
Towards Software Component Assembly Language Enhanced
with Workflows and Skeletons

Marco Aldinucci and Marco Danelutto
Dept. of Computer Science - University of Pisa

Largo B. Pontecorvo 3, Pisa, Italy
{aldinuc,marcod}@di.unipi.it

Hinde Lilia Bouziane and Christian Ṕerez
INRIA/IRISA, Campus de Beaulieu

35042 Rennes cedex, France
{Hinde.Bouziane,Christian.Perez}@inria.fr

CoreGRID Technical Report
Number TR-0153
July 3, 2008

Institute on Programming Model

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

Towards Software Component Assembly Language Enhanced with
Workflows and Skeletons

Marco Aldinucci and Marco Danelutto
Dept. of Computer Science - University of Pisa

Largo B. Pontecorvo 3, Pisa, Italy
{aldinuc,marcod}@di.unipi.it

Hinde Lilia Bouziane and Christian Pérez
INRIA/IRISA, Campus de Beaulieu

35042 Rennes cedex, France
{Hinde.Bouziane,Christian.Perez}@inria.fr

CoreGRID TR-0153

July 3, 2008

Abstract

We explore the possibilities offered by a programming modelsupporting components, workflows and skeletons. In
particular we describe how STCM, an already existing programming model supporting components and workflows,
can be extended to also provide algorithmic skeleton concepts. Programmers are therefore enabled to assembly
applications specifying both temporal and spatial relations among components and instantiating predefined skeleton
composite components to implement all those application parts that can be easily be modelled with the available
skeletons. We discuss preliminary results as well as the benefits deriving from STKM adoption in a couple of real
applications.

1 Introduction

Grids as well as recent large scale parallel machines propose a huge amount of computational power as well as of
storage. Therefore, it is possible to envision scientific code coupling applications that take into account more physical
phenomena. A major issue still to be solved is to define a suitable programming model to ease application development
and to efficiently exploit resources.

From the many properties such a programming model should provide, let us list on some of them. A first property
is to face the complexity of software management, and in particular to enable code re-use. Second, it should support
strong coupling algorithms which are often present in high performance applications. Third, as resources are more and
more shared, the programming model should enable an efficient usage of resources, in particular through the support
of loose coupling between the application elements. Fourth, it should abstract resources to achieve two important
goals: let programmers to only deal with functional concerns – and so non functional concerns must be hidden – and
applications should be portable to a wide range of architectures, i.e., abstractions that can be adapted to resources must
be provided.

There are many programming models that attempt to ease programming large complex scientific applications and
hide the complexity of underlying execution resources especially Grid infrastructures. This report focuses on those
based on assembly/composition principle, as programming by assembly is gaining more and more acceptance to

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1

deal with complex scientific applications. In particular, it deals with three well known families of models: software
component models, workflow languages and skeleton based programming. Each family attempts to respond to the
presented properties to deal with the complexity of applications and/or resources. Depending on a given model,
the properties are more or less handled. For example, modernsoftware engineering practices promote the usage
of software component models [28] to deal with code re-use. In particular components enable to easily build an
application made of piece of codes written in different languages. While component models appear adequate for strong
coupling composition, workflow models seems more tailored for loose coupling composition. However, algorithmic
skeletons are considered more well suited to provide a simple abstraction that then be optimized by the system with
respect to the resources [16]. Hence, there is not a model that efficiently handles all these properties. Though all these
properties are relevant, they should be all and well considered by a single programming model. As far as we know,
there is not such a model. Nonetheless, there are some previous works that aimed to bring closer these families. For
example, STCM (Spatio-Temporal Component Model) [13] is a model combining component models and workflows.
Similar efforts have been carried out for skeletons and component models [2, 19].

This report explores the feasibility of a programming modelcombining the three families – components, workflows
and skeletons. Rather than proposing a programming model from scratch, it studies how to combine STCM– which
already unifies components and workflows – with skeletons. The outcome should be a programming model supporting
all the presented properties.

The remainder of this report is organized as follows. Sections 2 and 3 recap main features and technical background
of component-and-workflow and skeleton-and-component methodologies, respectively; STCM andbehavioral skele-
tonsare presented as paradigmatic examples of the two methodologies, which are compared in Section 4. Section 5
introduces STKM (Spatio-Temporal sKeleton Model), where the two methodologies are stacked in an two-tiered ar-
chitecture aiming at raising the level of abstraction of both component-based and workflow-based parallel/distributed
programming approaches. The benefits of the approach is shown by reasoning about the design of two real-world
applications (biometric identification and climatology).Section 7 concludes the report and presents future works.

2 STCM: Merging Component Models and Workflow Languages

In [13], we proposed a Spatio-Temporal Component Model (STCM). This model appears as a combination of two
technologies: software component models and workflow models. Its aim is to allow a designer to express the behavior
of an application by assembly. This behavior considers boththe temporal logic of the application execution, based
on reusing workflow concepts, and the spacial dependencies that may exist between components, based on reusing
component models concepts.

Before giving an overview of STCM [13], let introduce software component models and workflow languages. The
introduction is done according to a generic view of existingtechnologies and to the main properties that motivate the
combination of the two approaches in STCM.

2.1 Software Component Models

Independently of existing technologies, like CCA [10], CCM [25], GCM [17] or SCA [8], a software component appears
as a black box unit of a reusable, composable and deployable code. The composition is done through the connection of
well-defined ports that allow a component to interact with other components. The interaction between two components
often follows aprovide-useparadigm. According to existing component models, this paradigm is mainly based on one
of the following communication models: operation/method calls, message passing, document passing (Web Services),
events or streams. It is used in most of proposed assembly models to define a spatial relationship between components.
That means, during the time a relationship between two components is valid, these components are concurrently
active. That is true, as in general, the frequency of the interaction is not known. Therefore, an application assembly
corresponds to its architecture at execution. This architecture can be captured by UML component diagrams [26].

