CMPP2000 — Ponte de Lima - July 2000

The Meta Transformation Tool for Skeleton-Based Languages

Marco Aldinucet

Computer Science Dept.
University of Pisa
Pisa — Italy

SLIDE 1 CMPP2000

Skeletons

e Structured programming models

e Skeletons
— known, reusable, parallelism exploitation patterns
— Think to the analogy with seq. prog. (while do, for ...)

e Programmers concentrate on qualitative aspects of parallelism

e Tools deal with implementation details and quantitative aspects

— load-balancing, parallelism degree, messages size, etc.

e Specification of the software architecture

SLIDE 2 CMPP2000

Why skeletons ?

e Parallel programming is difficult and error prone

— Skeletons have a clear, functional and parallel semantic
e Performance portability

— Only performance can justify HPC high costs

— Performance heavily depends on the “matching” of the

program with the architecture

e Several MPI implementation of the same algorithm

seq farm farm + pipe pipe + 2*farm pipe + farm

T, (sec) 6.03 0.39 1.30 0.72 4.99
T, (sec) 1207.76 84.50 286.62 151.67 1004.69
#PE 1 20 20 20 20
(%) 7552 23.08 41.93 6.04

(Aldinucci & Danelutto. IASTED PDCS’99, MIT, Boston, USA)

SLIDE 3 CMPP2000

Common skeletons

e Task parallel skeletons

— parallelism in the computation of stream tasks

— E.g. pipeline, task farm, etc.
e Data parallel skeletons

— parallelism in the computation of a single task

— E.g. map (independent forall), reduce, D&C, etc.
e Sequential skeletons

— the degenerate case: no parallelism at all

— sometime used to wrap functions written in a guest language

SLIDE 4 CMPP2000

The methodology

e Ingredients

— A skeleton-based language
— A cost calculus to foresee program performance

— A set of semantic-preserving rewriting rules
e Methodology
1. Write an initial specification/program

2. Evaluate its performance

3. Transform it (until the performance is satisfactory)
e Wish list

— A compiler for the language

— A tool to transform (optimize) programs

SLIDE 5 CMPP2000

Outline

e Framework & Motivation
— QOutline
e The Meta transformation tool

— A short introduction

— Dealing with languages and rules

— How it work

— The architecture and the implementation

— Running the tool

e Conclusions

SLIDE 6 CMPP2000

The Meta transformation tool: What does it do ?

Given:

1. A Target Language (TL)

2. A set of (sound) rewriting rules (L — R) for TL
3. A program written in TL
the Meta tool:

e locates applicable transformations

e provides performance estimates

e (possibly) transforms the program accordingly with the (user)

chosen rule

Meta basically implements a (meta) term-rewriting system

SLIDE 7 CMPP2000

The Meta transformation tool: properties

e Interactive
e Graphical
e Fast

e Language independent

0

TL

-

: programs

e Rule independent @ —

User interaction

TL
definition

rewriting
rules (TL)

Meta
transformation
engine

|

e Manages mixed data and task

parallel languages

Meta can be instantiated with a broad class of TL

(three-tier languages) and sets of rules for TL.

SLIDE 8

CMPP2000

Skeleton-Based (up to) three-tier languages

Program Program

Task Parallel layer

TP skel 3
R e T
DP skel A \ DP skel A
| Data Parallel layer v
DP skel C DP skel B
_____ e e RRaEt | R I IR
[seqfuni1] [seqfun2] [seqfun3] Sequential layer [seqfun1] [seqfun2]

Lower levels skeletons cannot call upper level ones

“The exploitation of task parallelism is (often) orthogonal with
respect to the exploitation of data parallelism”

SLIDE 9 CMPP2000

Three-tier languages: testbeds

FAN: Functional Abstract Notation

(Aldinucci, Gorlatch, Lengauer, Pelagatti. Parallel Algorithms & Applications (to appear), Gordon & Breach.)
e Data parallel skeleton language

e FAN cost calculus

Skel-BSP: Skeletons on top of the H-BSP

(Zavanella. Ph.D. Thesis, University of Pisa)
e Task and data parallel skeleton language
e Implemented on top of (hierarchical) BSP

e BSP-like cost calculus

Notice I don’t present here neither new languages nor new rules

Indeed, they have been presented and validated elsewhere

SLIDE 10 CMPP2000

Three-tier languages: example Skel-BSP

TL prog ::= TP | DP

TP ::= farm (TP) | pipe {TPlist} | DP

DP ::= map Seq | scanL Seq | reduce Seq | Seq | comp (out Var, in Varlist) { DPlist}. ..
Seq ::= (a sequential C function)

comp.name (out outvar, in invars){

outvar; = dp.1 Op; invars;

outvar, = dp.n Op, invars,}

comp definition follows the single-assignment rule: there is at
most one equation defining each variable. Skeletons into comp are

executed in sequence on a single set of PEs.

