A [G 3 European Research Network on Foundations, Software Infrastructures and Applications
a.{'e;j;ﬂ:- for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

Towards a Spatio-Temporal sKeleton Model Implementation o
top of SCA

Marco Aldinucci and Marco Danelutto
Dept. of Computer Science - University of Pisa
Largo B. Pontecorvo 3, Pisa, Italy

{al di nuc, mar cod}@li . uni pi . it

Hinde Lilia Bouziane and Christiand?ez
INRIA/IRISA, Campus de Beaulieu
35042 Rennes cedex, France
{Hi nde. Bouzi ane, Chri stian. Perez}@nria.fr

CoreGRID Technical Report

(oreGAdD—_ Number TR-0171
——— August 31st, 2008

Institute on Programming Model

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Towards a Spatio-Temporal sKeleton Model Implementatiotop
of SCA

Marco Aldinucci and Marco Danelutto
Dept. of Computer Science - University of Pisa
Largo B. Pontecorvo 3, Pisa, Italy

{al di nuc, marcod}@i . uni pi .it

Hinde Lilia Bouziane and Christian Pérez
INRIA/IRISA, Campus de Beaulieu
35042 Rennes cedex, France
{Hi nde. Bouzi ane, Christian. Perez}@nria.fr

CoreGRID TR-0171
August 31st, 2008

Abstract

This report investigates an implementation aik¥, a Spatio-Temporal sKeleton ModelT&v expands the Grid
Component Model (GMm) with an innovative programmable approach to compose alicagipn by combining com-
ponent, workflow and skeleton concepts. We explore a piiojecif the model on top of A and its implementation
using Tuscany Javac3. Experimental results show the need and benefits of the bigh bf abstraction offered by
STKM.

1 Introduction

Many programming models are proposed to develop largeestiatributed scientific applications. They attempt to
offer means to deal with the increasing complexity of suchliaptions as well as the complexity of execution re-
sources, like Grids. They also attempt to ensure efficieateton and resource usage. However, existing models
often target different properties and/or specific kind oplggations, usually determined by the usage of a given pro-
gramming paradigm. A current challenge is still to offer @adpie programming model to easily and efficiently support
multi-paradigm applications.

In this report, we focus on three well-known families of pragyming models: component, workflow and skeleton
based models. They all follow an assembly/compositioniaogning principle, which is becoming a widely accepted
methodology to cope with the complexity of the design of farand distributed scientific applications. Component
models mainly deal with code reuse problem; they are quipeaiate for strongly coupled compositions. Workflow
models make it possible to establish temporal dependeagiesng components, thus to enable the efficient scheduling
of components onto resources (e.g. sites, processors, nenoComponents arranged in a workflow are typically
loosely coupled. Eventually, algorithmic skeletons aligesito describe component assemblies in a fairly abstragt w
(e.g. high-order and parametric component assemblie$3. eftable designer to leverage on automatic optimizations
for efficient execution on targeted resources [10].

In summary, each family of models has been considered seit@lleal with a class of problems affecting the pro-
gramming of complex applications; these classes have Ineiepéndently studied. Nevertheless, all these properties

This research work is carried out under the FP6 Network ofelience CoreGRID funded by the European Commission (Conit&r-2002-
004265).

RMl/uses

RMI/provides .
j stream/output

stream/input

event/sink event/source

Figure 1: An SKM component.

seem to be relevant to be considered in a single programmattein this work we aim to combine these families
of models.

There are previous works that aim to combine these familieparticular, Scm (Spatio-Temporal Component
Model) [9] is a model combining component models and work8oifforts have been also done to combine skeletons
and component models [3, 11]. In a similar directiomk® [1, 2] is an attempt to combinetT8m with skeleton mod-
els. While previous work related tor8Mm explored theoretical background, this report investigéteimplementation.

In particular, we explore the possibility to allow users ®sifjn an application as the composition of extendetG
components (primitives and composites) and to use SOA/\Vg8Mmamework to build an implementation. The exten-
sion of a &M component considers the integration of workflow conceptsk@& and input/output ports) and skeleton
constructs, such as pipeline and farm. All these conceptbuaiit on top of £A (Service Component Architecture).
This report describes this perspective and discussesiexgetal results.

The rest of this report is organized as follows. Section 2ltethe theoretical background ofr&m. Section 3
introduces the followed approach to implemenk® on top of SA. In particular, it describes how components “a
la Gcm” are projected to 8A ones and how an assembly is handled. Section 4 discussesafe of Tuscany Java
ScA to realize this implementation. The accent is put on thetéitions of the used Tuscany framework that is still in
development. Thus, preliminary solutions are propose@s$pand to some1&M requirements. Section 5 discusses
experimental results. It illustrates the feasibility afk31 concepts and the benefits of this model regarding the ability
of the proposal to simplify programming and to automaticaliiapt an application to its execution context. Section 6
concludes the paper and presents future works.

2 Overview of STKM

In [1], we proposed to extendT&M [9] (Spatio-Temporal Component Model) with (behaviorddgleton support.

The advocated idea considers two issues. Firstly, a pragiagimodel should offer means to explicitly express the
functional behavior of an application through its assemiblyat is to promote simplicity of design and separation of
functional concerns from non-functional ones (exampleangonent life cycle management, processes management
for parallel codes). Secondly, such non-functional consare expected to be transparently managed by the compo-
nent framework. The level of expressiveness of an asserabglévant to enable a framework to adapt an application
to an execution context (execution resources) and ensypeitability to different contexts. Thusy8&wm offers a level

of abstraction allowing a designer to express both tempogid of an application execution (inherited from workflow
models) and spatial dependencies between componentsit@idfeom component assembly modelsy.k¥ adds the
possibility to use predefined skeleton forms to build pataibmposition of codes. This section recalls the princi-
ple of STkm putting the accent on skeletons support. In particularegiatibes the unit of composition of arri&v
application, its assembly model and the suitable appraaniainage the assembly by the framework.

