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Skeletons

e Structured programming models

e Skeletons
— known, reusable, parallelism exploitation patterns
— Think to the analogy with seq. prog. (while do, for ...)

e Programmers concentrate on qualitative aspects of parallelism

e Tools deal with implementation details and quantitative aspects

— load-balancing, parallelism degree, messages size, etc.

e Specification of the software architecture
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Why skeletons ?

e Parallel programming is difficult and error prone

— Skeletons have a clear, functional and parallel semantic
e Performance portability

— Only performance can justify HPC high costs

— Performance heavily depends on the “matching” of the

program with the architecture

e Several MPI implementation of the same algorithm

seq farm farm + pipe pipe + 2*farm pipe + farm

T, (sec) 6.03  0.39 1.30 0.72 4.99
T, (sec) 1207.76 84.50  286.62 151.67 1004.69
#PE 1 20 20 20 20
(%) 7552 23.08 41.93 6.04

(Aldinucci & Danelutto. IASTED PDCS’99, MIT, Boston, USA)
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Common skeletons

e Task parallel skeletons

— parallelism in the computation of stream tasks

— E.g. pipeline, task farm, etc.
e Data parallel skeletons

— parallelism in the computation of a single task

— E.g. map (independent forall), reduce, D&C, etc.
e Sequential skeletons

— the degenerate case: no parallelism at all

— sometime used to wrap functions written in a guest language
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The methodology

e Ingredients

— A skeleton-based language
— A cost calculus to foresee program performance

— A set of semantic-preserving rewriting rules
e Methodology
1. Write an initial specification/program

2. Evaluate its performance

3. Transform it (until the performance is satisfactory)
e Wish list

— A compiler for the language

— A tool to transform (optimize) programs
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Outline

e Framework & Motivation
— QOutline
e The Meta transformation tool

— A short introduction

— Dealing with languages and rules

— How it work

— The architecture and the implementation

— Running the tool

e Conclusions
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The Meta transformation tool: What does it do ?

Given:

1. A Target Language (TL)

2. A set of (sound) rewriting rules (L — R) for TL
3. A program written in TL
the Meta tool:

e locates applicable transformations

e provides performance estimates

e (possibly) transforms the program accordingly with the (user)

chosen rule

Meta basically implements a (meta) term-rewriting system
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The Meta transformation tool: properties

e Interactive
e Graphical
e Fast

e Language independent

0

TL

-

: programs

e Rule independent @ —

User interaction

TL
definition

rewriting
rules (TL)

Meta
transformation
engine

|

e Manages mixed data and task

parallel languages

Meta can be instantiated with a broad class of TL

(three-tier languages) and sets of rules for TL.
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Skeleton-Based (up to) three-tier languages

Program Program

Task Parallel layer

TP skel 3
R e T
DP skel A \ DP skel A
| Data Parallel layer v
DP skel C DP skel B
_____ e e RRaEt | R I IR
[seqfuni1]  [seqfun2]  [seqfun3] Sequential layer [seqfun1]  [seqfun2]

Lower levels skeletons cannot call upper level ones

“The exploitation of task parallelism is (often) orthogonal with
respect to the exploitation of data parallelism”
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Three-tier languages: testbeds

FAN: Functional Abstract Notation

(Aldinucci, Gorlatch, Lengauer, Pelagatti. Parallel Algorithms & Applications (to appear), Gordon & Breach.)
e Data parallel skeleton language

e FAN cost calculus

Skel-BSP: Skeletons on top of the H-BSP

(Zavanella. Ph.D. Thesis, University of Pisa)
e Task and data parallel skeleton language
e Implemented on top of (hierarchical) BSP

e BSP-like cost calculus

Notice I don’t present here neither new languages nor new rules

Indeed, they have been presented and validated elsewhere
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Three-tier languages: example Skel-BSP

TL prog ::= TP | DP

TP ::= farm (TP) | pipe {TPlist} | DP

DP ::= map Seq | scanL Seq | reduce Seq | Seq | comp (out Var, in Varlist) { DPlist}. ..
Seq ::= ( a sequential C function )

comp.name (out outvar, in invars){

outvar; = dp.1 Op; invars;

outvar, = dp.n Op, invars,}

comp definition follows the single-assignment rule: there is at
most one equation defining each variable. Skeletons into comp are

executed in sequence on a single set of PEs.
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Rewriting rules

A rule is a pair L —+ R where
e . and R are fragments of TL programs with variables vy, 14, ...
® 1, l1,... act as placeholders for any piece of program
e Every variable occurring in R must occur also in L

e [ is not a variable
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Rewriting rules: examples (1)

TSk farm (TSk)

