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Abstract

This report investigates an implementation of STKM , a Spatio-Temporal sKeleton Model. STKM expands the Grid
Component Model (GCM) with an innovative programmable approach to compose an application by combining com-
ponent, workflow and skeleton concepts. We explore a projection of the model on top of SCA and its implementation
using Tuscany Java SCA. Experimental results show the need and benefits of the high level of abstraction offered by
STKM .

1 Introduction

Many programming models are proposed to develop large-scale distributed scientific applications. They attempt to
offer means to deal with the increasing complexity of such applications as well as the complexity of execution re-
sources, like Grids. They also attempt to ensure efficient execution and resource usage. However, existing models
often target different properties and/or specific kind of applications, usually determined by the usage of a given pro-
gramming paradigm. A current challenge is still to offer a suitable programming model to easily and efficiently support
multi-paradigm applications.

In this report, we focus on three well-known families of programming models: component, workflow and skeleton
based models. They all follow an assembly/composition programming principle, which is becoming a widely accepted
methodology to cope with the complexity of the design of parallel and distributed scientific applications. Component
models mainly deal with code reuse problem; they are quite appropriate for strongly coupled compositions. Workflow
models make it possible to establish temporal dependenciesamong components, thus to enable the efficient scheduling
of components onto resources (e.g. sites, processors, memories). Components arranged in a workflow are typically
loosely coupled. Eventually, algorithmic skeletons are suited to describe component assemblies in a fairly abstract way
(e.g. high-order and parametric component assemblies). This enable designer to leverage on automatic optimizations
for efficient execution on targeted resources [10].

In summary, each family of models has been considered suitable to deal with a class of problems affecting the pro-
gramming of complex applications; these classes have been independently studied. Nevertheless, all these properties
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Figure 1: An STKM component.

seem to be relevant to be considered in a single programming model. In this work we aim to combine these families
of models.

There are previous works that aim to combine these families.In particular, STCM (Spatio-Temporal Component
Model) [9] is a model combining component models and workflows. Efforts have been also done to combine skeletons
and component models [3, 11]. In a similar direction, STKM [1, 2] is an attempt to combine STCM with skeleton mod-
els. While previous work related to STKM explored theoretical background, this report investigates its implementation.
In particular, we explore the possibility to allow users to design an application as the composition of extended GCM

components (primitives and composites) and to use SOA/WS based framework to build an implementation. The exten-
sion of a GCM component considers the integration of workflow concepts (tasks and input/output ports) and skeleton
constructs, such as pipeline and farm. All these concepts are built on top of SCA (Service Component Architecture).
This report describes this perspective and discusses experimental results.

The rest of this report is organized as follows. Section 2 recalls the theoretical background of STKM . Section 3
introduces the followed approach to implement STKM on top of SCA. In particular, it describes how components “à
la GCM” are projected to SCA ones and how an assembly is handled. Section 4 discusses the usage of Tuscany Java
SCA to realize this implementation. The accent is put on the limitations of the used Tuscany framework that is still in
development. Thus, preliminary solutions are proposed to respond to some STKM requirements. Section 5 discusses
experimental results. It illustrates the feasibility of STKM concepts and the benefits of this model regarding the ability
of the proposal to simplify programming and to automatically adapt an application to its execution context. Section 6
concludes the paper and presents future works.

2 Overview of STKM

In [1], we proposed to extend STCM [9] (Spatio-Temporal Component Model) with (behavioral) skeleton support.
The advocated idea considers two issues. Firstly, a programming model should offer means to explicitly express the
functional behavior of an application through its assembly. That is to promote simplicity of design and separation of
functional concerns from non-functional ones (example: component life cycle management, processes management
for parallel codes). Secondly, such non-functional concerns are expected to be transparently managed by the compo-
nent framework. The level of expressiveness of an assembly is relevant to enable a framework to adapt an application
to an execution context (execution resources) and ensure its portability to different contexts. Thus, STCM offers a level
of abstraction allowing a designer to express both temporallogic of an application execution (inherited from workflow
models) and spatial dependencies between components (inherited from component assembly models). STKM adds the
possibility to use predefined skeleton forms to build parallel composition of codes. This section recalls the princi-
ple of STKM putting the accent on skeletons support. In particular, it describes the unit of composition of an STKM

application, its assembly model and the suitable approach to manage the assembly by the framework.

Component. STKM reuses STCM components. Thus, a component, originally namedcomponent-taskin STCM,
is a combination of component and task concepts. As shown in Figure 1, a component can exposespatial and/or
temporalports. Spatial ports are classical component ports. Temporal ports (input/output) and tasks behave like in a
workflow. The difference is that the life-cycle of an STKM component may be longer than the one of a task in a classical
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Figure 2: Example of an STKM assembly.

workflow, which usually corresponds to its execution. More details about the specification of such components can be
found in [9]. This specification is presented through an extension of a GCM (Grid Component Model) component.