SLIDE 11 CMPP2000

Rewriting rules

A rule is a pair L —+ R where
e . and R are fragments of TL programs with variables vy, 14, ...
® 1, l1,... act as placeholders for any piece of program
e Every variable occurring in R must occur also in L

e [is not a variable

SLIDE 12 CMPP2000

Rewriting rules: examples (1)

TSk farm (TSk)

(_

pipe {
DSk1 Opl,
DSk2 Opg, —
< e >y
DSk, Op,}

comp (out z, in a) {

b = DSk; Op; a,

¢ = DSk, Ops b,

< [>1

z = DSk, Op, y}

A farm replicates TSk with-
out changing the function it

computes

Same functional (sequen-
tial) semantic. They differ
in the execution model. pipe
stages run on on different
set of PEs, comp stages run
in sequence on the same set
of PEs

SLIDE 13

CMPP2000

Rewriting rules: examples (2)

comp (out outvar, in invars) { comp (out outvar, in invars) {
< e > < -0 2>
q = map Op; p, — q = map Op; p,
<>y < r = map (Ops o Op;) p,
r = map Ops q, < s>
<...>3} <...>3}

map (backwards) distribution through functional composition.
We do not require the two maps to be adjacent in the program
code. Meta provides the program with the additional assign-
ment only if the intermediate result ¢ is referenced into < --- >,
or < --- >3

SLIDE 14 CMPP2000

Tool behaviour

TL program
]

front-end ’
TL —internal repr.

(I

dependence tree

[Z

TL rule set [locate applicable ’

TL cost calculus transformations

U

front-end
TL —internal repr.

—
set of rules

:> user dialog :> rebuild TL from ’
internal represent.

: i
a rule
7

[transform ’ TL program

dependence forest

the program

>

SLIDE 15 CMPP2000

(optimized)

Representing program and rules

Both program and rules are represented by dependence trees
e A dependence tree (DT) is a labelled tree
e DT directly represents the data dependence among skeletons

e if Skl directly uses data produced by Sk2
then they are adjacent in DT

e DT is built starting from parse tree (PT) and
data flow graph (DFG) of the program

@ both PT and DFG can be build using standard tools

@ Since program and patterns (L) are trees, the search for

applicable rules reduces to subtree matching

SLIDE 16 CMPP2000

Representing program and rules (cont’ed)

A rule is represented by a dependence tree pair

map map
@ﬂﬁﬁap fcw
T

P
06 @O
Keys: [u]p [d]own Rule 10 map fusion

Advantageous: Alvays

Where: fcomp(f,gi=figl)
Costin/mt_op + 2L Cost 2(n/pit_op + L

e Circled figures represents variables

e fcomp is special node representing functional composition

SLIDE 17 CMPP2000

Building up the Dependence Tree

Parse Tree (PT) Node attributes Dependence Tree
In |Out

A A A DPblock

ts scanlL ds map2 z8 reduce

reduce

7N\
o, 29
e

Data Flow Graph (DFG) sa Arg(as) scanL

In parameters Out parameters
as *
ys — DPblock — zs Arg(ys)
%p< reduce

*sa +

SLIDE 18

CMPP2000

Building up the Dependence Tree (cont’ed)

Data Flow Graph (DFG) Dependence Tree

In parameters
—— DPblock DPblock

Replicated subtree <~~~

shared subtrees: keep them shared or replicate them ?

SLIDE 19

CMPP2000

Locating applicable rules: subtree matching

Problem: Match a set of patterns against many subject trees

Solution: Hoffman-O’Donnell bottom-up algorithm:

Two phases: 1) preprocessing of the rules, 2) matching

Good news:

e The preprocessing phase have to be repeated only if either the rules or the

language have been changed
e Matching really fast (even in practice): a single traversal of T
Bad news:
e The preprocessing phase may be expensive
e but, it is fast for a broad class of pattern sets

e Details in the paper

SLIDE 20 CMPP2000

* Already Implemented !