2.2 Workflow Languages

There exist many environments [32] that offer workflow basedprogramming models to develop and execute scientific
applications. Examples are Askalon [21], Triana [29], Kepler [5] and BPEL [6]. Independently of an existing environ-
ment, building an application according to a workflow is doneby describing the order of actions, often namedtasks,

CoreGRID TR-0153 2

Figure 1: A component-task as a combination of a component with task concepts.

to be executed and their data dependencies. For that, control flow and data flow models are proposed. A control flow
model allows the description of the execution order of tasksby using control constructs such as sequences, branches
or loops. A data flow model focuses on data dependencies between tasks. To define data dependencies, a task specifies
its inputs and outputs ports. Thus, describing connectionsof output ports of some tasksti to input ones of a taskT
defines data dependencies betweenti andT . Therefore, workflow models deal with temporal compositions. This kind
of composition can be captured by UML activity diagrams [26].

2.3 STCM

Component models offer well founded concepts for code reuseand applications complexity management. However,
while the spatial property of component models make them more appropriate to develop strong coupled applications,
the temporal property of workflow models ease programming the temporal logic of an application that can be moreover
captured from the assembly to enable efficient resources management. In order to group the advantages of the two
programming approaches, STCM proposes a combination of component models and workflow languages. For that,
it defines the concept ofcomponent-task, a spatio-temporal assembly model and life cycle management. Let give an
overview of these concepts.

Component-task As shown in Figure 1, a component-task is a component that supports the concept of task. Thus,
in addition to classical ports, namedspatialports in STCM, a component-task can define input and output ports, named
temporalports. Temporal ports and task behave like in workflow models. The difference is that the life-cycle of a
component-task may be longer than the one of a task in a workflow, which usually corresponds to its execution. In
addition, a task in STCM can communicate with other component-tasks through clientspatial ports. More details about
the specification of task and temporal ports concepts can be found in [13]. This specification is presented through an
extension of a GCM (Grid Component Model) component.

Spatio-temporal assembly model The assembly model proposed for STCM is inspired from theAbstract Grid
Workflow Language[21] (AGWL)1. AGWL offers a hierarchical model made of atomic and composite tasks. A
composition is done with respect to both data flow and controlflow compositions. The control flow supports several
control constructs like sequences, branches (if andswitch), loops (for andwhile) and parallel constructs (parallelFor
andparallelForEach), etc. The assembly model of STCM is mainly based on replacing an AGWL task by a component-
task, including the addition of spatial composition.

Figure 2 gives an example of a composition using a simplified STCM assembly language (the original syntax is in
XML format for which a grammar is presented in [13]). The textualpart shows the assembly inside theparallel
control structure. As can be shown, the proposed language allows to declare component-task types (B, lines6 to 8,
and(C), lines9 to 11) and component-task instances (b, line 12, and(C), line 13), describe a data flow (lines4,

1Other workflow languages can be chosen. The principle of modifying them to define a spatio-temporal assembly model is similar.

CoreGRID TR-0153 3

1 component Example {
2 ...
3 parallel parCtrl {
4 dataIn Double inPar <= a.outA;
5 // declarations
6 component B { dataIn Double inB;
7 clientPort Compute pB;
8 };
9 component C { dataIn Double inC;
10 serverPort Compute pC;
11 };
12 instance B b;
13 instance C c;
14 connect b.inB to parCtrl.inPar;
15 connect c.inC to parCtrl.inPar;
16 connect b.pB to c.pC;
17
18 // instructions
19 section : exectask (b);
20 section : exectask (c);
21 } // end parallel
22 ...
23 }

Figure 2: Simplified example of an assembly recalling the principle of STCM.

14 and15), describe the order of execution of tasks (b andc in parallel, lines19, 20) and spatial dependencies (line
16). Means are then offered to a designer to build by assembly analgorithmic logic, including temporal and spatial
dependencies at the same level of a composition. That is relevant not only to simplify the design but also to increase
code reuse and be able to envisage solutions for efficient usage of execution resources.

Life cycle of a component-task To manage the life cycle of component-tasks during an application execution, STCM

defines a dedicated model. The management relies on the ability of capturing the algorithmic logic directly from the
assembly and ensure for example safe destruction of component-task instances. For that, STCM defines a state machine
diagram corresponding to the life cycle of a single component-task and an assembly semantic to reflect as much as
possible a deterministic application behavior.

The state machine is recalled in Figure 3. From this diagram,it can be noted that the activation duration of
a component-task instance can be longer than a task execution duration. This is required when a component-task
provides functionality on which other component-tasks depend in the assembly.

The semantic associated to an STCM assembly is determined with respect to simple composition rules to be taken
into account when building an application. The main rules are the following:

• If a component-taskA uses (composition in space) a functionality provided by another component-taskB, then
B must be concurrently active withA and remains active as long asA is active.

• If a component-task instanceA or if another component-taskB that usesA is no more reachable by a control
flow, thenA becomes useless and can be destroyed.

• A component-task instance must be activated at the latest when the control flow reaches the execution of its task
and input data are received or when it is used by another component-task instance.

• The execution of a task is assumed to produce not more than oneoutput data on a same output port.

In addition to the proposed assembly constructs, these rules are expected to help a designer to easily express a
suited behavior. They aim also to ease automatic managementof an application structure with efficient resources
usage.

3 Skeleton Based Programming

Structured parallel programming models based on the algorithmic skeleton concept are around since the ’90s since
skeleton concept introduction by Cole [15]. Later on, several research groups developed programming environments,

CoreGRID TR-0153 4

Figure 3: Life cycle of a component-task.

systems and libraries based on the skeleton concept [7, 20, 24, 9, 22, 30]. Skeleton based programming models
allow programmers to express parallelism using a set of predefined patterns, the skeletons, that model common par-
allelism exploitation patterns. Typical skeletons are either stream or data parallel. Classical stream parallel skeletons
are pipelines (modeling computations performed in stages)and farms (embarrassingly parallel computations). They
exploit parallelism between computations of different input tasks of the input stream to produce a stream of results.
Typical data parallel skeletons are map (independent forall), reduce (summing up of a collection of data via an associa-
tive and commutative operator) and stencil (forall with dependencies). They all exploit parallelism in the computation
of a single input task.