Assembly model. An STKM assembly is first of all a combination of temporal and spacialdependences between
components (primitive or composite). Spatial dependencies are represented by the connections of spatial ports, as
in classical component models (such as GCM). Temporal dependencies are represented by both a data flow and a
control flow as done in a workflow. A data flow is built by connecting input and output ports of dependent tasks. A
control flow is built by using control constructs like sequences, branches (if andswitch), loops (for andwhile) and
parallel constructs (parallelFor andparallelForEach), etc. STKM adds constructs dedicated to skeleton-based parallel
paradigms. In more details, these constructs are particular composite components (templates) representing skeleton
schemes (pipe, farm, functional replication, etc.). The internal structure of such a component is well defined according
to a given parametric connection schema. A skeleton can be composed with components and/or other skeletons. That
can be done at different levels of an assembly. Also, skeletons can be nested. These possibilities improve composability
and code reuse, while preserving the pragmatic of skeletons.

Figure 2 illustrates an example of assembly supported in STKM . It describes a sequence of three tasks wrapped
by componentsstep1, step2 andstep3. The componentstep2 is a composition of two parallel sequences
(A;B;C) and(D;E). The second sequence depends on the result of pipelined stages (p1, p2, p3) for which
inputs are produced by componentB of the first sequence. The composition also illustrates nested skeletons (farm as
stage in thepipe). Moreover, the figure shows that skeleton elements (stagesof a pipe or workers in a farm) have the
possibility to express dependencies with other components. This may be exploited, for instance, to express a shared
state. Details about the STKM assembly language, the semantic of an assembly as well as an example of its usage for
a real world application can be found in [1].

Assembly management. As addressed at the beginning of this section, the objectiveof STKM is not limited to
simplify the design of applications. It aims also to take benefits from the expressiveness power of an assembly to
efficiently execute an application on given resources. The efficiency essentially depends on the ability of a framework
to exploit the maximum parallelism from a part or the whole assembly, and to adopt an adequate scheduling policy
depending on actually available execution resources. In this direction, STKM proposes to consider parallelism forms
that are explicitly expressed by using skeleton constructsas well as those built without using skeletons but which can
be mapped to a skeleton composition. An example for the last situation is to map the independentforAll control
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Figure 3: An SCA component. Figure 4: Example of SCA assembly.

construct to a functional replication skeleton in which theworkers are the body of the loop [1]. When the mapping is
done, skeletons constructs have to be projected to concreteimplementations. In STKM , it is at the responsibility of the
framework to decide an adequate implementation depending on the execution context. The approach is to reuse already
proposed component based implementations, like those based on GCM components [3, 13]. Such implementations
offers self adaptive management support for computationalelements and are able to deal with optimization issues for
instance collapsing stages of pipes or introducing farms for efficiency. Therefore, STKM should take benefits from
already existing skeleton management mechanisms able to deal with performance [4] concern as well as other like
security [5] or fault tolerance [8].

3 An approach to implement STKM concepts on top of SCA

In this section, we discuss an approach aimed at implementing STKM using SCA. Our main purpose was to verify
the feasibility of STKM concepts. While STCM was originally thought as an extension of GCM, we envisioned it
was worth to explore the feasibility of STKM in a Service Oriented Architecture(SOA). On the one hand, this will
eventually allow to compare the STCM “temporal” part (i.e. the workflow one) with plain services as used in the
implementation of existing service workflow frameworks andenvironments. On the other hand, by using SCA we
wanted to investigate whether porting STCM/STKM concepts to the service world is as effective as porting other GCM

concepts, as already demonstrated in [11].
In order to implement STKM on SCA, two distinct issues must be taken into account: a first issueis related to the

projection of the user view of an STKM assembly to an SCA assembly, while the second one deals with the management
of an application assembly during an application execution. Before discussing how we can deal with these two issues,
let us give an overview of SCA.

3.1 Overview of SCA

SCA [7] is developed since 2005 by theOSOA(Open Service Oriented Architecture) group. It defines a specification for
programing applications according to aService Oriented Architecture(SOA). The objective is to enable composition of
services independently from the technologies used to implement these services and from any SCA compliant platform.