Component. STKM reuses $CM components. Thus, a component, originally namethponent-tasin STcwm,

is a combination of component and task concepts. As showrngiré 1, a component can exposegatial and/or
temporalports. Spatial ports are classical component ports. Teahparts (input/output) and tasks behave like in a
workflow. The difference is that the life-cycle of am& component may be longer than the one of a task in a classical

CoreGRID TR-0171 2

stepl

'parallel

step2

Figure 2: Example of ant&m assembly.

workflow, which usually corresponds to its execution. Moegails about the specification of such components can be
found in [9]. This specification is presented through an esien of a &m (Grid Component Model) component.

Assembly model. An STkm assembly is first of all a combination of temporal and spagédendences between
components (primitive or composite). Spatial dependenaie represented by the connections of spatial ports, as
in classical component models (such asMj. Temporal dependencies are represented by both a data rildva a
control flow as done in a workflow. A data flow is built by conriegtinput and output ports of dependent tasks. A
control flow is built by using control constructs like seques, branchesf(andswitch, loops for andwhile) and
parallel constructsparallelFor andparallelForEach), etc. Skm adds constructs dedicated to skeleton-based parallel
paradigms. In more details, these constructs are particolaposite components (templates) representing skeleton
schemes (pipe, farm, functional replication, etc.). THerimal structure of such a componentis well defined accgrdin
to a given parametric connection schema. A skeleton canim@ased with components and/or other skeletons. That
can be done at different levels of an assembly. Also, skesatan be nested. These possibilities improve compogabilit
and code reuse, while preserving the pragmatic of skeletons

Figure 2 illustrates an example of assembly supportedrikns It describes a sequence of three tasks wrapped
by componentst epl, step2 andstep3. The componenst ep2 is a composition of two parallel sequences
(A; B; C) and(D; E) . The second sequence depends on the result of pipelinegsstely p2, p3) for which
inputs are produced by compon&hof the first sequence. The composition also illustratesagesiteletonsf(ar mas
stage in thg@i pe). Moreover, the figure shows that skeleton elements (stafgeepipe or workers in a farm) have the
possibility to express dependencies with other componérits may be exploited, for instance, to express a shared
state. Details about theT8M assembly language, the semantic of an assembly as well asapke of its usage for
a real world application can be found in [1].

Assembly management. As addressed at the beginning of this section, the objectiVéTkMm is not limited to
simplify the design of applications. It aims also to take dféa from the expressiveness power of an assembly to
efficiently execute an application on given resources. Th&ency essentially depends on the ability of a framework
to exploit the maximum parallelism from a part or the wholseambly, and to adopt an adequate scheduling policy
depending on actually available execution resources. isndinection, SkKM proposes to consider parallelism forms
that are explicitly expressed by using skeleton constrastsell as those built without using skeletons but which can
be mapped to a skeleton composition. An example for the iagtton is to map the independéenor Al | control

CoreGRID TR-0171 3

Properties

Services

) References

) component
Implementation
Java, C, C++
BPEL, etc.

Figure 3: An A component. Figure 4: Example of 8A assembly.

construct to a functional replication skeleton in which #arkers are the body of the loop [1]. When the mapping is
done, skeletons constructs have to be projected to coriotptementations. In &M, it is at the responsibility of the
framework to decide an adequate implementation dependittyggoexecution context. The approach is to reuse already
proposed component based implementations, like thosel lms&cm components [3, 13]. Such implementations
offers self adaptive management support for computatieleahents and are able to deal with optimization issues for
instance collapsing stages of pipes or introducing farmefficiency. Therefore, &M should take benefits from
already existing skeleton management mechanisms ableatonitd performance [4] concern as well as other like
security [5] or fault tolerance [8].

3 An approach to implement STkm concepts on top of £A

In this section, we discuss an approach aimed at implenge&iRM using A. Our main purpose was to verify
the feasibility of Skm concepts. While cm was originally thought as an extension of@, we envisioned it
was worth to explore the feasibility of /&M in a Service Oriented ArchitectuigSOA). On the one hand, this will
eventually allow to compare thet8m “temporal” part (i.e. the workflow one) with plain services ased in the
implementation of existing service workflow frameworks arvironments. On the other hand, by usingaSve
wanted to investigate whether porting@&w/STKM concepts to the service world is as effective as portingraBem
concepts, as already demonstrated in [11].

In order to implement 8KM on ScA, two distinct issues must be taken into account: a first issuelated to the
projection of the user view of ant8 M assembly to an & assembly, while the second one deals with the management
of an application assembly during an application executBafore discussing how we can deal with these two issues,
let us give an overview of &.

3.1 Overview of A

Sca [7]is developed since 2005 by tsSOA(Open Service Oriented Architectigroup. It defines a specification for
programing applications according t&arvice Oriented Architectu(SOA. The objective is to enable composition of
services independently from the technologies used to imeie these services and from any/AScompliant platform.

The S A specification deals with several aspects: assembly, dightomponent implementation, packaging and
deployment:

Assembly model. In this model, a component is defined as a set of ports nameicesandreferencegFigure 3).
Ports are of several kinds depending on the technology vsetplement a component. They may be interfaces of type
Java, bL CORBA, WsDL, etc. They allow interactions between two connected coraptsbased on message passing,
Web Services or RPC/RMI communications. The interopeitgiliietween components implemented using different
technologies is ensured through the specification of dégtichinding mechanisms. A component can also define
propertiesto specify configurable attributes. Anca& assembly (Figure 4) can be hierarchic. Compared wittmMG

the hierarchy is abstract. It is used to determine the \isilfrontier of sub-components of a composite component.
Then, ports of a composite are representation of sub-coemiquorts to be exposed outside. The membrane concept,
as existing in @M, is not existing in 8A. Therefore, the objective in\ is limited to preserving encapsulation and
simplifying assembly process.