(_

pipe {
DSk1 Opl,
DSk2 Opg, —
< e >y
DSk, Op,}

comp (out z, in a) {

b = DSk; Op; a,

¢ = DSk, Ops b,

< [ >1

z = DSk, Op, y}

A farm replicates TSk with-
out changing the function it

computes

Same functional (sequen-
tial) semantic. They differ
in the execution model. pipe
stages run on on different
set of PEs, comp stages run
in sequence on the same set
of PEs
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Rewriting rules: examples (2)

comp (out outvar, in invars) { comp (out outvar, in invars) {
< e > < -0 2>
q = map Op; p, — q = map Op; p,
<>y < r = map (Ops o Op;) p,
r = map Ops q, < s>
<...>3} <...>3}

map (backwards) distribution through functional composition.
We do not require the two maps to be adjacent in the program
code. Meta provides the program with the additional assign-
ment only if the intermediate result ¢ is referenced into < --- >,
or < --- >3
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Tool behaviour

TL program
]

front-end ’
TL —internal repr.

(I

dependence tree

[Z

TL rule set [ locate applicable ’

TL cost calculus transformations

U

front-end
TL —internal repr.

—
set of rules

:> user dialog :> rebuild TL from ’
internal represent.

: i
a rule
7

[ transform ’ TL program

dependence forest

the program

>
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Representing program and rules

Both program and rules are represented by dependence trees
e A dependence tree (DT) is a labelled tree
e DT directly represents the data dependence among skeletons

e if Skl directly uses data produced by Sk2
then they are adjacent in DT

e DT is built starting from parse tree (PT) and
data flow graph (DFG) of the program

@ both PT and DFG can be build using standard tools

@ Since program and patterns (L) are trees, the search for

applicable rules reduces to subtree matching
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Representing program and rules (cont’ed)

A rule is represented by a dependence tree pair

map map
@ﬂﬁﬁap fcw
T

P
06 @O
Keys: [u]p [d]own Rule 10 map fusion

Advantageous: Alvays

Where: fcomp(f,gi=figl)
Costin/mt_op + 2L Cost 2(n/pit_op + L

e Circled figures represents variables

e fcomp is special node representing functional composition
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Building up the Dependence Tree

Parse Tree (PT) Node attributes Dependence Tree
In |Out

A A A DPblock

ts scanlL ds map2 z8 reduce

reduce

7N\
o, 29
e

Data Flow Graph (DFG) sa Arg(as) scanL

In parameters Out parameters
as *
ys — DPblock — zs Arg(ys)
%p< reduce

*sa +
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Building up the Dependence Tree (cont’ed)

Data Flow Graph (DFG) Dependence Tree

In parameters
—— DPblock DPblock

Replicated subtree <~~~

shared subtrees: keep them shared or replicate them ?
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Locating applicable rules: subtree matching

Problem: Match a set of patterns against many subject trees

Solution: Hoffman-O’Donnell bottom-up algorithm:

Two phases: 1) preprocessing of the rules, 2) matching

Good news:

e The preprocessing phase have to be repeated only if either the rules or the

language have been changed
e Matching really fast (even in practice): a single traversal of T
Bad news:
e The preprocessing phase may be expensive
e but, it is fast for a broad class of pattern sets

e Details in the paper
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* Already Implemented !

TL program TL rules
| |
Lo 3
83
ﬁ scanner / parser ﬁ data dependence analyzer B
T T T m
« k « 2
T T -
program rule list ~
PT & DFG PTs & DFGs
. L 2
B
ﬁ dependence tree generation Q .W
S
| | S
~
dependence tree list of dependence pattern trees M
(program representation) (lhs of rules representation) P~
¢\ ( '
( ) pattern forest
. \ generation S
o pattern matching 7 mO
5 s
S0 . f pattern sorting S
rm list of :Eﬂw,wm& rules (by subsumption) m
N f X
2 . subsumption graph nM
8 matches presentation | |=—y— y =
W and :moﬂ dialog driving table N
= the rule to apply generation
S « G J
= !
W tree tranformation <<— driving table
\. J AV «
attern library file
“““““““““““““““““““““““““ (_ User Interaction ‘ﬁv\\
'
ﬁ rebuild TL program from internal representation TL program
J

(5) Back End

TL specific
build by LEX & YACC

independent from TL

peC.‘L
T

TL s

customizable via instantiation of the ADT



pol-evall DPbiock ;
_.m_a:nm , \
+ map ’
T
*23
(a) Arg(as) scanl NN

P i

copy

AN\

no Argvs)

Matches Found:
1) rule n: 14 (CS-CM) (b)