The SCA specification deals with several aspects: assembly, clientand component implementation, packaging and
deployment:

Assembly model. In this model, a component is defined as a set of ports namedservicesandreferences(Figure 3).
Ports are of several kinds depending on the technology used to implement a component. They may be interfaces of type
Java, IDL CORBA, WSDL, etc. They allow interactions between two connected components based on message passing,
Web Services or RPC/RMI communications. The interoperability between components implemented using different
technologies is ensured through the specification of dedicated binding mechanisms. A component can also define
propertiesto specify configurable attributes. An SCA assembly (Figure 4) can be hierarchic. Compared with GCM,
the hierarchy is abstract. It is used to determine the visibility frontier of sub-components of a composite component.
Then, ports of a composite are representation of sub-component ports to be exposed outside. The membrane concept,
as existing in GCM, is not existing in SCA. Therefore, the objective in SCA is limited to preserving encapsulation and
simplifying assembly process.
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Figure 5: Example of mapping an STKM component to an SCA one.

Client and implementation model. SCA defines for each implementation language a specification forservice im-
plementations. This specification describes the SCA model for a given language independently from any SCA platform.
For that several means are used like annotations for Java/C++ or XML extensions for BPEL (Business Process Exe-
cution Language). These means permit for instance the definition of services, properties, and meta-information like
local or remote access constraints associated to a service.

Packaging and deployment model. This part focuses on the specification of component packaging. It describes the
unit of deployment associated to a component. For deployment concerns, an SCA platform is free to define its proper
model. Section 4 gives an overview of the model realized by Tuscany Java and used to perform presented experiments.

3.2 A projection of STKM concepts on top of SCA

To implement STKM on top of an SCA framework a projection of STKM concepts to SCA ones is required. These
concepts are components and assembly. This section describes our projection approach for these two concepts.

3.2.1 From an STKM component to an SCA component

As mentioned in Section 2, the user view of STKM considers components as an extension of GCM components. Fig-
ure 5 gives an overview of the extension approach we adopted.Only temporal ports and tasks concepts are concerned.
The left part describes the projection of task and temporal ports to classical GCM concepts. A task is just an imple-
mentation of a server interface. Temporal ports are mapped to classical GCM client/server ones. The implementation
of these ports is realized by a dedicated controller, which is responsible to manage input and output data availability
and execution of tasks. Hence, this management is transparent for the user. The right part of the figure maps a GCM

component to an SCA one. A GCM component is mapped to an SCA composite component, GCM ports to RPC/RMI
services/references, controllers to SCA components and sub-components to SCA component implementation. Note
that the representation of controllers by components is nota new idea. This principle promotes composability and
code reuse and it is well accepted in the GCM specification. Also, there exist works attempting to build aGCM

implementation using SCA [11]. The principle is similar to the one presented here.
The projection of STKM components also considers skeleton constructs. As these constructs are components, a

similar approach is followed. The difference is that a concrete representation of a skeleton may consider additional
non-functional elements like managers for behavioral skeletons. Figure 6 shows a representation example for a func-
tional replication skeleton. ComponentsMGR (manager),E (emitter) andC (collectors) are the non-functional elements
of the skeleton. They are expected to be transparently introduced in the skeleton construct by an STKM framework.
Note that the whole structure can be directly realized by SCA components or can be first mapped to an STKM assem-
bly and then projected to an SCA one. This possibility allows reusing existing implementations of skeleton constructs
realized for instance with GCM [6].
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Figure 6: A concrete representation of a functional replication behavioral skeleton component.

Figure 7: Data transfer management through a proxy component. The STKM notation for ports is still used here for
simplicity. Concretely, components are SCA ones according to the direct mapping shown in Figure 5.

To summarize, a simple projection of STKM components to SCA components was possible. That is thanks to the
support of RPC/RMI ports by the two models, their hierarchical property and the possibility to realize controllers by
components.

3.2.2 From STKM to SCA assembly and its management

In STKM , an assembly is not limited to component instances and spatial connections. Temporal dependences may
be also specified by data and control flow constructs offered by STCM. Thus, it is not sufficient to project temporal
ports to SCA ports, as described in Section 3.2.1, to be able to perform a direct projection of an STKM assembly to
an SCA one. In fact, one of the objectives of STKM /STCM aims to dynamically modify the structure of an application
according to both specified temporal and spatial dependencies. For that, we propose a projection to an SCA assembly
for which the structure is dynamically and automatically modified during execution.

In this context, the issue is to introduce mechanisms to manage data transfer between dependent components, the
sequence of tasks executions according to both designed data flow and control flow and the life cycle of components.
Several solutions can be proposed. In this report, we present a preliminary adopted solution, based on a distributed
data transfer approach and a centralized engine “à la workflow”. The remainder of this section gives an overview of
our proposal.