CoreGRID TR-0171 4

v

set_double(..) inA
i TCM eLC
]nA ol o el e—|— lvl
_?_impl .setIn_inA(..)
AImpl ./, impl.task () U
/ impl.setIn_inA(..) eLC
task) + Z:> impl.task ()
\ d= impl.getOutA()
', d= impl.getOutA()
4+
outA |
outA
set_double(..)
eLC : ExtLifeCycleController TMC : TaskManagerController =~ —» : client to server interface direction

Figure 5: Example of mapping arm&m component to an & one.

Client and implementation model. ScA defines for each implementation language a specificatioadnisice im-
plementations. This specification describes tbha $odel for a given language independently from amaPlatform.
For that several means are used like annotations for Javad€C XML extensions for BPEL (Business Process Exe-
cution Language). These means permit for instance the tefirof services, properties, and meta-information like
local or remote access constraints associated to a service.

Packaging and deployment model. This part focuses on the specification of component packadfinlescribes the
unit of deployment associated to a component. For deployomiterns, an &A platform is free to define its proper
model. Section 4 gives an overview of the model realized byc@iny Java and used to perform presented experiments.

3.2 A projection of STKM concepts on top of A

To implement SkKm on top of an A framework a projection of &M concepts to 8A ones is required. These
concepts are components and assembly. This section desotilp projection approach for these two concepts.

3.2.1 Froman SKM componentto an £A component

As mentioned in Section 2, the user view afk31 considers components as an extension oM&omponents. Fig-
ure 5 gives an overview of the extension approach we ado@ely.temporal ports and tasks concepts are concerned.
The left part describes the projection of task and tempavéispto classical GM concepts. A task is just an imple-
mentation of a server interface. Temporal ports are mappethssical @M client/server ones. The implementation
of these ports is realized by a dedicated controller, whéctesponsible to manage input and output data availability
and execution of tasks. Hence, this management is tramgfardhe user. The right part of the figure maps ans
component to an & one. A GcM component is mapped to arts composite component, @1 ports to RPC/RMI
services/references, controllers taScomponents and sub-components tbpASomponent implementation. Note
that the representation of controllers by components isanoéw idea. This principle promotes composability and
code reuse and it is well accepted in theNs specification. Also, there exist works attempting to builGam
implementation using & [11]. The principle is similar to the one presented here.

The projection of $KM components also considers skeleton constructs. As thesgraots are components, a
similar approach is followed. The difference is that a ceterepresentation of a skeleton may consider additional
non-functional elements like managers for behavioraletgls. Figure 6 shows a representation example for a func-
tional replication skeleton. ComponeiMSR (manager)E (emitter) andC (collectors) are the non-functional elements
of the skeleton. They are expected to be transparentlydotred in the skeleton construct by ank® framework.
Note that the whole structure can be directly realized by Somponents or can be first mapped to axk®@ assem-
bly and then projected to anc8 one. This possibility allows reusing existing implemeittas of skeleton constructs
realized for instance with Gwm [6].

CoreGRID TR-0171 5

Figure 6: A concrete representation of a functional repiicabehavioral skeleton component.

execution time

inA

v
task execution
3 outA
proxy proxy «— check outA proxy « proxy send outA
AB AB < availability AB to B

-

proxy proxy

BC

ke
xC,

Figure 7: Data transfer management through a proxy compgofidére Srkm notation for ports is still used here for
simplicity. Concretely, components are&ones according to the direct mapping shown in Figure 5.

To summarize, a simple projection of & components to §&A components was possible. That is thanks to the
support of RPC/RMI ports by the two models, their hierarahroperty and the possibility to realize controllers by
components.

3.2.2 From SrkM to ScA assembly and its management

In STKM, an assembly is not limited to component instances andadmathnections. Temporal dependences may
be also specified by data and control flow constructs offeye81cM. Thus, it is not sufficient to project temporal
ports to A ports, as described in Section 3.2.1, to be able to perforireatdorojection of an $km assembly to

an <A one. In fact, one of the objectives of &v/STcM aims to dynamically modify the structure of an application
according to both specified temporal and spatial dependsnEbr that, we propose a projection to azn&ssembly
for which the structure is dynamically and automaticallydified during execution.

In this context, the issue is to introduce mechanisms to gadata transfer between dependent components, the
sequence of tasks executions according to both designadidatand control flow and the life cycle of components.
Several solutions can be proposed. In this report, we ptespreliminary adopted solution, based on a distributed
data transfer approach and a centralized engine “a la veavkflIThe remainder of this section gives an overview of
our proposal.

Data management There are two alternatives to transfer data between two oomts connected within a data flow.
These alternatives depend on the co-existence of thesearmnts. In fact, if the components co-exist, it is sufficient
to connect the output port of the first component to the input pf the second one. A typical situation is when the
tasks of the components are successive pipeline stageseudavif the components do not co-exist, a mechanism is
needed to retrieve a produced data and subsequently send itéxt component. For that, we propose to introduce

CoreGRID TR-0171 6

create conponent A
create conponent proxyAB,;
connect A to proxyAB;
order send input on inA

check data availability on proxyAB;
whi | e not avail able
check data availability on proxyAB;

create conponent B;

create conponent proxyB..;

connect B to proxyB..;

order proxyAB to send data to B;
renove A,

renove proxyAB;

check data availability on proxyB..;

Figure 8: Simplified $kM engine managing the sequence shown in Figure 7.

dedicated proxy components in the assembly at executiaguré&i7 illustrates this proposal for a typical situation
of a sequence. When the task of componproduces a data, this latter is send to the proxy componerenV
componenB is created, it is connected to the proxy. The data is seBtwden the proxy receives a corresponding
request (cf. $KM engine paragraph). The figure also shows the evolution ciskembly according to the evolution
of tasks executions. The specification and the implememtatf a proxy are assumed to be done automatically. A
proxy is viewed as a template component for data transfee gadrameters of such a template are input and output
port types for a specific usage context. These types are e defined by user level components. The introduction
of a proxy in the assembly is assumed to be done byramvSassembly interpreter. This interpreter is responsible to
perform the Skm assembly projection to its concrete Sbased representation.

