expressed througtotoabstructs likepar al | el orpar al | el For Each
(independent forAll). Even if a combination of the two caack more complex behavior, offered constructs are not
sufficient to simply express a usage of complex parallel¢igras. That lead a designer to construct complex appli-
cations in an arbitrary way and to consider parallelismésswhen programming, probably leading to non efficient
execution and/or execution resources dependencies. Ateam to overcome such a limitation, a first objective of the
present work is to to propose means to take benefits fromtskegginciple to construct complex parallel applications
in a simple way.

The second issue is related to efficient execution of an ddgenThis issue relies essentially on scheduling
policies adopted by an execution framework. A simple potiay consider the execution of an application step-by-
step mainly directed by the temporal dependences betwaapament-tasks. However, a more efficient scheduling
should consider a global behavior of part or whole applaratissembly, in particular to exploit maximum parallelism.
For that, means are required to recognize parallelism fdroms an assembly. In this direction, the second contrilsutio
of this report aims to consider the extension o£® with respect to resolving the firstissue and analyze theipitigs
of exploiting parallelism behavior from a component-taskembly. In this context, we propose to study the projection
of an abstract assembly to skeleton based forms. We cangkeibénefits from already existing skeleton management
mechanisms to efficiently execute an application.

5 Towards STKM: a Combination of STCM with Skeleton Based Prgram-
ming

In this report we propose a combination af@&v and skeleton principle in thet8 v model. The objective is twofold.
The first goal is to increase the abstraction level o€® regarding programming parallel applications. In partéaul
we aim to offer to a designer a programming approach base#elaten constructs. That is to promote simplicity of
programming, the construction of correct programs and gedse. The second goal is to offer means for efficient
execution of an application. For that, we propose to anallgeepossibility to exploit parallelism behavior from an
assembly and follow a management approach based on a projetthe assembly to a composition of nested skeleton
constructs. Thus, the management of parallelism can bedumskeleton management for which a lot of efforts are
already done to deals with low level parallelism concerrdefficient execution.

This section presents our proposal in three parts. The firstgesents the proposed extension of 8 regarding
the support of skeleton constructs (Section 5.1). The skparnt outlines the consequence of definimgk® on top
of STCcM on Srcw itself (Section 5.2). The last part presents the princiglenanaging the execution of anr&m
application (Section 5.3).

5.1 Skeleton Constructs on top of STCM

Our approach to enable a designer to express the usage etmskdélased parallel paradigms is to extertc@

with dedicated constructs. These constructs are particolaposite components (templates) for which the internal
structure is well-defined according to a parametric schérhay can define ports and be composed with other skeleton
constructs and/or components. The elements of a skeletage&s for the pipeline and workers for the functional
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conponent = stcnConp | skel eton
skel et on = <skel eton nane=string>
i nput Skel ? out put Skel ? port* attribute< skel Const?
</ skel et on>
i nput Skel = <i nput Skel nanme=string type=string (set=string)?/ >
out put Skel = <out put Skel name=string type=string >
skel Const = pipe | funcRepl | sequential ...
pi pe = <pi pe nane=string>
i nPi pe
</ pi pe>
i nPi pe = conponent* instancex stage+ configport *
st age = <stage name=string>
skel et on
</ st age>

/1 Functional replication behavioural skeleton

f uncRepl ;1= <funcRepl nane=string>
i nFuncRepl
</ funcRepl >
i nFuncRepl ::= conponent* instancex worker configport-~ em tCollect? sharedConp?

/1 emitcollect specifies the policy of handling skeleton inputs and outputs
/'l exanple: (broadcast, reduce)
/1 sharedConp specifies a conponent encapsul ating a shared state between workers

wor ker 11 = <worker name=string (cadinality=int)?>
skel et on
</ wor ker >

emtCollect::= <emtCollect emt=string collect=string >

sharedConp ::= <sharedConpl nstance ref=string/ >
sequenti al = st cnctonponent

configport ::= clientserv | inout

clientserv ::= <setPort client=string server=string/ >
i nout = <setPort in=string out=string/ >

Figure 4: Overview of the &M grammar related to the skeleton composition part. Only pipgfarm constructs are
considered. In bold the grammar keywords. In italic, th&® language keywords.