TL program TL rules
| |
Lo 3
83
ﬁ scanner / parser ﬁ data dependence analyzer B
T T T m
« k « 2
T T -
program rule list ~
PT & DFG PTs & DFGs
. L 2
B
ﬁ dependence tree generation Q .W
S
| | S
~
dependence tree list of dependence pattern trees M
(program representation) (lhs of rules representation) P~
¢\ ('
() pattern forest
. \ generation S
o pattern matching 7 mO
5 s
S0 . f pattern sorting S
rm list of :Eﬂw,wm& rules (by subsumption) m
N f X
2 . subsumption graph nM
8 matches presentation | |=—y— y =
W and :moﬂ dialog driving table N
= the rule to apply generation
S « G J
= !
W tree tranformation <<— driving table
\. J AV «
attern library file
“““““““““““““““““““““““““ (_ User Interaction ‘ﬁv\\
'
ﬁ rebuild TL program from internal representation TL program
J

(5) Back End

TL specific
build by LEX & YACC

independent from TL

peC.‘L
T

TL s

customizable via instantiation of the ADT

pol-evall DPbiock ;
_.m_a:nm , \
+ map ’
T
*23
(a) Arg(as) scanl NN

P i

copy

AN\

no Argvs)

Matches Found:
1) rule n: 14 (CS-CM) (b)

Would you like apply any rule [0=Exit] 1

map#
I.ll.lll.ll.l.ll.lll.ll.l

pair
e
copy copy

#it
I

repeat

(©)
Ip [dlown
hgeous: Always
: Mone
orm w0 .. ktimes (fast exp)
e tur+twin+1 W ts+tu+2 Flog p Cost pits + m¥(tw + tudp +1)
Matches Found:
1) rule n: 16 (M#AM-M#) (e)

Would you like apply any rule [0=Exit] 1

pol-eval2 ~ DFbleck
_.m_n_:om
=
+ map Bl
>
R pair
>
Argias) map#
>
St pair
.\ll\\\\»lllrrr.ll.
(d) wn_umhh copy copy
T
Even odd n Args) :\\b/ﬁe\&
! !
| polevald DPpiock
_.m_n_:nm
>
+ map#
>
I3 pair
> >
*s502 = Arglas) pair
>
AQV xm__umh_._ copy COpy
T
EVen odd x\b/@ﬁw\.ﬂ 3\Vsﬁ_n€.wy
! !

pair pair
o " PN
o ¥ OOG
®
e 16 M#AM-M# FAN rule
WONZ) 1 (RY) = vOENE 1Y)
Cost m
Matches Found:
none (h)
Would you like apply any rule [0=Exit] 0

Program transformation windows

Rule manager windows

MSS example in Skel-BSP (9 out of 20 formulations)

pipe.mss {
map pair,
scanL Op,,
map Py,

reduce maz }

farm i/e
e — >

. Il
pipe—comp
3

farm i/e

comp.mss (out r, in z) {

y=map pair z,
s=scanL Op, y,
v=map P; s,
r=reduce maz v}

SARﬁARA

comp.mss (out r, in z) {

a=map pair z,
b=map pair a,
c=reduce
Ops(max,Op,) b,
d=map P; c,
r=map P; d }

map fusion

map fusion

pipe.mss {
map pair,

farm i/e

farm(scanL Op.),
map Py,
reduce maz }

pipe.mss {
map pair,

farm i/e

farm i/e

scanL Op,,
farm(map P,),
reduce maz }

comp.mss (out r, in z) {
a=map (pair o pair) z,
b=reduce
Ops(mazx,Op,) a,
r=map (PyoP;) b}

farm i/e

pipe.mss {
map pazir,
farm(scanL Op.),
farm(map P,),
reduce maz }

pipe.mss {
map pair,
scanL Op,,
farm(map P,),
farm(reduce maz) }

farm.mss (
comp (out r, in z) {
a=map (pair o pair) x,
b=reduce
Ops(mazx,Op,) a,
r=map (P,o P,) b })

SLIDE 23

CMPP2000

Matches Found:

1)
2)
3) rule n. 18 (farm introduction
4)
5)

map fusion

(@

farm intro

N

@ pipe 22
DPblock ¥ DPbiock] DPbiock BN DPbiock BN
map scanL map reduce
pair Arg(?) COp+Arg(T) P! Arg(®) mazx Arg(3)
(c) DPbiock Rl
i 1 |
- | reduce m |
e L e ”
pipe—>comp Do o !
| e |
| Fl scanlL [
| e |
| Op+ map ! \
| P | SAR-ARA
! pair Arg(t) ! ,,
e oreocE® 4
m Pl reduce |
| e — |
| 053 ap B |
i max Op+t pair map !
| P !
1 pair Arg(l) !

pair Arg(?)