STKM engine The Srkm engine appears as ag&client program. This program is the result of thex™ assembly
interpreter. It contains the sequence of actions to créasefoy components, connect/disconnect component ports,
manage data availability/transfer and cover the contral flescribed in $kMm assembly for ordering tasks execution.
These actions are deduced from the behavior expressed byT#ie assembly. Figure 8 shows a simple engine
example managing the sequence shown in Figure 7. In thisgrarhis assumed that a component is created when
the control flow reaches it. After an input data is sent to congntA, the engine waits the end of its task execution.
For that, it checks the output data availabilitydfn pr oxyAB. Once the data is available, the engine orders the
creation of component8 andpr oxyBC. Then, the engine ordepr oxyAB to send the saved data B> We recall

that it is not at the responsibility of the engine to directignage a task execution. This is delegated to the component
controller. In general, this approach promotes a distadumhanagement and should simplify the engine role. However,
the illustrated example adopts a scheduling approach thgtlead to scheduling overheads. In fact, the creation and
configuration ofB andpr oxyBC is done only once the task being executedfois finished. Other solutions may

be adopted to overlap the creation/configuration of comptsnith computation. Such solutions may be based for
instance on prediction mechanisms. Without ignoring thevamce of using an efficient scheduling approach, this
report does not study such solutions.

The presented approach deals with aix@ assembly at execution, including projection on top afASand the
STKM engine, is not conflicting with the objectives off@v. All concerns encountered in this section are non-
functional and are hidden to the user. This later may thep kiee simple view of an application. The remainder of
this report treats performance obtained using an 8amework.

4 Usage of Tuscany Java SA

To evaluate the work presented in this report, we realizeoirgolementation for $KM use cases. For that, we used
the Tuscany Javac® framework Version 1.2.1 [14]. This framework is under demhent. It realizes part of the

SCA Java component implementation specification (VersiOf dnd provides a preliminary support for distributed
execution of applications. This framework provides no dgpient tools. This section gives an overview of the

CoreGRID TR-0171 7

physical contribution repositories

FS 7 http ftp

-
domain cloud
' deployable] " Node
composite | composite
. install image s hostl
| deployable || ' Node
i composite ! composite
I hostn

physical hosts

Figure 9: Distributed execution environment of anASapplication using Tuscany Java framework.

distribution principle of the framework, the limitationgidenced when using SCA forimplementing thex¥ support
as well as the solutions adopted to overcome such limitation

4.1 Distribution principle

Figure 9 describes the main concepts ofadlistributed execution environment. In this environmem,domainis an
administrative concept. It is responsible to build and kessan image reflecting installed contributions. A conttiba

is an archive containing artifacts required to deploy a congmt (JAR or ZIP files) [7]. The cloud composite provides
a global image of all deployed nodes. A node is a particulpslével composite component which hosts specified
components in a same process. The deployment of composem@nually done by launching the hosting node on
a given machine. While the effective instantiation of a comgnt within a node, it is done in a lazy way (at the first
service invocation on the component). Finally, the entipnpim execute an application is a client program. An APl is
offered to such a program to access services provided by coemts.

4.2 Limitations and adopted solutions

As we cited at the beginning of this section, the support ef$hA specification in Tuscany is still in development.
Some features are not yet supported or ported from previagsany distributions. In particular, the distribution
presents lacks regarding the support of components/ssnookup, dynamicity, and some binding protocols in a
distributed context. Also, some problems were encountetgeh executing nodes in a cluster. Let us briefly detalil
each limitation and the adopted solutions with respectrionsrequirements:

Component and service lookup ScA describes an API allowing &\ services to be programmatically accessed
by client programs which are not running asA&Scomponents. However, this API is not implemented in the used
framework. Actually, the access to a component service bljeatds done through a node executed in the same
space as the client. In the context afk®, we followed this same principle for antf8v engine which, as seen in
Section 3.2.2, is a client program. Without loss of gengrdhigure 10 illustrates this principle for accessing axyro
port. As it can be noted, an indirection is generated. It$ isosquivalent to an intra-process method call which does
not affect discussed experimental results presentedsiréjport.