>
outputSkel
long

Figure 5: Wrapping a component to be a skeleton element. ©lett) skeleton inputs and outputs are bound to stream
ports. On the right, they are bound to temporal ports. The tyfiports are data types which must be compatible.

replication) can be skeletons or components (primitiveoonposite). These elements can also be composed with other
components (internal or external to the skeleton congtrilitie objective is to promote composition at different leye
which should improve composability and code reuse, whitserving the pragmatic of skeletons. The extension of
STCM consists in extending its assembly language [13]. An oeendf this extension for the pipeline and functional
replication skeletons is shown in Figure 4.

In more details, a skeleton inTBM defines at least its inputs/outputsnput Skel andout put Skel in the
grammar) and their functional elements. The inputs anduistports are not concretely a new kind of ports. They
are of stream type (as in classical skeleton usage) and acetasdentify which component ports have the role of
receiving and producing data proper to the skeleton contipnta Therefore, a component can be reused by a simple
wrapping mechanism (Figure 5). However, that assumes tapped component to behave like in a classical skeleton:
On the reception of an input data, a computation is launcpextiucing one data on the output port. Otherwise, the
behavior of the skeleton is not preserved. With respecteaypes of component ports, skeleton inputs and outputs
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Figure 6: Example of a composition using&v.

sequence { A, pipe {B, C, D}, E}
1

forAll {
pipe pipe " )

L il
‘n__. >wait n data
é.E .E before launch
) i task (E)

Figure 7: S cm modification to support skeleton constructs in temporalatision: temporal ports cardinality princi-
ple.

of a skeleton can be bound to classical stream ports or teahports, in which case the computed function is a task.
The latter case is a good example which responds to suitealtoeh That is true thanks to the last &v semantic
rule defined in Section 2.3. For simplicity, in this reporg assume that component-tasks define only one input and/or
output port (if the task has data dependencies).

Figure 6 represents an example of ankM assembly. It illustrates the possibility of composing comgnts
with a skeleton construct and skeleton nesting. Comparéu avclassical usage of skeletons, it is easysirkm
to assemble sequential with parallel codes, when only daahaapplication is parallel. Moreover, a skeleton and
its included components can define classBatm ports and be composed with other components. This promote
expressing code dependencies by assembly rather thannraptimg them in the skeleton computation codes. That
ease programming and improve code reuse. In addition, noomplex behavior can be expressed by a skeleton, like
the possibility of accessing a shared state between cotimrutades in a functional replication skelet@gomponent
in Figure 6).

5.2 STCM modification requirements

STKMaims also to enable exploiting parallelism in several s$itunes, in particular, in both spatial and temporal di-
mensions of an assembly. Even if the parallelism built byedetkn construct infers a spatial assembly, which can be
of course implicated in a temporal dimension (like shown igulre 6), that may be not sufficient to ease expressing
some behaviors. A typical situation is to express throughssembly that ordered tasks in part of a workflow should
be executed in a pipeline way. The left part of Figure 7 illatgs such a situation for a sequence. Syntactically, the
proposed extension allows such a composition. Howevepaissibility of a pipelined execution depends on the abil-
ity of receiving multiple input data on the input stream of thipe construct. As we assumed3mCMthat not more
than one output data on a temporal port may be produced fargdesitem and as the model preserves the semantic
of control constructs, a mechanism is needed to be able foosupuch a situation. A mechanism is also needed to
enable the collection of the results on a stream after aipipelexecution.

CoreGRID TR-0153 8



A solution is to relax the assumption specifiedSFCMto allow a task to produce multiple output data for a single
input data and symmetrically, allow a task to collect mudtimput data to produce one output data. For that, two
issues are to be resolved.

First, it is necessary to enable a component-task to expheszlated task’s behavior when it is defined or com-
posed. Otherwise, it may be difficult to determine the bebrawi an assembly. We propose to resolve this issue with
a simple cardinality principle to be associated to temppeaats. The right part of Figure 7 shows the principle of the
solution. An input port with a cardinality (respectivelyn) means at most one data (multiple data) are required to
execute a task. In the case of multiple data, the number efwed data is determined by the end of the execution of
the task that produces the data. While an output port withrdireality 1 (respectivelyn) means one data (multiple
data) may be produced by one execution of a task.