Data management There are two alternatives to transfer data between two components connected within a data flow.
These alternatives depend on the co-existence of these components. In fact, if the components co-exist, it is sufficient
to connect the output port of the first component to the input port of the second one. A typical situation is when the
tasks of the components are successive pipeline stages. However, if the components do not co-exist, a mechanism is
needed to retrieve a produced data and subsequently send it to a next component. For that, we propose to introduce
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create component A;
create component proxyAB;
connect A to proxyAB;
order send input on inA;

check data availability on proxyAB;
while not available

check data availability on proxyAB;

create component B;
create component proxyB..;
connect B to proxyB..;
order proxyAB to send data to B;
remove A;
remove proxyAB;
check data availability on proxyB..;
...

Figure 8: Simplified STKM engine managing the sequence shown in Figure 7.

dedicated proxy components in the assembly at execution. Figure 7 illustrates this proposal for a typical situation
of a sequence. When the task of componentA produces a data, this latter is send to the proxy component. When
componentB is created, it is connected to the proxy. The data is sent toB when the proxy receives a corresponding
request (cf. STKM engine paragraph). The figure also shows the evolution of theassembly according to the evolution
of tasks executions. The specification and the implementation of a proxy are assumed to be done automatically. A
proxy is viewed as a template component for data transfer. The parameters of such a template are input and output
port types for a specific usage context. These types are the ones defined by user level components. The introduction
of a proxy in the assembly is assumed to be done by an STKM assembly interpreter. This interpreter is responsible to
perform the STKM assembly projection to its concrete SCA based representation.

STKM engine The STKM engine appears as an SCA client program. This program is the result of the STKM assembly
interpreter. It contains the sequence of actions to create/destroy components, connect/disconnect component ports,
manage data availability/transfer and cover the control flow described in STKM assembly for ordering tasks execution.
These actions are deduced from the behavior expressed by theSTKM assembly. Figure 8 shows a simple engine
example managing the sequence shown in Figure 7. In this example, it is assumed that a component is created when
the control flow reaches it. After an input data is sent to componentA, the engine waits the end of its task execution.
For that, it checks the output data availability ofA on proxyAB. Once the data is available, the engine orders the
creation of componentsB andproxyBC. Then, the engine ordersproxyAB to send the saved data toB. We recall
that it is not at the responsibility of the engine to directlymanage a task execution. This is delegated to the component
controller. In general, this approach promotes a distributed management and should simplify the engine role. However,
the illustrated example adopts a scheduling approach that may lead to scheduling overheads. In fact, the creation and
configuration ofB andproxyBC is done only once the task being executed onA is finished. Other solutions may
be adopted to overlap the creation/configuration of components with computation. Such solutions may be based for
instance on prediction mechanisms. Without ignoring the relevance of using an efficient scheduling approach, this
report does not study such solutions.

The presented approach deals with an STKM assembly at execution, including projection on top of SCA and the
STKM engine, is not conflicting with the objectives of STKM . All concerns encountered in this section are non-
functional and are hidden to the user. This later may then keep the simple view of an application. The remainder of
this report treats performance obtained using an SCA framework.

4 Usage of Tuscany Java SCA

To evaluate the work presented in this report, we realized animplementation for STKM use cases. For that, we used
the Tuscany Java SCA framework Version 1.2.1 [14]. This framework is under development. It realizes part of the
SCA Java component implementation specification (Version 1.0) and provides a preliminary support for distributed
execution of applications. This framework provides no deployment tools. This section gives an overview of the
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Figure 9: Distributed execution environment of an SCA application using Tuscany Java framework.

distribution principle of the framework, the limitations evidenced when using SCA for implementing the STKM support
as well as the solutions adopted to overcome such limitations.

4.1 Distribution principle

Figure 9 describes the main concepts of a SCA distributed execution environment. In this environment, the domain is an
administrative concept. It is responsible to build and resolve an image reflecting installed contributions. A contribution
is an archive containing artifacts required to deploy a component (JAR or ZIP files) [7]. The cloud composite provides
a global image of all deployed nodes. A node is a particular top-level composite component which hosts specified
components in a same process. The deployment of components is manually done by launching the hosting node on
a given machine. While the effective instantiation of a component within a node, it is done in a lazy way (at the first
service invocation on the component). Finally, the entry point to execute an application is a client program. An API is
offered to such a program to access services provided by components.