The skeletons are parametric and programmers can thereforecustomize them by defining the kind of primitive
computation used by the skeleton (e.g. a pipeline stage or a farm/map worker), its parallelism degree or any other kind
of skeleton specific features (e.g. whether or not a farm should guarantee input/output ordering). Most likely, skeleton
programming environments and systems allow programmers tonest skeletons (e.g. a pipeline stage can be expressed
as a farm/map skeleton) and therefore skeleton based applications happen to bestructuredas a skeleton nestingplus
some sequential code used as a parameter for the leaf skeletons.

Once applications have been structured via proper skeletonnesting, the implementation of the skeleton framework
takes care of all the aspects relative to parallelism exploitation. Parallel activities setup, mapping and scheduling,
communication and synchronization handling and performance tuning are all aspects that are dealt with at the skeleton
implementation level rather that in the programmer application code. Being the skeletons known and efficient patterns
of parallelism exploitation, this results in very efficientand scalable application implementation, independently of the
model chosen for the implementation, that traditionally iseither template based [27] or macro data flow [18]. Overall
the whole process results in a complete and worthseparation of concernsbetween application programmers and system
programmers. The former are in charge of recognizing parallelism exploitation patterns in the application at hand and
of modeling them with suitable skeletons (or skeleton nesting). The latter are in charge of solving, once and for all,
when the skeleton framework is designed and implemented, the problems related to the efficient implementation of the
different parallelism exploitation patterns and to their efficient composition. This separation of concerns has a notable
list of positive side effects: i) it consistently contributes in supporting rapid application development and tuning,ii)
applications programmers are not required specific knowledge on parallelism exploitation techniques, iii) programs
can be seamlessly ported to different architectures provided that system programmers have already studied, designed
and implemented proper skeleton implementation for the newtarget, just to mention a few.

Algorithmic skeletons can be quite easily associated to software components. A skeleton is a building block for
parallel applications exactly the same way a component is a building block for a generic application. As a consequence,
skeleton technology has recently been used in the componentbased programming scenario [1, 22]. In this case,
(composite) components are provided to the user that model common parallelism exploitation patterns and accept other
components as parameters modeling the skeleton inner computations (e.g. the pipeline stages or the farm workers).

The last step we want to mention here in the algorithmic skeleton concept evolution has been the introduction of
autonomic management aspects in skeletons. Skeleton implementation was in charge of handling all the non functional
aspect of parallelism exploitation since the very beginning. However, the advent of significantly new architectures,
such as Grids, with highly dynamic and unreliable features imposed some more evolved approach to non functional
aspect handling. Therefore, autonomic management of skeleton features has been introduced [3, 2] that dynamically
adapt skeleton execution to the varying features of the target architecture considered. Using this “last” version of

CoreGRID TR-0153 5

the skeletons (namedbehavioral skeletons, to explicitly mention they have managers taking care of dynamic behav-
ior of the skeleton implementation) users can develop (Grid) applications that seamlessly andwithout any kind of
user/application programmer interventionreact to node faults, additional node loads, network inefficiencies and keep
(in a “best effort” way) the application running according to a user specified QoS contract.

4 STCM vs Skeletons: Discussion

Despite the ability of STCM to abstract the behavior of an application to be expressed byits assembly, the level of
abstraction remains low. This is the case in particular for parallel programming. In this context, two issues are arisen.
This section introduces and discusses these issues and motivate the work presented in this report.

The first issue is related to the design of parallel programming paradigms using STCM. The relations that can be
expressed between component-tasks in STCM remain simple. In the spatial dimension, only relations of type1-to-1
or 1-to-N can be expressed between an assembly of component-tasks. While in the temporal dimension, only sim-
ple tasks and data parallelism can be expressed through control constructs likeparallel or parallelForEach
(independent forAll). Even if a combination of the two can reach more complex behavior, offered constructs are not
sufficient to simply express a usage of complex parallel paradigms. That lead a designer to construct complex appli-
cations in an arbitrary way and to consider parallelism issues when programming, probably leading to non efficient
execution and/or execution resources dependencies. As an attempt to overcome such a limitation, a first objective of the
present work is to to propose means to take benefits from skeleton principle to construct complex parallel applications
in a simple way.

The second issue is related to efficient execution of an assembly. This issue relies essentially on scheduling
policies adopted by an execution framework. A simple policycan consider the execution of an application step-by-
step mainly directed by the temporal dependences between component-tasks. However, a more efficient scheduling
should consider a global behavior of part or whole application assembly, in particular to exploit maximum parallelism.
For that, means are required to recognize parallelism formsfrom an assembly. In this direction, the second contribution
of this report aims to consider the extension of STCM with respect to resolving the first issue and analyze the possibility
of exploiting parallelism behavior from a component-task assembly. In this context, we propose to study the projection
of an abstract assembly to skeleton based forms. We can then take benefits from already existing skeleton management
mechanisms to efficiently execute an application.

5 Towards STKM: a Combination of STCM with Skeleton Based Program-
ming

In this report we propose a combination of STCM and skeleton principle in the STKM model. The objective is twofold.
The first goal is to increase the abstraction level of STCM regarding programming parallel applications. In particular,
we aim to offer to a designer a programming approach based on skeleton constructs. That is to promote simplicity of
programming, the construction of correct programs and codereuse. The second goal is to offer means for efficient
execution of an application. For that, we propose to analyzethe possibility to exploit parallelism behavior from an
assembly and follow a management approach based on a projection of the assembly to a composition of nested skeleton
constructs. Thus, the management of parallelism can be turned to skeleton management for which a lot of efforts are
already done to deals with low level parallelism concerns and efficient execution.

This section presents our proposal in three parts. The first part presents the proposed extension of STCM regarding
the support of skeleton constructs (Section 5.1). The second part outlines the consequence of defining STKM on top
of STCM on STCM itself (Section 5.2). The last part presents the principle of managing the execution of an STKM

application (Section 5.3).