The second issue is related to the need of a mechanism tbat altask implementation to be able to send
(respectively receive) multiple data on output (resp. thpemporal ports. To produce multiple data, our solution
consists in offering a callback operation to componenkt-taplementation allowing a task to signal the availabitfy
output data to be sent. This operation can be called muliiples. The end of the execution of the task corresponds
to the end of producing output data for a single input datae Ptinciple of this solution is already proposed in
preliminary spatio-temporal composition model that wesprged in [12]. Because a cardinalityfor an output port
affects the implementation of a component-task, the calitirhas to be specified in the definition of the port. On the
input side, we assume that it is at the responsibility of thenework implementation to wait all incoming data before
executing a task. In this case, the task behaves like in e afhaving a single data received on the port. Therefore,
it is sufficient to specify a cardinality for an input port at the assembly level to obtain the suitedblir. This,

a component-task with an input port of cardinalityappears in an assembly as a reduction or synchronization poi
within an assembly.

The outlined changes inT8&M raises the issue about their consequence on the life cyderponent-tasks and
so on the semantic of antT8M assembly. The principle of a task is still dependent on trelatvility of one data.
Even if it can produces multiple data, the end of its execuisostill well determined. In addition, in1&wM, the
life cycle management is still directed by spatial and terapdependencies between components, including skeleton
constructs, for which the principle is the same asiic®. The only modification affects the last semantic rule defined
in Section 2.3 and which becomé$he execution of a task can produce multiple output data same output port.
The end of the execution determines the end of producingibdga”. Finally, STkm preserves the global principle
of Stcwm.

5.3 A suited approach for efficient execution management

Until now, we dealt with the abstract viewpoint 8T KMoffered to a designer. The goal of proposing such an abstrac-
tion is not limited to simplifying programming, improvinfé expressiveness of an assembly or improve code reuse.
The goal is also to be able to adapt an application to a givaeamtyc execution context while ensuring a given user-
defined Quality of Service (QoS) contract. We shown in presiworks that skeletons [2, 30, 3, 16] have the ability
to cope with the autonomic steering of application executioensure dynamically defined levels QoS, and that it can
be done while preserving their high-level nature ensuriogcyproprieties such as: the separation of concern between
functional and management code (thus code reuse), the atitogeneration of binary code (thus rapid prototyping
and code portability), etc. In this regard, the approachdnaged to be effective with respect to a number of domains,
such as performance [3], security [4], and fault toleraridd?]

Hence, an issue is to propose an approach to manage the ierectiin STKM application. In general, the
effectiveness of an execution depends on the expressy@ueger of an assembly and the ability of an execution
framework torecognizethe behavior of an application, to take into account exeoutesources (number of proces-
sors, size of memories, network architecture, availagbditd dynamicity of resources, etc.) and to make adequate
decisions to adapt the application to the resources. Spaltyfibehavioralskeletons attack idiom recognition prob-
lem by providing pre-defined parametric patterns exhibitinwell-defined behavior, and thus, supporting pre-defined
management strategies. Thus, behavioral skeletons ebstraponent self-management in component-based design
as design patterns abstract class design in classic OOogereht.

In the context of $KM, such decisions are expected to consider in addition to ¢eahpnd spatial dependencies,
made by an $cM engine, the skeleton constructs. With respect to skeledmistoucts, the main role of anT&m
framework is expected to project or transform ark® assembly to a concrete one (the assembly at execution). The

2Where those domains are taken in insulation, the multi-dommanagement is currently under investigation.
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Figure 8: Functional replication behavioural skeleton poment.

projection consists in replacing a skeleton descriptiothaabstract assembly by an adequate implementation. For
that, our aim is to reuse already proposed component bagedrimentations (such as behavioral skeletons in the GCM
[2, 23]) and take benefits from their self adaptive managemisromputational elements and their ability to deal with
optimization issues, like collapsing stages of pipes aouhicing farms for efficiency. Following such an approach,
an assembly after a skeleton construct replacement is gptxbe an 8cM assembly.

Since §kM skeleton deployment and activation is driven by temporalethelencies, they are dynamically de-
ployed, and since they are parametric patterns, they cagrmaically configured at deploymenttime (e.g. according
to available platforms). This kind of flexibility covers additional case with respect to autonomic management (that
is fully dynamic), compile-time configuration (static) aagplication launch-time malleability (launch-time) basa
each specific skeleton can be configured at the time it isyre@éded. This time may happens to be in a point of
time well after the application launch, especially in vesggd running applications. This, in turn, may reflects in very
different execution environments in the two points in tindée envision, as immediate result, the iterative mapping of
the same skeleton (within a temporal loop) onto differesereations of Grid sites along time. Observe that, for some
kind applications, flexibility may be as effective as fullyrcamic adaptivity but, in general, it incurs is quite lower
adaptation overheads [3, 2].