4.2 Limitations and adopted solutions

As we cited at the beginning of this section, the support of the SCA specification in Tuscany is still in development.
Some features are not yet supported or ported from previous Tuscany distributions. In particular, the distribution
presents lacks regarding the support of components/services lookup, dynamicity, and some binding protocols in a
distributed context. Also, some problems were encounteredwhen executing nodes in a cluster. Let us briefly detail
each limitation and the adopted solutions with respect to STKM requirements:

Component and service lookup SCA describes an API allowing SCA services to be programmatically accessed
by client programs which are not running as SCA components. However, this API is not implemented in the used
framework. Actually, the access to a component service by a client is done through a node executed in the same
space as the client. In the context of STKM , we followed this same principle for an STKM engine which, as seen in
Section 3.2.2, is a client program. Without loss of generality, Figure 10 illustrates this principle for accessing a proxy
port. As it can be noted, an indirection is generated. Its cost is equivalent to an intra-process method call which does
not affect discussed experimental results presented in this report.

Dynamic addition/removal of components Dynamic assembly modification capability is not completelyand/or
efficiently treated in the used framework. In fact, to dynamically add/remove components, there are mainly two ap-
proaches. The first approach is based on dynamic addition/removal of contributions and nodes. Its principle allows
dynamic specification of new components as well as nodes withdifferent configurations. However, this approach is
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Figure 10: Access to a component service from an STKM engine.

// This interface is implemented by
// the controller TMC (Figure˜5)
public interface A_Ctrl_Ports {

//input side (inA)
public String provides_inA();

//output side (outA)
boolean connect_outA(String srvRef);
public void disconnect_outA();

}

Figure 11: Usage of service reference
passing in SCA to specify ports connec-
tion/disconnection operations. The

not well supported in the used Tuscany framework. It also requires domain reconfiguration that currently needs stop-
ping an application at each reconfiguration1. The second approach is based on the addition/removal of nodes only.
Alternatively with respect to this former approach, this second approach does not require to suspend an application
execution when reconfiguring it. Its limitation however is that all nodes are statically defined and configured. Compo-
nents hosted by nodes as well as hosting machines are known inadvance. Even if at the end our objective is to support
dynamic decisions, this limitation does not affect the objectives of performed experiments. We then decided to make
static decisions and follow the second approach for the present work.

Dynamic connection/disconnection of ports SCA does not explicitly provide user API to programmatically con-
nect/disconnect references to services. However, it provides an API to allow passing service references. Without
lost of generality, we used such an API to specify connection/disconnection operations for temporal ports. Figure 11
presents defined operations for input and output sides. All operations are exposed by corresponding services. The
specification and implementation of these services affectsnon-functional part of components, expected to be transpar-
ently generated. In this context, we faced an additional limitation of Tuscany. This limitation is related to the support
of different kind of binding protocols associated to services passed by references (srvRef in the example). In other
words, it should be sufficient to configure such services witha default SCA protocol. However, that is currently miss-
ing. Hence, we replaced this protocol with a Web service one.As will be presented in Section 5, this protocol affects
the communication time between two components. It should bealso taken into account that a serialization a service
reference was needed for its passing (String type in the Figure).

Node launching on clusters Tuscany distribution provides node launcher programs to execute node process as
detached daemon on Linux (the operating system used for our experiments). However, such an execution on the used
cluster causes Input/Output failures. Hence, we developedour own node launchers. For that, we used the common-
daemon library [12] which provides a support to make the interface between the daemon to the operating system.

To sum up, we resolved current limitations of used Tuscany framework with respect to some STKM requirements
and without modifying it. In next Section, some presented results are affected by these limitations as well as proposed
solutions. However, it is to note that this is sufficient to illustrate the benefits of STKM and its feasibility on a Web
Service based environment.

5 Evaluation

STKM aims at increasing the level of abstraction with respect to parallel programming and offering a powerful man-
agement of an application execution. This section evaluates the performance of the model that may be obtained by
using a Web Service environment for various and simple situations. More precisely, we developed an application

1It is relevant to note that efforts are done to overcome this limitation. A solution is proposed in [11, 6] and its feasibility was proved using an
old Tuscany version.
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Remote note Programmatically connecting
Launching time two components

Time ins 45.555 3.204

Figure 12: Average of times to deploy and connect components.

RTT Intra-node Inter-Node Inter-Node
in ms Inter-component Intra-host Inter-host

Default protocol 0.076 20.348 20.167
WS protocol 22.664 24.225 24.106

Figure 13: RTT on a local Ethernet network for different situations.

according to different compositions: sequence, pipeline and nested composition of pipeline and farm/functional repli-
cation skeleton constructs. As discussed in this section, the deployment and execution of this application in different
execution contexts will clearly outline the benefits of STKM .

All experiments have been deployed and executed on a clustermade of 24 Intel Pentium 3 at 800 MHz PEs, 1 GB
RAM, 4200 rpm disk, connected through a 100 MBit/s switched Ethernet and running on Linux (2.4.18 kernel).