DPpiock B

=.z_uv ,
mw\\\\\;fl._r.m.a:om m
E_ opr | map K
e T | /

DPbiock Y
|
map
I\lllll\llnrlllrlnrl
Pl reduce
| T —
Pl Op3 map
e L
max Op+ pair Arg(r)

petir

map fusion

(b)

rule n. 1 (pipe => comp)
rule n. 18 (farm introduction)

)
rule n. 18 (farm introduction)
rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found: (d)

1) rule n. 18 (farm introduction)

2) rule n. 13 (SAR-ARA)

Would you like to apply any rule [0=Exit] 2
Matches Found: f)

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)
3) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Matches Found:

(h)

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Matches Found:
1) rule n. 17 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found:

U)

1) rule n. 17 (farm elimination)
2) rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 0

Implementation

e Prototype in Ocaml 2.02 (about 2000 lines of code)
® Tested under Windows’98 and Linux RH6.2
e Tested over 2 target languages and about 20 rules

e The implementation (except graphical interface) is based on a
single ADT which describes the dependence tree and the function

working on it

e The implementation can handle many Target Languages via
instantiation of the ADT

SLIDE 25 CMPP2000

Discussion

1.

Why the tool is interactive ?
— Because the rewriting calculus of TL, in the general case, is not confluent
in performance and the solution space (may) grow exponentially with the

number rules

. Does the tool make any decision about the rule to apply ?

— No. But, it can be extended with your own heuristics, if you have them

— Currently Meta optimises Skel-BSP data-parallel-free programs with a stan-
dard sequence of rules. Such “Normal Form” is proved to be the fastest
among the semantic-equivalent formulations that can be reached with these

rules (Aldinucci, Danelutto. IASTED PDCS’99, Boston, USA)

. Does the tool really optimise the program ?

— It really depend on the TL, the set of rule and the cost calculus, not on
the tool. The tool make you happy playing with your new skeleton language,
that’s it.

SLIDE 26

CMPP2000

Conclusions

Meta implements a (meta) rewriting system for skeleton-based languages
e It is independent from the target language and the rules
e It only requires a three-tier language schema
e Can be equipped with heuristics to make decisions on the rule to apply
e It is already implemented on a platform-independent language (Ocaml)
e It has a (simple) graphical interface and it is fast
e Is is easy to modify and to extend

o It is free !

SLIDE 27 CMPP2000

FAN rules (1)

Rule SR-ARA
b = reduce Op2 (scanL Opl a)
b = projl (reduce Op3 (pair (a,a)))
If Opl distributes forward over Op2
(a1,b1) Op3 (az,b2) = (a3 Op2 (by Opl az), by Op2bs)

Rule AR-RA
b = reduce Op1 (projl a)

b = projl (reduce Op2 a)
((1,1, bl) Op2 (ag, b2) = ((1,1 Opl as, b1 Opl bg)

Rule SAR-ARA
¢ = reduce Op2 (projl (scanL Opl a))

¢ = projl (projl (reduce Op3 (pair(a,a))))

If Opl distributes forward over Op4

(a1,b1) Op3 (a2,b2) = (a1 Op4 (by Oplaz), by Opd bs)
(a1,b1) Op4d (az,b2) = (a1 Op2az, by Op2bs)

Rule CS-CM
b = scanL Op (copy n a)
b= mapy f (copy n a)
fix = fst(repeat i (z,x))
repeat k x = if k = 0 then z else repeat (k div 2) (if (k mod 2 = 0) then e z else o)
e(t,u) = (t,u Op u), o(t,u) = (t Op u,u Op u)

SLIDE 28 CMPP2000

FAN rules (2)

Rule M#M-M#

b=mapy fa
c=mapghb
c=mapy ha
hixz=g(fiz)

Rule M# AM-M#

b=mapy fa

¢ = map g (pair (d,b))

¢ = mapy h (pair (d,a))
hi(zy)=g(z. fiy)

FAN Operation | Time required

map f x mxty

projl x 0

pair (z,y) 2% m * teopy

copy n T p*ts—i—www

part (r,s) x 2%t + (r+8) * ty

reduce (@) z mxtg +logp * (ts + tw +ta)

scanL (@) = 2xmxtg +logp* (ts+ty +2%tg)

Rule Time left hand side Time right hand side Improves if

SR-ARA 3xm+logpx (2% (ts+tw) +3)) | 2xm+logp* (ts + 2%ty + 2) always

AR-RA m+logp * (ts + ty + 1) 2% m+logp* (ts + 2% (tw + 1)) never

SAR-ARA 3xm+logp* (2% (ts +ty) +3) 5%m+logp* (ts +ty + 1) (ts + tw +2) % logp > 2m

CS-CM p*ts—i—m*(tw—i—%“—}—l) p*ts—km*(tw—i—%—}—l) always
+logp * (ts + ty + 2)

MyuM-M g 2xm m always

My AM-My 4xm m always

SLIDE 29

CMPP2000

SLIDE 30 CMPP2000