In addition to the management of skeleton constructs, wearmestigating the possibility of managing some
parallelism forms that are not explicitly expressed by thage of skeleton constructs but which can be mapped to a
skeleton composition without modifying the expected bébravAn example is to deal with the independéotr Al |
control constructsfar al | el For Each). The parallelism expressed by this construct can be majgpeflunctional
replication skeleton in which the workers are the body oflttop. Other parallelism forms can be also built imk31
purely based on the usage of temporal port cardinality pslacFor example, if we assume that the pipeline construct
shown in Figure 7 is not used and the cardinality on the poet&apt, an implicit pipeline behavior is built. The ability
of a framework to capture such a behavior, which can be dyrdaine thanks to the cardinality information, offers the
possibility to envisage a pipelined execution managed bgdicdted skeleton construct. That represents a possible
mean to exploit parallelism with existing efficient mectsams. Such a mean is still in a study status. Solutions to
recognize parallelism forms from an assembly and the pifisgite map them on a skeleton constructs are required.

6 STKM exploited

In the Sections above, we have introducetk®. In this Section we outline the key points and advantagesraivs
by showing how two typical and significant use case appbicatcan be implemented exploiting@&v methodology.

6.1 Fingerprint recognition in STKM

The first application we consider here is a refined versionudfeacase application considered in the framework of the
GridCOMP EU STREP project [23]. In that context a fingerpratognition application was considered that has to
be able to match a fingerprint against a database possihiiyphaslarge number of fingerprints. The goal is to be able
to get a real time answer telling whether or not the fingetpsiim the DB and, in positive case, the fingerprint owner
identity [31]. In our extended version, we also considerphg of the application that collects fingerprints from real
persons (e.g. at the airport arrival gates) and submits toetre fingerprint recognition software for processing.
Fingerprint matching against a DB can be nicely modelledgiskeletons. This is a plain data parallel skeleton
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/'l port types are assuned to be defined
conponent FPApplication {

conponent GateAdni n{ uses CheckRequest UuGA,
...Gate and MGR conponents. ..
+

funcRepl FPMatcher { inputSkel FPrint slnFPM
out put Skel string sCQutFP;
attri bute bool ean batch;

conponent Split { provides GetDB pDB;
provi des Set Nor W pW
h

wor ker sequential cnpSkel {
i nput Skel FPrint slnCVP;
out put Skel bool ean sCut CVP;
conponent cnp { provides Set DB pDB;
stream n FPrint slnCWP;
streamOut bool ean sQut CVP;
h
1

instance Split sp;
connect strm nCMPSkel to cnp.strm nCVP;
connect cnp. strnmut CMP to strnOut CMPSkel ;
connect cnp. pDB to sp. pDB;
emt-collec:: (broadcast, O -reduce);
shar edSt at eConp sp;

I

conponent Check { provides CheckRequest pC
streamOut FPrint sQutC;
stream n bool ean sl nG;

+

instance Gat eAdni n gat eAd;
intsance FPMat cher fpm
instance Check chk;

connect chk.sQutC to fpm sl nFP;
connect fpmsQutFP to chk. sl nC;
connect gateAdm n.uGA to chk. pG;

sequence Appl Mai n{ exectask(fpm;
exect ask( chk) ;
exect ask(gat eAd) ;

Figure 9: Simplified $KM assembly for the Fingerprint recognition application epéen

where parallel workers have been given a portion of the dase land any single fingerprint is broadcasted to all the
workers. Referring to théunctional replicationbehavioural skeleton as defined in [2], whose structureasvdrin

Fig. 8, this corresponds to have identical worker compogBnspecialized by submitting them different portions of
the DB, a broadcast port and a or-reducé€’ port (C gathers answers from all the workers and basically ORs the
boolean values received).