Dynamic addition/removal of components Dynamic assembly modification capability is not completahd/or
efficiently treated in the used framework. In fact, to dyneatly add/remove components, there are mainly two ap-
proaches. The first approach is based on dynamic additioniral of contributions and nodes. Its principle allows
dynamic specification of new components as well as nodesdiffiérent configurations. However, this approach is

CoreGRID TR-0171 8

/I This interface is implemented by
/I the controller TMC (Figure™5)
public interface A Ctrl_Ports {

STKM engine) .)
P N /llinput side (inA)
, node-‘3 M Node public String provides_i nA();
\ 3 2% fakeP p,:_ —————————————— 'f— /loutput side (outA)

; i | isDataAvailable() : M ' bool ean connect _out A(String srvRef);

Srtmreomteonsesneoes ‘ : : public void di sconnect_out A();
ProxServ srv = ..getService(.. "fakeP/ProxServ"); Moo ! }
... srv.IsDataAvailable();

Figure 11: Usage of service reference
passing in A to specify ports connec-
Figure 10: Access to a component service from aris engine. tion/disconnection operations. The

not well supported in the used Tuscany framework. It alsaireg domain reconfiguration that currently needs stop-
ping an application at each reconfigurafiohe second approach is based on the addition/removal afsnoaly.
Alternatively with respect to this former approach, this@ed approach does not require to suspend an application
execution when reconfiguring it. Its limitation howeverligit all nodes are statically defined and configured. Compo-
nents hosted by nodes as well as hosting machines are kn@dwamce. Even if at the end our objective is to support
dynamic decisions, this limitation does not affect the otiyes of performed experiments. We then decided to make
static decisions and follow the second approach for thespitegork.

Dynamic connection/disconnection of ports ScA does not explicitly provide user API to programmaticallyneo
nect/disconnect references to services. However, it gesvan API to allow passing service references. Without
lost of generality, we used such an API to specify conneftlisnonnection operations for temporal ports. Figure 11
presents defined operations for input and output sides. pdrations are exposed by corresponding services. The
specification and implementation of these services affemtsfunctional part of components, expected to be trarspar
ently generated. In this context, we faced an additionatdition of Tuscany. This limitation is related to the suppor
of different kind of binding protocols associated to seeg@assed by references (/Ref in the example). In other
words, it should be sufficient to configure such services wittefault £A protocol. However, that is currently miss-
ing. Hence, we replaced this protocol with a Web service ésawill be presented in Section 5, this protocol affects
the communication time between two components. It shouldlfe@taken into account that a serialization a service
reference was needed for its passiBg(i ng type in the Figure).

Node launching on clusters Tuscany distribution provides node launcher programs tcete node process as

detached daemon on Linux (the operating system used foxparienents). However, such an execution on the used
cluster causes Input/Output failures. Hence, we developedwn node launchers. For that, we used the common-
daemon library [12] which provides a support to make therfate between the daemon to the operating system.

To sum up, we resolved current limitations of used Tuscaapéwork with respect to somerm requirements
and without modifying it. In next Section, some presentetliits are affected by these limitations as well as proposed
solutions. However, it is to note that this is sufficient tastrate the benefits ofi &M and its feasibility on a Web
Service based environment.

5 Evaluation

STKM aims at increasing the level of abstraction with respectat@ltel programming and offering a powerful man-
agement of an application execution. This section evaduidie performance of the model that may be obtained by
using a Web Service environment for various and simple 8@ns. More precisely, we developed an application

Lt is relevant to note that efforts are done to overcome thigtation. A solution is proposed in [11, 6] and its feasilyilwvas proved using an
old Tuscany version.

CoreGRID TR-0171 9

Remote note | Programmatically connectin
Launching time two components

[Timeins | 45555 | 3.204 |

Figure 12: Average of times to deploy and connect components

RTT Intra-node Inter-Node | Inter-Node

inms Inter-component| Intra-host | Inter-host
Default protocol 0.076 20.348 20.167
WS protocol 22.664 24.225 24.106

Figure 13: RTT on a local Ethernet network for different aiions.

according to different compositions: sequence, pipelimgraested composition of pipeline and farm/functionalirepl
cation skeleton constructs. As discussed in this secti@ndéployment and execution of this application in différen
execution contexts will clearly outline the benefits afk®.

All experiments have been deployed and executed on a ciustée of 24 Intel Pentium 3 at 800 MHz PEs, 1 GB
RAM, 4200 rpm disk, connected through a 100 MBit/s switchéteEnet and running on Linux (2.4.18 kernel).

The conversion from an abstractri&v assembly to §A components and &M engine was done manually.
Components are implemented using Tuscany Jawa \&rsion 1.2.2. All code is is written in Java 1.5. Then, the
deployment of components was done at the initiative of tlggrenby usingssh.

5.1 Metrics

The first question is to evaluate basic overheads which alicagipn execution may have according to dynamic life
cycle management of components, communication overhegtde&ebn components within the Tuscany environment
as well as the effect of communication protocols on commatioa times. The measure of such overheads helps
understanding next discussed performance results.

Figure 12 illustrates first metrics. The first column showtaated results for deploying and launching a node. As
it can be noted, starting a node is costly. The obtained tiovers Tuscany proper creation of nodes policy (based
on the usage of class loaders) and the usage of common-ddibnaoy (Section 4.2) to launch a node process. The
second column shows obtained results for connecting portaigh the reference passing mechanism explained in
Section 4.2. The result is mainly a consequence of seriaiziaeserialization needed by this operation. It is ratgv
to recall that part of the overheads are due to limitationsis#d framework and added overheads of preliminary
adopted solutions. Improving Tuscany as well as resolumtmitations should improve these metrics.

Figures 13 reports the round trip time for used servicesfefces configurations and for different placement of
components. The RTT time corresponds to an empty serviceation. The configuration of a service specifies the
possibility to remotely access a service and the bindingoea used to invoke it. We used default & protocol and
Web Service protocol. This latter is used for services phssereference (Section 4.2). In the context of the present
work, it concerns services associated to temporal porthdifigure, all services are configured to be remotable except
for the first column. Several conclusions can be drawn. FRinstdifying the binding protocol affects communication
times even between components within a same process (Biushn). That may be explained by a lack of communi-
cation optimizations in the current Tuscany environmeetdd, the impact of the network is negligible, even hidden,
with respect to the effect of communication protocols. Fogmotable service (configuration used for inter-node and
inter-host placement), the effect of changing a protocobisrelevant. The RTT, arourtd) — 24 ms, in all cases lead
to costly communications. That is not a surprise as Specification addresses this issue and claims thatiSmore
adequate for coarse grain codes.