5.1 Skeleton Constructs on top of STCM

Our approach to enable a designer to express the usage of skeleton-based parallel paradigms is to extend STCM

with dedicated constructs. These constructs are particular composite components (templates) for which the internal
structure is well-defined according to a parametric schema.They can define ports and be composed with other skeleton
constructs and/or components. The elements of a skeleton (stages for the pipeline and workers for the functional

CoreGRID TR-0153 6

component ::= stcmComp | skeleton
...
skeleton ::= <skeleton name=string>

inputSkel? outputSkel? port* attribute* skelConst?
</skeleton>

inputSkel ::= <inputSkel name=string type=string (set=string)?/>
outputSkel ::= <outputSkel name=string type=string/>

skelConst ::= pipe | funcRepl | sequential ...

pipe ::= <pipe name=string>
inPipe

</pipe>
inPipe ::= component* instance* stage+ configport *
stage ::= <stage name=string>

skeleton
</stage>

// Functional replication behavioural skeleton
funcRepl ::= <funcRepl name=string>

inFuncRepl
</funcRepl>

inFuncRepl ::= component* instance* worker configport* emitCollect? sharedComp?

// emitcollect specifies the policy of handling skeleton inputs and outputs
// example: (broadcast, reduce)
// sharedComp specifies a component encapsulating a shared state between workers

worker ::= <worker name=string (cadinality=int)?>
skeleton

</worker>

emitCollect::= <emitCollect emit=string collect=string/>
sharedComp ::= <sharedCompInstance ref=string/>

sequential ::= stcmcomponent
...
configport ::= clientserv | inout
clientserv ::= <setPort client=string server=string/>
inout ::= <setPort in=string out=string/>

Figure 4: Overview of the STKM grammar related to the skeleton composition part. Only pipeand farm constructs are
considered. In bold the grammar keywords. In italic, the STKM language keywords.

Figure 5: Wrapping a component to be a skeleton element. On the left, skeleton inputs and outputs are bound to stream
ports. On the right, they are bound to temporal ports. The type of ports are data types which must be compatible.

replication) can be skeletons or components (primitive or composite). These elements can also be composed with other
components (internal or external to the skeleton construct). The objective is to promote composition at different levels,
which should improve composability and code reuse, while preserving the pragmatic of skeletons. The extension of
STCM consists in extending its assembly language [13]. An overview of this extension for the pipeline and functional
replication skeletons is shown in Figure 4.

In more details, a skeleton in STKM defines at least its inputs/outputs (inputSkel andoutputSkel in the
grammar) and their functional elements. The inputs and outputs ports are not concretely a new kind of ports. They
are of stream type (as in classical skeleton usage) and are used to identify which component ports have the role of
receiving and producing data proper to the skeleton computations. Therefore, a component can be reused by a simple
wrapping mechanism (Figure 5). However, that assumes the wrapped component to behave like in a classical skeleton:
On the reception of an input data, a computation is launched;producing one data on the output port. Otherwise, the
behavior of the skeleton is not preserved. With respect to the types of component ports, skeleton inputs and outputs

CoreGRID TR-0153 7

Figure 6: Example of a composition using STKM .

Figure 7: STCM modification to support skeleton constructs in temporal dimension: temporal ports cardinality princi-
ple.

of a skeleton can be bound to classical stream ports or temporal ports, in which case the computed function is a task.
The latter case is a good example which responds to suited behavior. That is true thanks to the last STCM semantic
rule defined in Section 2.3. For simplicity, in this report, we assume that component-tasks define only one input and/or
output port (if the task has data dependencies).

Figure 6 represents an example of anSTKM assembly. It illustrates the possibility of composing components
with a skeleton construct and skeleton nesting. Compared with a classical usage of skeletons, it is easy inSTKM
to assemble sequential with parallel codes, when only part of an application is parallel. Moreover, a skeleton and
its included components can define classicalSTCM ports and be composed with other components. This promote
expressing code dependencies by assembly rather than implementing them in the skeleton computation codes. That
ease programming and improve code reuse. In addition, more complex behavior can be expressed by a skeleton, like
the possibility of accessing a shared state between computation codes in a functional replication skeleton (S component
in Figure 6).

5.2 STCM modification requirements

STKM aims also to enable exploiting parallelism in several situations, in particular, in both spatial and temporal di-
mensions of an assembly. Even if the parallelism built by a skeleton construct infers a spatial assembly, which can be
of course implicated in a temporal dimension (like shown in Figure 6), that may be not sufficient to ease expressing
some behaviors. A typical situation is to express through anassembly that ordered tasks in part of a workflow should
be executed in a pipeline way. The left part of Figure 7 illustrates such a situation for a sequence. Syntactically, the
proposed extension allows such a composition. However, thepossibility of a pipelined execution depends on the abil-
ity of receiving multiple input data on the input stream of the pipe construct. As we assumed inSTCM that not more
than one output data on a temporal port may be produced for a single item and as the model preserves the semantic
of control constructs, a mechanism is needed to be able to support such a situation. A mechanism is also needed to
enable the collection of the results on a stream after a pipelined execution.

CoreGRID TR-0153 8

A solution is to relax the assumption specified inSTCM to allow a task to produce multiple output data for a single
input data and symmetrically, allow a task to collect multiple input data to produce one output data. For that, two
issues are to be resolved.

First, it is necessary to enable a component-task to expressthe related task’s behavior when it is defined or com-
posed. Otherwise, it may be difficult to determine the behavior of an assembly. We propose to resolve this issue with
a simple cardinality principle to be associated to temporalports. The right part of Figure 7 shows the principle of the
solution. An input port with a cardinality1 (respectivelyn) means at most one data (multiple data) are required to
execute a task. In the case of multiple data, the number of received data is determined by the end of the execution of
the task that produces the data. While an output port with a cardinality 1 (respectivelyn) means one data (multiple
data) may be produced by one execution of a task.

The second issue is related to the need of a mechanism that allow a task implementation to be able to send
(respectively receive) multiple data on output (resp. input) temporal ports. To produce multiple data, our solution
consists in offering a callback operation to component-task implementation allowing a task to signal the availabilityof
output data to be sent. This operation can be called multipletimes. The end of the execution of the task corresponds
to the end of producing output data for a single input data. The principle of this solution is already proposed in
preliminary spatio-temporal composition model that we presented in [12]. Because a cardinalityn for an output port
affects the implementation of a component-task, the cardinality has to be specified in the definition of the port. On the
input side, we assume that it is at the responsibility of the framework implementation to wait all incoming data before
executing a task. In this case, the task behaves like in the case of having a single data received on the port. Therefore,
it is sufficient to specify a cardinalityn for an input port at the assembly level to obtain the suited behavior. This,
a component-task with an input port of cardinalityn appears in an assembly as a reduction or synchronization point
within an assembly.