Functional replication behaviroural skeleton is one ofgkeletons considered inrf8m, and therefore this appli-
cation can be easily expressed usingk® (Figure 9). Figure 10 illustrates tiepatialaspects of the application. The
left part handles gates, delivering requests todteck component. This component transforms requests issued on it
provide port into items on the input stream for skeleton pesing requests (the composite component in right part of
the Figure) and conveniently returns the values receiveitkanput stream port connected to the output of the recog-
nition component as results of the provide port invocatibime upper part of the Figure outlines the internal structure
of the workers of the functional replication skeleton imsta and of the Gate components. The former is a wrapping
of the single fingerprint matcher (i.e. of the pre-existir@gnponenttmyp that provides a port used to supply it the
fingerprint DB, and two stream ports for accepting fingergrto match and for delivering the corresponding answers)
that eventually implements a provide port accepting “DBeaed” requests from the manager and a use port to access
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Figure 10: Spatial composition of the Fingerprint recogmitapplication. The gray part is hidden to the designer.

the DB portions in theSplit component. The latter is a standard loop initializing theegacanning a fingerprint,
submitting it to the matching system and publishing the ltesfithe match.

From the temporal viewpoint, the application componenpplea to be hosted in a sequence that first launches the
FingerPrint matcher component, then the Check one andusiynthe GateAdmin manager. Tha@v description
of the sequence is shown in the last part of Figure 9. It is lvpdinting out that exploiting skeletons, we can easily
modify the FingerprintMatcher to process a huge amount gfefiprints inbatch mode In this case we can simply
instantiate the functional replication skeleton in suchaywhe F port sends each input item to a different, “free”
worker, C just gathers answers and delivers them to output and wosltkrsceive (or access) a copy of the whole
fingerprint database. Then, exploiting@&v derived workflow management, we can write ank® program that
depending on some input parameter from the system usemagieither the “batch” or the “real time” matching
composite component.

6.2 Climatology application in STKM

The second application we consider in this Section is a ¢biogy application. It is basically a parameter sweep-
ing application. For each parameter set, a number of itaratmodeling climate evolution in the next 200 years is
computed. Its structure is outlined in Figure 11 (a). Thd immponentS0 is basically a component implementing
aforall construct. It iterates on the input parameter set sequegloeedng a new parameter set to compon#it
This, in turn, iterates computation performed $Yy to S5 for a number of times, in a sequential loop. Each iteration
builds the approximate climate state at the next time quantaventually, componertt5 delivers the final result to
componentS6 for post-processing. Componesit has a sensibly higher (10 times higher) execution time than t
other components used in the application. This is a highl Issleema of a real application considered within the
French ANRLEGO project [14].

Climatology experts having available all the componernitgise to the building blocks of the climatology applica-
tion will probably come out with an application structurehias the one of Figure 11 (a). A component will provide
the subsequent (in the temporal dimension) componentsagitimuch input items as the number of the parameter
item in the input parameter set. By simply recognizing tihat loop around componenssl to S5 is executed on a
stream of input items, produced by compong&6atand properly exploiting M, the application can be more or less
“automatically” transformed into the one represented m EL (b). In this case, temporal composition of components
S1to S5 has been transformed into a spatial composition correspgitid a “loop of pipeline” skeleton composition,
possibly exploiting wrappings such as those shown in Figln5turn, the new spatial composite deriving from the
compilation of a loop of pipeline skeleton can be optimizasgcinmore than the original “temporal only” schema of
Fig. 11. For instance, exploiting the estimated completimes of pipeline stages, stagé$ to S3 can be deployed
within the same computational resource, preserving tha@ceetime of the loop of pipeline computation and, in the
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Figure 11: Example of a composition from which it is possitoieecognize a pipeline.

meanwhile, increasing the efficiency of the overall appiara The net effect of using less resources can be estimated
in passing from an efficiency around 20% to one above 80%l(iblss huge, but actually, using one separate resource
for each component in the application is quite an inefficieitial implementation). Alternatively, the applicati@an
be restructured as in Fig. 11 (c). In this case, the stagbas been parallelized by transforming the loop of pipeline
in a loop of pipeline of farm, decreasing the service timehaf bverall pipeline and therefore increasing again the
efficiency of the whole application. In this case efficieney de obtained which is very close to 100%, due to the
fact we can easily add 10 workers to the farm and thereforp Keeservice time of the “huge54 stage close to the
service time of the other pipeline stages, and thus optintalancing the whole pipeline (application).

It is worth pointing out that none of the transformationgilmjizations discussed above could have been imple-
mented in the temporal only application specification (the of Fig. 11 (a)).