The conversion from an abstract STKM assembly to SCA components and STKM engine was done manually.
Components are implemented using Tuscany Java SCA version 1.2.2. All code is is written in Java 1.5. Then, the
deployment of components was done at the initiative of the engine by usingssh.

5.1 Metrics

The first question is to evaluate basic overheads which an application execution may have according to dynamic life
cycle management of components, communication overheads between components within the Tuscany environment
as well as the effect of communication protocols on communication times. The measure of such overheads helps
understanding next discussed performance results.

Figure 12 illustrates first metrics. The first column shows obtained results for deploying and launching a node. As
it can be noted, starting a node is costly. The obtained time covers Tuscany proper creation of nodes policy (based
on the usage of class loaders) and the usage of common-daemonlibrary (Section 4.2) to launch a node process. The
second column shows obtained results for connecting ports through the reference passing mechanism explained in
Section 4.2. The result is mainly a consequence of serialization/deserialization needed by this operation. It is relevant
to recall that part of the overheads are due to limitations ofused framework and added overheads of preliminary
adopted solutions. Improving Tuscany as well as resolving its limitations should improve these metrics.

Figures 13 reports the round trip time for used services/references configurations and for different placement of
components. The RTT time corresponds to an empty service invocation. The configuration of a service specifies the
possibility to remotely access a service and the binding protocol used to invoke it. We used default SCA protocol and
Web Service protocol. This latter is used for services passed by reference (Section 4.2). In the context of the present
work, it concerns services associated to temporal ports. Inthe figure, all services are configured to be remotable except
for the first column. Several conclusions can be drawn. First, modifying the binding protocol affects communication
times even between components within a same process (First column). That may be explained by a lack of communi-
cation optimizations in the current Tuscany environment. Second, the impact of the network is negligible, even hidden,
with respect to the effect of communication protocols. For aremotable service (configuration used for inter-node and
inter-host placement), the effect of changing a protocol isnot relevant. The RTT, around20 − 24 ms, in all cases lead
to costly communications. That is not a surprise as SCA specification addresses this issue and claims that SCA is more
adequate for coarse grain codes.

5.2 A sequence use case

The second experiment illustrates the consequence of mapping an STKM assembly to different concrete assemblies as
well as of components placement on the overall execution performance that may be obtained for a simple use case.

Figure 15 reports the execution time of a sequence of4 tasks according to several configurations. These configura-
tions are introduced in Figure 14. They represent two concrete assemblies for a same experimented application. For the
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Figure 14: Configurations for the results shown in Figure 15.T: Task in component, P: Proxy, Colloc: Collocation.

Global time (s) Computation (%)

T-P 295.966 27.030
T-P-Host-Colloc 397.347 20.134
T-P-Node-Colloc 281.878 28.381

T-P-Node-Host-Colloc 280.707 28.499
Pipe-Construct 156.421 51.144

Figure 15: Time to execute a sequence of4 tasks. The execution time of each task is20s. The life cycle of a
component-task is delimited by input/output data availability.

assembly on the left part, the execution and life cycle management of components follows the principle presented in
Section 3.2.2. In this case, several components placementsare experimented. On the right part, the original sequence
(user level) is mapped to a pipeline composition. In this case, all implicated components are deployed and connected
by the engine before starting the first task execution. Components are deployed on different machines, as usually
done for pipeline constructs in general. Without surprise,thePipe-Construct configuration lead to more efficient
execution. Note that the reported result includes remote nodes creation (≃ 6s for executing remote commands and
45s for waiting starting all nodes), components instantiationand port connections (≃ 17s). Even if measured metrics
may be improved, they are expected to have similar impact with less cost on the wall application execution time. Such
an impact should become negligible for course grained codes.

However, even ifPipe-Construct provides better performance, it is relevant to take into account other cri-
teria in the choice of a concrete assembly, in particular, resources usage. In fact,Pipe-Construct may causes
an overconsumption of resources. That may be problematic when using infrastructures like Grids because of shared
resources. While other configurations should offer the ability to optimize resources usage with efficient scheduling
policies. For the present work, the objective is not to studysuch policies. This is why we compared only basic con-
figurations testing the behavior when modifying the deployment of components (Figure 15). Results show that the
T-P-Node-Host-Colloc configuration provides better results. That may be explained by the fact that all com-
ponents are executed in the same process. Also, the lazy instantiation of components in Tuscany framework reduces
the number of threads executed simultaneously. However, components in a sequence may requires different processor
with respect to eventual execution constraints/contractslike a particular operating system, a minimum memory space
or processor speed, etc. Moreover, the availability of usedresources during the execution time should be considered.
Therefore, a configuration that simply allow a placement on different resources is suitable. For that, we selected
the configurationT-P-Node-Colloc. This is why in the remainder of this report the other configurations,T-P,
T-P-Host-Colloc andT-P-Node-Host-Colloc, are not reused.