The outlined changes in STCM raises the issue about their consequence on the life cycle ofcomponent-tasks and
so on the semantic of an STKM assembly. The principle of a task is still dependent on the availability of one data.
Even if it can produces multiple data, the end of its execution is still well determined. In addition, in STKM , the
life cycle management is still directed by spatial and temporal dependencies between components, including skeleton
constructs, for which the principle is the same as in STCM. The only modification affects the last semantic rule defined
in Section 2.3 and which becomes:”The execution of a task can produce multiple output data on asame output port.
The end of the execution determines the end of producing output data”. Finally, STKM preserves the global principle
of STCM.

5.3 A suited approach for efficient execution management

Until now, we dealt with the abstract viewpoint ofSTKM offered to a designer. The goal of proposing such an abstrac-
tion is not limited to simplifying programming, improving the expressiveness of an assembly or improve code reuse.
The goal is also to be able to adapt an application to a given dynamic execution context while ensuring a given user-
defined Quality of Service (QoS) contract. We shown in previous works that skeletons [2, 30, 3, 16] have the ability
to cope with the autonomic steering of application execution to ensure dynamically defined levels QoS, and that it can
be done while preserving their high-level nature ensuring good proprieties such as: the separation of concern between
functional and management code (thus code reuse), the automatic generation of binary code (thus rapid prototyping
and code portability), etc. In this regard, the approach hasproved to be effective with respect to a number of domains,
such as performance [3], security [4], and fault tolerance [11]2.

Hence, an issue is to propose an approach to manage the execution of anSTKM application. In general, the
effectiveness of an execution depends on the expressiveness power of an assembly and the ability of an execution
framework torecognizethe behavior of an application, to take into account execution resources (number of proces-
sors, size of memories, network architecture, availability and dynamicity of resources, etc.) and to make adequate
decisions to adapt the application to the resources. Specifically, behavioralskeletons attack idiom recognition prob-
lem by providing pre-defined parametric patterns exhibiting a well-defined behavior, and thus, supporting pre-defined
management strategies. Thus, behavioral skeletons abstract component self-management in component-based design
as design patterns abstract class design in classic OO development.

In the context of STKM , such decisions are expected to consider in addition to temporal and spatial dependencies,
made by an STCM engine, the skeleton constructs. With respect to skeleton constructs, the main role of an STKM

framework is expected to project or transform an STKM assembly to a concrete one (the assembly at execution). The

2Where those domains are taken in insulation, the multi-domain management is currently under investigation.

CoreGRID TR-0153 9

M G R W
W CE

Figure 8: Functional replication behavioural skeleton component.

projection consists in replacing a skeleton description inthe abstract assembly by an adequate implementation. For
that, our aim is to reuse already proposed component based implementations (such as behavioral skeletons in the GCM
[2, 23]) and take benefits from their self adaptive management of computational elements and their ability to deal with
optimization issues, like collapsing stages of pipes or introducing farms for efficiency. Following such an approach,
an assembly after a skeleton construct replacement is expected to be an STCM assembly.

Since STKM skeleton deployment and activation is driven by temporal dependencies, they are dynamically de-
ployed, and since they are parametric patterns, they can be dynamically configured at deployment time (e.g. according
to available platforms). This kind of flexibility covers an additional case with respect to autonomic management (that
is fully dynamic), compile-time configuration (static) andapplication launch-time malleability (launch-time) because
each specific skeleton can be configured at the time it is really needed. This time may happens to be in a point of
time well after the application launch, especially in very long running applications. This, in turn, may reflects in very
different execution environments in the two points in time.We envision, as immediate result, the iterative mapping of
the same skeleton (within a temporal loop) onto different reservations of Grid sites along time. Observe that, for some
kind applications, flexibility may be as effective as fully dynamic adaptivity but, in general, it incurs is quite lower
adaptation overheads [3, 2].

In addition to the management of skeleton constructs, we areinvestigating the possibility of managing some
parallelism forms that are not explicitly expressed by the usage of skeleton constructs but which can be mapped to a
skeleton composition without modifying the expected behavior. An example is to deal with the independentforAll
control constructs (parallelForEach). The parallelism expressed by this construct can be mappedto a functional
replication skeleton in which the workers are the body of theloop. Other parallelism forms can be also built in STKM

purely based on the usage of temporal port cardinality principle. For example, if we assume that the pipeline construct
shown in Figure 7 is not used and the cardinality on the ports are kept, an implicit pipeline behavior is built. The ability
of a framework to capture such a behavior, which can be directly done thanks to the cardinality information, offers the
possibility to envisage a pipelined execution managed by a dedicated skeleton construct. That represents a possible
mean to exploit parallelism with existing efficient mechanisms. Such a mean is still in a study status. Solutions to
recognize parallelism forms from an assembly and the possibility to map them on a skeleton constructs are required.

6 STKM exploited

In the Sections above, we have introduced STKM . In this Section we outline the key points and advantages of STKM

by showing how two typical and significant use case applications can be implemented exploiting STKM methodology.

6.1 Fingerprint recognition in STKM

The first application we consider here is a refined version of ause case application considered in the framework of the
GridCOMP EU STREP project [23]. In that context a fingerprintrecognition application was considered that has to
be able to match a fingerprint against a database possibly hosting a large number of fingerprints. The goal is to be able
to get a real time answer telling whether or not the fingerprint is in the DB and, in positive case, the fingerprint owner
identity [31]. In our extended version, we also consider thepart of the application that collects fingerprints from real
persons (e.g. at the airport arrival gates) and submits themto the fingerprint recognition software for processing.

Fingerprint matching against a DB can be nicely modelled using skeletons. This is a plain data parallel skeleton

CoreGRID TR-0153 10

// port types are assumed to be defined
component FPApplication {

component GateAdmin{ uses CheckRequest uGA;
...Gate and MGR components...