5.2 A sequence use case

The second experiment illustrates the consequence of mgapi S KM assembly to different concrete assemblies as

well as of components placement on the overall executioiopaance that may be obtained for a simple use case.
Figure 15 reports the execution time of a sequencktasks according to several configurations. These configura-

tions are introduced in Figure 14. They represent two cae@ssemblies for a same experimented application. For the

CoreGRID TR-0171 10

T-P- T-P- T-P- Pipe-Construct

T-P
Host-Colloc Node-Colloc Node-Host-Colloc

hostl '
: hostl1 hostl1
;L”’” 777””777””7”””””4; 2n0des i ln()de hOSll
‘ o ‘
e TRT™ T N P

host3 | 3 3 for all ‘
""""""""""""""""" 2 nodes ! I node | ; host3

host4 ; !

Figure 14: Configurations for the results shown in FigureT5Task in component, P: Proxy, Colloc: Collocation.

| | Globaltime) | Computation (%)]

T-P 295.966 27.030
T-P-Host-Colloc 397.347 20.134
T-P-Node-Colloc 281.878 28.381

T-P-Node-Host-Colloc 280.707 28.499
Pipe-Construct 156.421 51.144

Figure 15: Time to execute a sequenceddafsks. The execution time of each taskis. The life cycle of a
component-task is delimited by input/output data avdlitgbi

assembly on the left part, the execution and life cycle mansmnt of components follows the principle presented in
Section 3.2.2. In this case, several components placerasnexperimented. On the right part, the original sequence
(user level) is mapped to a pipeline composition. In thicall implicated components are deployed and connected
by the engine before starting the first task execution. Carapts are deployed on different machines, as usually
done for pipeline constructs in general. Without surprilePi pe- Const r uct configuration lead to more efficient
execution. Note that the reported result includes remotiea@reation+ 6s for executing remote commands and
455 for waiting starting all nodes), components instantiatioid port connectionsy{ 17s). Even if measured metrics
may be improved, they are expected to have similar impatt its cost on the wall application execution time. Such
an impact should become negligible for course grained codes

However, even ifPi pe- Const r uct provides better performance, it is relevant to take intooaot other cri-
teria in the choice of a concrete assembly, in particulapueces usage. In fad® pe- Const ruct may causes
an overconsumption of resources. That may be problematanwising infrastructures like Grids because of shared
resources. While other configurations should offer theitghib optimize resources usage with efficient scheduling
policies. For the present work, the objective is not to stedgh policies. This is why we compared only basic con-
figurations testing the behavior when modifying the depleptof components (Figure 15). Results show that the
T- P- Node- Host - Col | oc configuration provides better results. That may be expthimethe fact that all com-
ponents are executed in the same process. Also, the laantiagton of components in Tuscany framework reduces
the number of threads executed simultaneously. Howeverpooents in a sequence may requires different processor
with respect to eventual execution constraints/contidasa particular operating system, a minimum memory space
or processor speed, etc. Moreover, the availability of ussdurces during the execution time should be considered.
Therefore, a configuration that simply allow a placement dfei@nt resources is suitable. For that, we selected
the configuratioT- P- Node- Col | oc. This is why in the remainder of this report the other confagioms, T- P,
T- P- Host - Col | oc andT- P- Node- Host - Col | oc, are not reused.

Finally, the advantage ofi&m is its ability to choose a concrete assembly according te@ngexecution context.
That is without changing the high level assembly of the ayapion.

CoreGRID TR-0171 11

| Global time) | Computation (%)

nbr data 10
Loop 2817.227 28.397
Loop-Opt 462.949 56.162
Pipe 337.860 76.955

nbr data 100
Loop 28167.841 28.401
Loop-Opt 2271.786 90.677
Pipe 2147.984 95.904

Figure 16: Effect of using different constructs/life cyctenagement on the execution time of a sequendetagks
on multiple input data. Execution time of a each taskis.

STKM engine

// The engine retreives the input set of

// data of the forAll loop to manage it.

.... /] create T1-proxy12

for (int i = 0; i< data.size(); i++)
T1.set_double(data[i]);

// check first output and create T2-proxy21
// send the output on T2
// check first output and create T3-proxy34
// send the output on T3

for (int i = 0; i < data.size(); i++)
... get_out();

// remove T1-P1 T4-proxy4

out0, outl...

proxyl2
e

proxyl2

outO T2

proxy23

490
RN

out0

1

proxy12

2

T3

proxy34

data
Y.

distrib

.‘;

out0; outl; ...

T

T3

(1)

out0; outl, ...

an collector

‘.(

out[out0, outl,...]

Loop-Opt Pipe

Figure 17: Overview of the two used configurations for exeguan independerforAll loop

5.3 Need of forms recognition

STKM promotes the ability of antM engine to recognize parallelism forms from an assembly aredploit them in

the generation of a concrete assembly for efficient exemuBIkM encourages also a mapping of parallelism forms
to a composition of skeleton constructs. This sectiontitates the interest of the underlying idea through a use case
of an independerforAll loop.