Finally, the advantage of STKM is its ability to choose a concrete assembly according to a given execution context.
That is without changing the high level assembly of the application.
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Global time (s) Computation (%)

nbr data 10
Loop 2817.227 28.397

Loop-Opt 462.949 56.162
Pipe 337.860 76.955

nbr data 100
Loop 28167.841 28.401

Loop-Opt 2271.786 90.677
Pipe 2147.984 95.904

Figure 16: Effect of using different constructs/life cyclemanagement on the execution time of a sequence of4 tasks
on multiple input data. Execution time of a each task is20s.

Figure 17: Overview of the two used configurations for executing an independentForAll loop

5.3 Need of forms recognition

STKM promotes the ability of an STKM engine to recognize parallelism forms from an assembly and to exploit them in
the generation of a concrete assembly for efficient execution. STKM encourages also a mapping of parallelism forms
to a composition of skeleton constructs. This section illustrates the interest of the underlying idea through a use case
of an independentforAll loop.

Experiments are done for executing aforAll loop using three different concrete assemblies. The body ofthe
loop is the sequence composition experimented in Section 5.2. The concrete assemblies are represented by the three
configurations listed in the first column of Figure 16.Loop configuration means that no parallelism form is recognized.
Each iteration considers one data and all iterations are sequentially executed. The life cycle of component instances
is managed as done for a sequence (Figure 7) for each iteration. For bothLoop-Opt andPipe configurations we
exploit the parallelism form of theForAll loop to support parallel execution. An overview of the followed approach in
the two configurations is shown in Figure 17. In both configurations, the execution is based on pipelined computations
of theForAll input data. However, they differ on the way the concrete assembly is managed:

• Loop-Opt: In this configuration, theForAll control structure is implemented by the STKM engine. It is at
its responsibility to split and collect the input data of theloop. For life cycle, a componentTi is created once
the first output ofTi-1 is available. Created instances are removed only after the loop execution. Even if a
pipeline execution is built, proxy components remain present as they are part of the sequence mapping. Note
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Global time (s) Computation (%)

Without load balancing 2116.355 95.920
Node-Colloc for step 2 and 3 2113.625 96.043

Figure 18: Load balancing for executing pipelined4 tasks. The execution time of each task is (in order):10s, 15s, 5s

and20s. The number of the pipeline input data is100.

Global time Computation according to the
(s) frequency of getting final results (%)

Without FR 3105.442 97.249
FR:3 workers 1181.837 87.998

FR: dynamic addition of workers 1409.444 –

Figure 19: Pipeline step parallelization using a farm construct. The pipeline is composed of4 tasks. The execution
time of each task is (in order):10s, 30s, 5s and5s. Step 3 and 4 are collocated for load balancing. The number ofthe
pipeline input data is100. FR: Functional Replication

that the engine successively sends all inputs on componentT1. These data are queued by the control part of the
component. This latter is responsible to ensure one execution of task at a time and the order of treated input data
(STCM specific behavior).

• Pipe: In this configuration, a pipeline skeleton construct is used to implement theForAll control structure.
The concrete assembly of thePipe introduces two components:distrib andcollector respectively
responsible to split (collect) theForAll input (output) data into several (one set of) data. All components are
deployed when the control reaches the loop and deployed after retrieving all results

Figure 16 reports obtained performance results for the three configurations and for two different data set sizes:
10 and100 doubles. The measures includes overheads related to the life cycle management of components. Many
conclusions may be drawn. First, it is not conceivable to execute the loop in a sequential manner. Second, as expected,
thePipe configuration presents a more efficient execution. It is not sufficient to have a pipelined execution like in
Loop-Opt and some life cycle management optimization to reach betterperformance but also an efficient imple-
mentation. Third, for longtime computations, the overheadof components life cycle management starts to become
negligible. Finally, to achieve efficient execution and management it is necessary to consider the behavior of global
composition, i.e. combined structures, in an assembly to decide a mapping on a concrete assembly.

5.4 Need of efficient behavioral skeleton management

A more advanced approach to deal with parallelism forms is totake benefits from behavioral skeleton constructs [3].
These constructs offer a powerful execution management of parallel applications. In particular, they consider not
only efficient execution but also resources usage. This section presents two experiments aiming to illustrate principal
advantages that behavioral skeletons should offer in the context of STKM . Both experiments are done for executing
a pipeline composition with load-balanced stages. Load balancing is realized by either components collocation or
by integrating functional replication skeleton. In this latter, we tested a fixed number of workers as well as dynamic
addition of workers. The remainder of this section details each experiment and discusses obtained results.