6.3 STKM vs. standard approaches

We want to analyze in more detail the advantages TN with respect to plain components, workflows or even
with respect to the original &M, after we qualitatively discussed the use case applicaitivove. In particular, we
consider several properties of the programming model:

Expressiveness of an assemblthe expressive power provided to the programmer to asseagplications out of
their building blocks

Required designer expertiseto implement efficient applications
Efficiency of the resulting assembly/application, and
Composability meaning the possibility to compose applications out of féar) building blocks.

Tables 1 and 2 outline our judgment relative to the propsijtist stated in case of the fingerprint recognition
applications (Table 1) and of the climatology applicatidalfle 2). Just to understand how we compiled the Tables,
let us detail how the “values” in column “designer expertisé Table 1 has been determined. In case the finger-
print recognition application was to be implemented withaaitional component model, high programmer expertise
is required if dynamic management of component compositesoabe implemented such as those implemented by
behavioural skeletons application managers. Even if wonkdlwere used, programmer expertise required is high, as
workflows do not support natively complex parallelism exgtion patterns such as the one present in the fingerprint
application. Using Scm or skeleton systems the programmer can use limited formsualelism (forall in Scwm,
as an example) or limited (or null) temporal composition (kfltow) support in skeletons, and therefore an average
expertise is required to handle aspects not primitivelypsued by the environment (parallelism exploitation patse
in STcM and temporal composition in skeletons)Tk® provides suitable mechanisms to handle all the modelling
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Expressiveness Level of designer Efficiency Composability
of an assembly expertise
Component average: high: high (static)
models synchronization and dynamic for dynamic expert level (dynamic) good
management hidden in implementation management
Workflows average: average: good for part
not captured construct high stateless of the
(data transfer/reload)| application
STCcMm average: proportional
enable to recognize low in static case to expertize good
some constructs level
Skeletons average: low: use of existing
skeletons cooperation skeletons high good
not natural high: new skeletong
| Stkm ] good | low | high | good |

Table 1: Analysis of a the properties offered by differeragnamming models to design the application represented
in Figure 10.

Expressiveness Level of designer Efficiency Composability
of an assembly expertise
Component proportional to
models hidden high expertize level good
Workflows average: high:
adequate for temporal dependencies low relies on global scheduler good
but often appears as a sequence
STCcMm average: low
adequate for temporal dependenciesut designer has to use high good
but appears as a sequence to use right ports
Skeletons high:
good low requires meta-data good
(execution durations)
STKM good low: smart designer high:
requires meta-data good
(execution durations)

Table 2: Designing a pipeline construct using differentggaonming models, the analyzed application example is
shown in Figure 11 (part (a)).

aspects of the fingerpring recognition application: terapoomposition to handle skeleton and non skeleton compo-
nent setup and skeletons to handle complex parallel pagtessibly in autonomic way via the behavioural skeleton
internal manager.

Both Tables evidence howt&M presents several advantages over the component, workfldwlaietons pro-
gramming models.

7 Conclusions and Future Works

We outlined SkM, a programming model combining the advantages of compsenerdrkflows and algorithmic
skeletons. Programmers can exploit workflow features Téns to model applications in such a way the temporal
relations between their different parts are precisely eggoand they can also use skeletons to implement thoseparts
the applications that exploit parallelism according tolwabw parallelism exploitation patterns. All the enviroant
exploits component technology, to allow programmers tolénent applications by component assembly. In case
of workflows, components are interconnected using new “tmadp ports, whereas skeletons are plain composite
components whose inner components are interconnectedtv@ain” ports and their external interfaces also are based
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on stream ports.

We demonstrated the feasibility of the@v approach providing an extension of & (a model already support-
ing components and workflows) that includes common algaittskeleton. Using &M, we modeled a couple of
significant applications that happen to be use cases imdiguropean projects. Tha®wv (abstract) version of the
two applications allowed to outline the benefits of the apptoas well as the added value with respecttai and
the other component only, workflow only and skeleton onlygpamming environments. In particular, we've shown
how complex applications, can have parts that can be simghjemented exploiting skeletons (that is, instantiating
one of the skeleton composite components provided tyng and inserted seamlessly in complex workflows, and
how, by exploiting skeletons in workflows, application irapientation can be optimized.

We are currently implementingi&Mm as an extension ofi®mMm. We plan to have experiments validating the whole
STKM approach even before the whole programming environmemb@emented. In particular, we are currently
writing parts of the prototype applications consideredirt@ and manually implementing skeleton composite com-
ponents in such a way the combined usage of workflows andtseke a component framework) can be evaluated
and efficiency can be assessed as well.
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