Experiments are done for executing@All loop using three different concrete assemblies. The bodyhef
loop is the sequence composition experimented in SectnThe concrete assemblies are represented by the three
configurations listed in the first column of Figure 1&op configuration means that no parallelism form is recognized.
Each iteration considers one data and all iterations areesdiglly executed. The life cycle of component instances
is managed as done for a sequence (Figure 7) for each iterdfmr bothLoop- Opt andPi pe configurations we
exploit the parallelism form of thBorAll loop to support parallel execution. An overview of the folled approach in
the two configurations is shown in Figure 17. In both configjores, the execution is based on pipelined computations
of theFor Al | input data. However, they differ on the way the concreteragbgis managed:

e Loop- Opt: In this configuration, thé&orAll control structure is implemented by thai@v engine. It is at
its responsibility to split and collect the input data of thep. For life cycle, a componeii is created once
the first output ofTi - 1 is available. Created instances are removed only afterciye éxecution. Even if a
pipeline execution is built, proxy components remain pne¢se they are part of the sequence mapping. Note

CoreGRID TR-0171 12

| | Globaltime) | Computation (%)

Without load balancing 2116.355 95.920
Node-Colloc forstep2and 3 2113.625 96.043

Figure 18: Load balancing for executing pipelinethsks. The execution time of each task is (in ordéd}, 15s, 5s
and20s. The number of the pipeline input datalig0.

Global time Computation according to the
(s) frequency of getting final results (%)
Without FR 3105.442 97.249
FR:3 workers 1181.837 87.998
FR: dynamic addition of workers 1409.444 -

Figure 19: Pipeline step parallelization using a farm cautdt The pipeline is composed dftasks. The execution
time of each task is (in order)0s, 30s, 5s and5s. Step 3 and 4 are collocated for load balancing. The numbikeof
pipeline input data i$00. FR: Functional Replication

that the engine successively sends all inputs on compdirenthese data are queued by the control part of the
component. This latter is responsible to ensure one exatafitask at a time and the order of treated input data
(StcM specific behavior).

e Pi pe: In this configuration, a pipeline skeleton construct iscueimplement théorAll control structure.
The concrete assembly of th& pe introduces two componentsli stri b andcol | ect or respectively
responsible to split (collect) thieorAll input (output) data into several (one set of) data. All comgrds are
deployed when the control reaches the loop and deployedrafteeving all results

Figure 16 reports obtained performance results for theetiemnfigurations and for two different data set sizes:
10 and100 doubles. The measures includes overheads related to ¢heytife management of components. Many
conclusions may be drawn. First, it is not conceivable tacatethe loop in a sequential manner. Second, as expected,
the Pi pe configuration presents a more efficient execution. It is nffigent to have a pipelined execution like in
Loop- Opt and some life cycle management optimization to reach bp#epbrmance but also an efficient imple-
mentation. Third, for longtime computations, the overhedomponents life cycle management starts to become
negligible. Finally, to achieve efficient execution and mgement it is necessary to consider the behavior of global
composition, i.e. combined structures, in an assembly ¢@déea mapping on a concrete assembly.

5.4 Need of efficient behavioral skeleton management

A more advanced approach to deal with parallelism forms take benefits from behavioral skeleton constructs [3].
These constructs offer a powerful execution managemenaddllgl applications. In particular, they consider not
only efficient execution but also resources usage. Thisseptesents two experiments aiming to illustrate printipa
advantages that behavioral skeletons should offer in théezbof STkm. Both experiments are done for executing
a pipeline composition with load-balanced stages. Loadruahg is realized by either components collocation or
by integrating functional replication skeleton. In thistéa, we tested a fixed number of workers as well as dynamic
addition of workers. The remainder of this section detadlsteexperiment and discusses obtained results.

The first experiment consists in testing the execution ofp&lpied composition of non equivalent tasks, i.e with
different computation times, and compare the executiofop@ance with two distinct component placements. For
the first placement, all components implicated in the pigekre deployed on different machines. In the second
case, the placement considers meta-data about computhtration of tasks. This meta-data is used to decide a
possible collocation of components. The objective is tad lbalance the pipeline execution steps to optimize ressurce
usage while preserving an efficient execution. That is alymirgciple followed to management pipeline constructs.
Collocation decisions in the context of the present workaselmanually. Thus, for all cases, the concrete assembly
is mapped to a pipeline skeleton construct as done in prewa@periments. Figure 18 shows obtained results for a
specific example. As expected, the results are close. Tdrereh addition to reach an efficient execution, it should be
possible to improve resources usage.

CoreGRID TR-0171 13

w
T

number of workers
(3]

0

L Il | I | |
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time (in second)

Figure 20: Dynamic management of workers in a behaviorahfsikeleton construct. The farm construct is used to
parallelize the second step of the pipeline construct ofé&d®.

The second experiment uses another load-balancing agprBaca similar example but with different tasks, the
principle is to parallelize the execution of a costly pipelistep. For that, this step is transformed to a functional
replication construct in which the workers replicate thepst The structure of the functional replication is the one
shown in Figure 6. Experiment details as well as the obtareedlts are shown in Figure 19. As can be noted, the
execution time is divided b$ in the second line. That corresponds to the maximum numbwookers needed to
achieve load balanced execution. That is in addition todtets collocation. The last line corresponds to a test of
dynamic worker addition by the manager of the behavioraletka. This manager implements a simple adaptation
policy. This latter consists in the addition of a worker iketfrequency of producing results on the output of the
skeleton is more than a given value. In our particular cdss value isl0s. Figure 20 shows the evolution of workers
number during the test execution which results to the exacuime reported in Figure 19. It is to note that the
number of workers reachds That is due to a limitation of the current implementatiorited pipeline which assumes
infinite buffers between tasks. In the scope of this reporodjective is not to study pipeline or functional replicati
skeleton managementissues. Performed experimentsalestmore the feasibility of realizing a behavioral skatet
in STKM and the benefits that such constructs should offertensapplications. Ongoing work should integrate
already existing behavioral skeleton implementations.