The first experiment consists in testing the execution of a pipelined composition of non equivalent tasks, i.e with
different computation times, and compare the execution performance with two distinct component placements. For
the first placement, all components implicated in the pipeline are deployed on different machines. In the second
case, the placement considers meta-data about computationduration of tasks. This meta-data is used to decide a
possible collocation of components. The objective is to load balance the pipeline execution steps to optimize resources
usage while preserving an efficient execution. That is a usual principle followed to management pipeline constructs.
Collocation decisions in the context of the present work is done manually. Thus, for all cases, the concrete assembly
is mapped to a pipeline skeleton construct as done in previous experiments. Figure 18 shows obtained results for a
specific example. As expected, the results are close. Therefore, in addition to reach an efficient execution, it should be
possible to improve resources usage.

CoreGRID TR-0171 13



Figure 20: Dynamic management of workers in a behavioral farm skeleton construct. The farm construct is used to
parallelize the second step of the pipeline construct of figure 19.

The second experiment uses another load-balancing approach. For a similar example but with different tasks, the
principle is to parallelize the execution of a costly pipeline step. For that, this step is transformed to a functional
replication construct in which the workers replicate the step. The structure of the functional replication is the one
shown in Figure 6. Experiment details as well as the obtainedresults are shown in Figure 19. As can be noted, the
execution time is divided by3 in the second line. That corresponds to the maximum number ofworkers needed to
achieve load balanced execution. That is in addition to laststeps collocation. The last line corresponds to a test of
dynamic worker addition by the manager of the behavioral skeleton. This manager implements a simple adaptation
policy. This latter consists in the addition of a worker if the frequency of producing results on the output of the
skeleton is more than a given value. In our particular case, this value is10s. Figure 20 shows the evolution of workers
number during the test execution which results to the execution time reported in Figure 19. It is to note that the
number of workers reaches4. That is due to a limitation of the current implementation ofthe pipeline which assumes
infinite buffers between tasks. In the scope of this report our objective is not to study pipeline or functional replication
skeleton management issues. Performed experiments illustrates more the feasibility of realizing a behavioral skeleton
in STKM and the benefits that such constructs should offer to STKM applications. Ongoing work should integrate
already existing behavioral skeleton implementations.

6 Conclusions and future works

In this work we discussed experiments aimed at assessing thedesign of STKM . The experiments have been performed
using SCA/Tuscany rather than GCM, the model originally extended by STCM that, in turn, evolved into STKM .
This was due to the fact we were interested in investigating how GCM and STCM + STKM concepts in general were
affected by the adoption ofstate-of-the-arttechnology, such as the one of Web Services. SCA represents agood
compromise as it merges the SOA concepts with basic component features that allow to seamlessly migrate most of
the CoreGRID/GCM experience into the service framework.

Experiments have been performed that i) measure the typicaloverheads involved in the usage of the SCA frame-
work and ii) evaluate the performances achieved in those cases where STKM is supposed to support much bet-
ter/performant implementations than plain STCM or skeletons.

The experiments evidenced that the overheads introduced when managing distributed applications on the SCA
framework are relevant, and therefore the whole approach isonly suitable and worth in case of coarse grain applica-
tions. This is not peculiar of SCA/Tuscany, however. Our direct experience in the GCM context demonstrated that
similar results are achieved also in case of usage of other distributed application middlewares. In particular, within
GridCOMP (gridcomp.ercim.org) we verified that using the GCM reference implementation built on top of
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ProActive (proactive.inria.fr) overheads can be measured that are definitely very close to the ones experi-
enced with SCA/Tuscany.

The experiments also evidenced that the optimizations introduced by STKM are worth, as they lead to better
performances w.r.t. the very same applications implemented with usual STCM or GCM constructs and frameworks.

All the experiments were made hand coding the SCA/Tuscany source code that a STKM framework was supposed
to generate. We have no actual complete implementation of STKM . By hand coding the STKM support we also
verified the feasibility of implementing a full featured STKM programming environment on top of SCA/Tuscany. We
verified that there are several limitation of the Tuscany prototype, not necessarily deriving from limitations in the SCA
model, that impose the usage of different patches to supportall the features needed by STKM . Being in contact with
the Tuscany developers, we had the impression that some of the features required while implementing STKM and
not yet in Tuscany will be available soon, due to their importance for different projects currently using Tuscany 1.2
implementation.

In the near future, we plan to concentrate on further improvements in the STKM design as well as in the design
and implementation of a full version of STKM , possibly on top of SCA. In both cases the results of this workwill be
exploited.
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