};

funcRepl FPMatcher{ inputSkel FPrint sInFPM;
outputSkel string sOutFP;
attribute boolean batch;

component Split { provides GetDB pDB;
provides SetNbrW pW;

};

worker sequential cmpSkel {
inputSkel FPrint sInCMP;
outputSkel boolean sOutCMP;
component cmp { provides SetDB pDB;

streamIn FPrint sInCMP;
streamOut boolean sOutCMP;

};
};

instance Split sp;
connect strmInCMPSkel to cmp.strmInCMP;
connect cmp.strmOutCMP to strmOutCMPSkel;
connect cmp.pDB to sp.pDB;
emit-collec :: (broadcast, Or-reduce);
sharedStateComp sp;

};

component Check { provides CheckRequest pC;
streamOut FPrint sOutC;
streamIn boolean sInC;

};

instance GateAdmin gateAd;
intsance FPMatcher fpm;
instance Check chk;

connect chk.sOutC to fpm.sInFP;
connect fpm.sOutFP to chk.sInC;
connect gateAdmin.uGA to chk.pC;

sequence ApplMain{ exectask(fpm);
exectask(chk);
exectask(gateAd);

};
};

Figure 9: Simplified STKM assembly for the Fingerprint recognition application example.

where parallel workers have been given a portion of the data base and any single fingerprint is broadcasted to all the
workers. Referring to thefunctional replicationbehavioural skeleton as defined in [2], whose structure is drawn in
Fig. 8, this corresponds to have identical worker componentsW specialized by submitting them different portions of
the DB, a broadcastE port and a or-reduceC port (C gathers answers from all the workers and basically ORs the
boolean values received).

Functional replication behaviroural skeleton is one of theskeletons considered in STKM , and therefore this appli-
cation can be easily expressed using STKM (Figure 9). Figure 10 illustrates thespatialaspects of the application. The
left part handles gates, delivering requests to theCheck component. This component transforms requests issued on its
provide port into items on the input stream for skeleton processing requests (the composite component in right part of
the Figure) and conveniently returns the values received onits input stream port connected to the output of the recog-
nition component as results of the provide port invocation.The upper part of the Figure outlines the internal structure
of the workers of the functional replication skeleton instance and of the Gate components. The former is a wrapping
of the single fingerprint matcher (i.e. of the pre-existing componentcmp that provides a port used to supply it the
fingerprint DB, and two stream ports for accepting fingerprints to match and for delivering the corresponding answers)
that eventually implements a provide port accepting “DB re-read” requests from the manager and a use port to access

CoreGRID TR-0153 11

WE S p l i t
W

M G R CC h e c kM G R G a t eG a t e

I n i tS c a nC h e c kP r i n t c m pWG a t e
G a t e A D M I N F i n g e r p r i n t M A T C H E R

s I n F P Ms O u t Cu G A s I n Cp C s O u t F P Mp D B p Wp D Bs I n C M P s O u t C M P

Figure 10: Spatial composition of the Fingerprint recognition application. The gray part is hidden to the designer.

the DB portions in theSplit component. The latter is a standard loop initializing the gate, scanning a fingerprint,
submitting it to the matching system and publishing the result of the match.

From the temporal viewpoint, the application components happen to be hosted in a sequence that first launches the
FingerPrint matcher component, then the Check one and eventually the GateAdmin manager. The STKM description
of the sequence is shown in the last part of Figure 9. It is worth pointing out that exploiting skeletons, we can easily
modify the FingerprintMatcher to process a huge amount of fingerprints inbatch mode. In this case we can simply
instantiate the functional replication skeleton in such a way theE port sends each input item to a different, “free”
worker,C just gathers answers and delivers them to output and workersall receive (or access) a copy of the whole
fingerprint database. Then, exploiting STCM derived workflow management, we can write an STKM program that
depending on some input parameter from the system user activates either the “batch” or the “real time” matching
composite component.

6.2 Climatology application in STKM

The second application we consider in this Section is a climatology application. It is basically a parameter sweep-
ing application. For each parameter set, a number of iterations modeling climate evolution in the next 200 years is
computed. Its structure is outlined in Figure 11 (a). The first componentS0 is basically a component implementing
a forall construct. It iterates on the input parameter set sequence delivering a new parameter set to componentS1.
This, in turn, iterates computation performed byS1 to S5 for a number of times, in a sequential loop. Each iteration
builds the approximate climate state at the next time quantum. Eventually, componentS5 delivers the final result to
componentS6 for post-processing. ComponentS4 has a sensibly higher (10 times higher) execution time than the
other components used in the application. This is a high level schema of a real application considered within the
French ANRLEGOproject [14].

Climatology experts having available all the components relative to the building blocks of the climatology applica-
tion will probably come out with an application structure such as the one of Figure 11 (a). A component will provide
the subsequent (in the temporal dimension) components withas much input items as the number of the parameter
item in the input parameter set. By simply recognizing that the loop around componentsS1 to S5 is executed on a
stream of input items, produced by componentS0, and properly exploiting STKM , the application can be more or less
“automatically” transformed into the one represented in Fig.11 (b). In this case, temporal composition of components
S1 to S5 has been transformed into a spatial composition corresponding to a “loop of pipeline” skeleton composition,
possibly exploiting wrappings such as those shown in Fig. 5.In turn, the new spatial composite deriving from the
compilation of a loop of pipeline skeleton can be optimized much more than the original “temporal only” schema of
Fig. 11. For instance, exploiting the estimated completiontimes of pipeline stages, stagesS1 to S3 can be deployed
within the same computational resource, preserving the service time of the loop of pipeline computation and, in the

CoreGRID TR-0153 12

S 1S 2S 3S 4S 5
S 0 S 1 S 2 S 3S 4S 5S 0

S 1 S 2 S 3S 5S 0 S 4S 4(a)
(b)
(c)S 6

S 6
S 6

f o r a l l

Figure 11: Example of a composition from which it is possibleto recognize a pipeline.

meanwhile, increasing the efficiency of the overall application. The net effect of using less resources can be estimated
in passing from an efficiency around 20% to one above 80% (thislooks huge, but actually, using one separate resource
for each component in the application is quite an inefficientinitial implementation). Alternatively, the applicationcan
be restructured as in Fig. 11 (c). In this case, the stageS4 has been parallelized by transforming the loop of pipeline
in a loop of pipeline of farm, decreasing the service time of the overall pipeline and therefore increasing again the
efficiency of the whole application. In this case efficiency can be obtained which is very close to 100%, due to the
fact we can easily add 10 workers to the farm and therefore keep the service time of the “huge”S4 stage close to the
service time of the other pipeline stages, and thus optimally balancing the whole pipeline (application).