6 Conclusions and future works

In this work we discussed experiments aimed at assessirdeign of kM. The experiments have been performed
using SCA/Tuscany rather than GCM, the model originallyeexted by $cwm that, in turn, evolved into &m.
This was due to the fact we were interested in investigatoyg CM and ScMm + STKM concepts in general were
affected by the adoption dftate-of-the-artechnology, such as the one of Web Services. SCA represegusc
compromise as it merges the SOA concepts with basic compdestures that allow to seamlessly migrate most of
the CoreGRID/GCM experience into the service framework.

Experiments have been performed that i) measure the typigaheads involved in the usage of the SCA frame-
work and ii) evaluate the performances achieved in thosescagiere $KM is supposed to support much bet-
ter/performant implementations than plaimc3/ or skeletons.

The experiments evidenced that the overheads introduced wianaging distributed applications on the SCA
framework are relevant, and therefore the whole approaohlig suitable and worth in case of coarse grain applica-
tions. This is not peculiar of SCA/Tuscany, however. Ouedirexperience in the GCM context demonstrated that
similar results are achieved also in case of usage of otlstnitmlited application middlewares. In particular, within
GridCOMP @ri dconp. er ci m or g) we verified that using the GCM reference implementatiorittarn top of

CoreGRID TR-0171 14

ProActive fproacti ve. i nri a. fr) overheads can be measured that are definitely very closetortes experi-
enced with SCA/Tuscany.

The experiments also evidenced that the optimizationsduoited by $km are worth, as they lead to better
performances w.r.t. the very same applications implentewith usual Scm or GCM constructs and frameworks.

All the experiments were made hand coding the SCA/Tuscamicsaode that a1t M framework was supposed
to generate. We have no actual complete implementationreS By hand coding the 8™ support we also
verified the feasibility of implementing a full featured v programming environment on top of SCA/Tuscany. We
verified that there are several limitation of the Tuscany@gpe, not necessarily deriving from limitations in the SC
model, that impose the usage of different patches to supidhe features needed byrém. Being in contact with
the Tuscany developers, we had the impression that somesde#tures required while implementingdv and
not yet in Tuscany will be available soon, due to their impoce for different projects currently using Tuscany 1.2
implementation.

In the near future, we plan to concentrate on further impnosets in the $km design as well as in the design
and implementation of a full version off8M, possibly on top of SCA. In both cases the results of this watkbe
exploited.

References

[1] Marco Aldinucci, Hinde Bouziane, Marco Danelutto, andriStian Pérez. Towards software compo-
nent assembly language enhanced with workflows and sksletofn Joint Workshop on Component-
Based High Performance Computing and Component-Based&efEngineering and Software Architecture
(CBHPC/COMPARCH 2008} 4-17 October 2008. To appear.

[2] Marco Aldinucci, Hinde Bouziane, Marco Danelutto, andriStian Pérez. Towards software component assem-
bly language enhanced with workflows and skeletons. TeahRieport 0153, CoreGRID Network of Excellence,
2008.

[3] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marcon¥aschi, Patrizio Dazzi, Domenico Laforenza,
Nicola Tonellotto, and Peter Kilpatrick. Behavioural Skeins in GCM: Autonomic Management of Grid Com-
ponents. In Didier El Baz, Julien Bourgeois, and Francoige§geditorsProc. of Intl. Euromicro PDP 2008:
Parallel Distributed and Network-based Processipgges 54-63, Toulouse, France, February 2008. IEEE.

[4] Marco Aldinucci and Marco Danelutto. Algorithmic skébdes meeting GridsParallel Computing32(7):449—
462, 2006.

[5] Marco Aldinucci and Marco Danelutto. Securing Skel&gstems with limited Performance Penalty: the Muskel
ExperienceJournal of Systems Architectyi2008. In press. DOI: 10.1016/j.sysarc.2008.02.008.

[6] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, @Giorgio Zoppi. Advances in Autonomic Components
& Services. InProceedings of the CoreGRID Symposium,'8dreGRID. Springer Verlag, August 2008. Las
Palmas de Gran Canaria (E).

[7] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, I8lceanu, A. Miller, A. Karmarkar, A. Malhotra,
J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raém M. Rowley, K. Tam, S. Vorthmann, P. Walker,
and L. Waterman. SCA Service Component Architecture - AsdgModel Specification, version 1.0. Technical
report, Open Service Oriented Architecture collaboraf@SOA), March 2007.

[8] Carlo Bertolli, Massimo Coppola, and Corrado ZoccolbeTCo-replication Methodology and its Application to
Structured Parallel Programs. @ompFrame '07: Proc. of the 2007 symposium on Componentrantefvork
technology in high-performance and scientific computipages 39—-48, New York, NY, USA, October 2007.
ACM.

[9] Hinde Bouziane, Christian Pérez, and Thierry Priol. éft&yare Component Model with Spatial and Temporal
Compositions for Grid infrastructures. IRroc. of the 14th Intl. Euro-Par Conferenceolume 5168, pages
698-708, Las Palmas de Gran Canaria, Spain, August 2008g8pr

CoreGRID TR-0171 15

[10] Murray Cole. Bringing Skeletons out of the Closet: A @maatic Manifesto for Skeletal Parallel Programming.
Parallel Computing30(3):389-406, 2004.

[11] Marco Danelutto and Giorgio Zoppi. Behavioural skelet meeting services. In Marian Bubak, Geert Dick van
Albada, Jack Dongarra, and Peter M.A. Sloot, edit@smputational Science — ICCS 2Q0®Ilume 5101 of
LNCS pages 146-153. Springer, 2008.

[12] Apache Software Foundation. Apache commdrtst p: / / cormons. apache. or g/ daenon/ .

[13] GridCOMP Project. Grid Programming with Components, Advanced Component Platform for an Effective
Invisible Grid, 2008.htt p: // gri dconp. erci m org.

[14] Tuscany home page, 200t t p: / / t uscany. apache. org/ .

CoreGRID TR-0171 16