It is worth pointing out that none of the transformations/optimizations discussed above could have been imple-
mented in the temporal only application specification (the one of Fig. 11 (a)).

6.3 STKM vs. standard approaches

We want to analyze in more detail the advantages of STKM with respect to plain components, workflows or even
with respect to the original STCM, after we qualitatively discussed the use case applications above. In particular, we
consider several properties of the programming model:

Expressiveness of an assemblythe expressive power provided to the programmer to assemblyapplications out of
their building blocks

Required designer expertiseto implement efficient applications

Efficiency of the resulting assembly/application, and

Composability meaning the possibility to compose applications out of (simpler) building blocks.

Tables 1 and 2 outline our judgment relative to the properties just stated in case of the fingerprint recognition
applications (Table 1) and of the climatology application (Table 2). Just to understand how we compiled the Tables,
let us detail how the “values” in column “designer expertise” of Table 1 has been determined. In case the finger-
print recognition application was to be implemented with a traditional component model, high programmer expertise
is required if dynamic management of component composites are to be implemented such as those implemented by
behavioural skeletons application managers. Even if workflows were used, programmer expertise required is high, as
workflows do not support natively complex parallelism exploitation patterns such as the one present in the fingerprint
application. Using STCM or skeleton systems the programmer can use limited forms of parallelism (forall in STCM,
as an example) or limited (or null) temporal composition (workflow) support in skeletons, and therefore an average
expertise is required to handle aspects not primitively supported by the environment (parallelism exploitation patterns
in STCM and temporal composition in skeletons). STKM provides suitable mechanisms to handle all the modelling

CoreGRID TR-0153 13

Expressiveness Level of designer Efficiency Composability
of an assembly expertise

Component average: high: high (static)
models synchronization and dynamic for dynamic expert level (dynamic) good

management hidden in implementation management
Workflows average: average: good for part

not captured construct high stateless of the
(data transfer/reload) application

STCM average: proportional
enable to recognize low in static case to expertize good

some constructs level
Skeletons average: low: use of existing

skeletons cooperation skeletons high good
not natural high: new skeletons

STKM good low high good

Table 1: Analysis of a the properties offered by different programming models to design the application represented
in Figure 10.

Expressiveness Level of designer Efficiency Composability
of an assembly expertise

Component proportional to
models hidden high expertize level good

Workflows average: high:
adequate for temporal dependencies low relies on global scheduler good

but often appears as a sequence
STCM average: low

adequate for temporal dependenciesbut designer has to use high good
but appears as a sequence to use right ports

Skeletons high:
good low requires meta-data good

(execution durations)

STKM good low: smart designer high:
requires meta-data good

(execution durations)

Table 2: Designing a pipeline construct using different programming models, the analyzed application example is
shown in Figure 11 (part (a)).

aspects of the fingerpring recognition application: temporal composition to handle skeleton and non skeleton compo-
nent setup and skeletons to handle complex parallel pattern, possibly in autonomic way via the behavioural skeleton
internal manager.

Both Tables evidence how STKM presents several advantages over the component, workflow and skeletons pro-
gramming models.

7 Conclusions and Future Works

We outlined STKM , a programming model combining the advantages of components, workflows and algorithmic
skeletons. Programmers can exploit workflow features of STKM to model applications in such a way the temporal
relations between their different parts are precisely exposed, and they can also use skeletons to implement those partsof
the applications that exploit parallelism according to well know parallelism exploitation patterns. All the environment
exploits component technology, to allow programmers to implement applications by component assembly. In case
of workflows, components are interconnected using new “temporal” ports, whereas skeletons are plain composite
components whose inner components are interconnected via “stream” ports and their external interfaces also are based

CoreGRID TR-0153 14

on stream ports.
We demonstrated the feasibility of the STKM approach providing an extension of STCM (a model already support-

ing components and workflows) that includes common algorithmic skeleton. Using STKM , we modeled a couple of
significant applications that happen to be use cases in distinct european projects. The STKM (abstract) version of the
two applications allowed to outline the benefits of the approach as well as the added value with respect to STCM and
the other component only, workflow only and skeleton only programming environments. In particular, we’ve shown
how complex applications, can have parts that can be simply implemented exploiting skeletons (that is, instantiating
one of the skeleton composite components provided by STKM) and inserted seamlessly in complex workflows, and
how, by exploiting skeletons in workflows, application implementation can be optimized.

We are currently implementing STKM as an extension of STCM. We plan to have experiments validating the whole
STKM approach even before the whole programming environment is implemented. In particular, we are currently
writing parts of the prototype applications considered in STCM and manually implementing skeleton composite com-
ponents in such a way the combined usage of workflows and skeleton (in a component framework) can be evaluated
and efficiency can be assessed as well.

Acknowledgements

This work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission
(Contract IST-2002-004265), within the framework of its Researcher Exchange Programm no. 25. The work is also
partially supported by the FP6 GridCOMP project funded by the European Commission (Contract FP6-034442) and
the French National Agency for Research project LEGO (ANR-05-CIGC-11).

References

[1] Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, Domenico Laforenza, Diego Puppin,
Luca Scarponi, Marco Vanneschi, and Corrado Zoccolo. Components for high performance Grid programming
in Grid.it. In V. Getov and T. Kielmann, editors,Proc. of the Intl. Workshop on Component Models and Systems
for Grid Applications, CoreGRID series, pages 19–38, Saint-Malo, France, January 2005. Springer.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Patrizio Dazzi, Domenico Laforenza,
Nicola Tonellotto, and Peter Kilpatrick. Behavioural Skeletons in GCM: Autonomic Management of Grid Com-
ponents. In Didier El Baz, Julien Bourgeois, and Francois Spies, editors,Proc. of Intl. Euromicro PDP 2008:
Parallel Distributed and Network-based Processing, pages 54–63, Toulouse, France, February 2008. IEEE.

[3] Marco Aldinucci and Marco Danelutto. Algorithmic skeletons meeting Grids.Parallel Computing, 32(7):449–
462, 2006.

[4] Marco Aldinucci and Marco Danelutto. Securing SkeletalSystems with limited Performance Penalty: the Muskel
Experience.Journal of Systems Architecture, 2008. In press. DOI: 10.1016/j.sysarc.2008.02.008.

[5] Ilkay Altintas, Adam Birnbaum, Kim K. Baldridge, Wibke Sudholt, Mark Miller, Celine Amoreira, and Yohann.
A Framework for the Design and Reuse of Grid Workflows. InFirst Intl. Workshop on Scientific Applications of
Grid Computing (SAG’04)), pages 120–133, Berlin/Heidelberg, 2005. Springer.

[6] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin
Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process
Execution Language for Web Services Version 1.1. Technicalreport, May 2003.

[7] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High Level Programming
Language and its Structured Support.Concurrency Practice and Experience, 7(3):225–255, May 1995.

[8] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S.Ielceanu, A. Miller, A. Karmarkar, A. Malhotra,
J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple, M. Rowley, K. Tam, S. Vorthmann, P. Walker,
and L. Waterman. SCA Service Component Architecture - Assembly Model Specification, version 1.0. Technical
report, Open Service Oriented Architecture collaboration(OSOA), March 2007.

CoreGRID TR-0153 15

[9] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. FlexibleSkeletal Programming with eSkel. In J. C. Cunha
and P. D. Medeiros, editors,Proc. of the 11th Intl. Euro-Par Conference, volume 3648 ofLNCS, pages 761–770,
Lisboa, Portugal, August 2005. Springer.

[10] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand,K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif,
T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi,
M. J. Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus,
and S. Zhou. A Component Architecture for High-performanceScientific Computing.International Journal of
High Performance Computing Applications, 20(2):163–202, 2006.

[11] Carlo Bertolli, Massimo Coppola, and Corrado Zoccolo.The Co-replication Methodology and its Application to
Structured Parallel Programs. InCompFrame ’07: Proc. of the 2007 symposium on Component and framework
technology in high-performance and scientific computing, pages 39–48, New York, NY, USA, October 2007.
ACM.

[12] Hinde Bouziane, Christian Pérez, Natalia Currle-Linde, and Michael Resch. A Software Component-based
Description of the SEGL Runtime Architecture. InCoreGRID integration workshop 2006, pages 69–80, Krakow,
Poland, 19-20 October 2006.

[13] Hinde Bouziane, Christian Pérez, and Thierry Priol. ASoftware Component Model with Spatial and Temporal
Compositions for Grid Infrastructures. InProc. of the 14th Intl. Euro-Par Conference. Springer, 2008. To appear.

[14] CERFACS - European Centre for Research and Advanced Training in Scientific Computation.http://www.
cerfacs.fr/.

[15] M. Cole. Algorithmic Skeletons: Structured Management of ParallelComputations. Research Monographs in
Parallel and Distributed Computing. Pitman, 1989.

[16] Murray Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Programming.
Parallel Computing, 30(3):389–406, 2004.

[17] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.PM.04 – Basic Features of
the Grid Component Model (assessed), February 2007.http://www.coregrid.net/mambo/images/
stories/Deliverables/d.pm.04.pdf.

[18] Marco Danelutto. Efficient Support for Skeletons on Workstation Clusters.Parallel Processing Letters, 11(1):41–
56, 2001.

[19] Marco Danelutto and G Zoppi. Behavioural Skeletons meeting Services. In Springer Verlag, editor,Proceedings
of PAPP’08, number 5101 in LNCS, pages 146–153, Krakow, Poland, jun 2008.

[20] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu. Parallel Programming using
Skeleton Functions. InPARLE’93 – Parallel Architectures and Languages Europe, pages 146–160. Springer,
1993. LNCS No. 694.

[21] Thomas Fahringer, Jun Qin, and Stefan Hainzer. Specification of Grid Workflow Applications with AGWL: An
Abstract Grid Workflow Language. InProc. of the 5th IEEE International Symposium on Cluster Computing
and Grid 2005 (CCGrid 2005), volume 2, pages 676–685, Cardiff, UK, May 2005.

[22] S. Gorlatch and J. Duennweber. From Grid Middleware to Grid Applications: Bridging the Gap with HOCs. In
Future Generation Grids. Springer, 2005. selected works from Dagstuhl 2005 FGG workshop.

[23] GridCOMP Project. Grid Programming with Components, An Advanced Component Platform for an Effective
Invisible Grid, 2008.http://gridcomp.ercim.org.

[24] H. Kuchen. A skeleton library. InProc. of 8th Intl. Euro-Par Conference, volume 2400 ofLNCS, pages 620–629.
Springer, August 2002.

[25] OMG. CORBA Component Model, V4.0. Document formal/2006-04-01, April 2006.

CoreGRID TR-0153 16

[26] OMG. Unified Modeling Language. Document formal/2007-02-05, February 2007.

[27] S. Pelagatti.Structured Development of Parallel Programs. Taylor & Francis, 1998.

[28] Clemens Szyperski, Dominik Gruntz, and Stephan Murer.Component Software - Beyond Object-Oriented Pro-
gramming. Addison-Wesley/ACM Press, second edition, 2002.

[29] Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. Visual Grid Workflow in Triana.Journal of Grid
Computing, 3(3-4):153–169, September 2005.

[30] Marco Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and Distributed Portable
Applications.Parallel Computing, 28(12):1709–1732, December 2002.

[31] Thomas Weigold, Peter Buhler, Jeyarajan Thiyagalingam, Artie Basukoski, and Vladimir Getov. Advanced Grid
Programming with Components: A Biometric Identification Case Study. InProc. of the 32nd Intl. Computer
Software and Applications Conference (COMPSAC), Turku, Finland, 2008. IEEE. To appear.

[32] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Systems for Grid Computing.Journal of
Grid Computing, 3(3-4):171–200, september 2005.

CoreGRID TR-0153 17