Would you like apply any rule [0=Exit] 1

map#
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pair
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>
R pair
>
Argias) map#
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T
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MSS example in Skel-BSP (9 out of 20 formulations)

pipe.mss {
map pair,
scanL Op,,
map Py,

reduce maz }

farm i/e
e — >

. Il
pipe—comp
3

farm i/e

comp.mss (out r, in z) {

y=map pair z,
s=scanL Op, y,
v=map P; s,
r=reduce maz v}

SARﬁARA

comp.mss (out r, in z) {

a=map pair z,
b=map pair a,
c=reduce
Ops(max,Op,) b,
d=map P; c,
r=map P; d }

map fusion

map fusion

pipe.mss {
map pair,

farm i/e

farm(scanL Op.),
map Py,
reduce maz }

pipe.mss {
map pair,

farm i/e

farm i/e

scanL Op,,
farm(map P,),
reduce maz }

comp.mss (out r, in z) {
a=map (pair o pair) z,
b=reduce
Ops(mazx,Op,) a,
r=map (PyoP;) b}

farm i/e

pipe.mss {
map pazir,
farm(scanL Op.),
farm(map P,),
reduce maz }

pipe.mss {
map pair,
scanL Op,,
farm(map P,),
farm(reduce maz) }

farm.mss (
comp (out r, in z) {
a=map (pair o pair) x,
b=reduce
Ops(mazx,Op,) a,
r=map (P,o P,) b })
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Matches Found:

1)
2)
3) rule n. 18 (farm introduction
4)
5)

map fusion

(@

farm intro

N

@ pipe 22
DPblock ¥ DPbiock ] DPbiock BN DPbiock BN
map scanL map reduce
pair Arg(?) COp+Arg(T) P! Arg(®) mazx Arg(3)
(c) DPbiock Rl
i 1 |
- | reduce m |
e L e ”
pipe—>comp Do o !
| e |
| Fl scanlL [
| e |
| Op+ map ! \
| P | SAR-ARA
! pair  Arg(t) ! ,,
e  oreocE® 4
m Pl reduce |
| e — |
| 053 ap B |
i max  Op+t pair map !
| P !
1 pair  Arg(l) !

pair  Arg(?)

DPpiock B

=.z_uv ,
mw\\\\\;fl._r.m.a:om m
E_ opr | map K
e T | /

DPbiock Y
|
map
I\lllll\llnrlllrlnrl
Pl reduce
| T —
Pl Op3 map
e L
max  Op+  pair  Arg(r)

petir

map fusion

(b)

rule n. 1 (pipe => comp)
rule n. 18 (farm introduction)

)
rule n. 18 (farm introduction)
rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found: (d)

1) rule n. 18 (farm introduction)

2) rule n. 13 (SAR-ARA)

Would you like to apply any rule [0=Exit] 2
Matches Found: f)

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)
3) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Matches Found:

(h)

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Matches Found:
1) rule n. 17 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found:

U)

1) rule n. 17 (farm elimination)
2) rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 0




Implementation

e Prototype in Ocaml 2.02 (about 2000 lines of code)
® Tested under Windows’98 and Linux RH6.2
e Tested over 2 target languages and about 20 rules

e The implementation (except graphical interface) is based on a
single ADT which describes the dependence tree and the function

working on it

e The implementation can handle many Target Languages via
instantiation of the ADT
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Discussion

1.

Why the tool is interactive ?
— Because the rewriting calculus of TL, in the general case, is not confluent
in performance and the solution space (may) grow exponentially with the

number rules

. Does the tool make any decision about the rule to apply ?

— No. But, it can be extended with your own heuristics, if you have them

— Currently Meta optimises Skel-BSP data-parallel-free programs with a stan-
dard sequence of rules. Such “Normal Form” is proved to be the fastest
among the semantic-equivalent formulations that can be reached with these

rules (Aldinucci, Danelutto. IASTED PDCS’99, Boston, USA)

. Does the tool really optimise the program ?

— It really depend on the TL, the set of rule and the cost calculus, not on
the tool. The tool make you happy playing with your new skeleton language,
that’s it.
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Conclusions

Meta implements a (meta) rewriting system for skeleton-based languages
e It is independent from the target language and the rules
e It only requires a three-tier language schema
e Can be equipped with heuristics to make decisions on the rule to apply
e It is already implemented on a platform-independent language (Ocaml)
e It has a (simple) graphical interface and it is fast
e Is is easy to modify and to extend

o It is free !
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FAN rules (1)

Rule SR-ARA
b = reduce Op2 (scanL Opl a)
b = projl (reduce Op3 (pair (a,a)))
If Opl distributes forward over Op2
(a1,b1) Op3 (az,b2) = (a3 Op2 (by Opl az), by Op2bs)

Rule AR-RA
b = reduce Op1 (projl a)

b = projl (reduce Op2 a)
((1,1, bl) Op2 (ag, b2) = ((1,1 Opl as, b1 Opl bg)

Rule SAR-ARA
¢ = reduce Op2 (projl (scanL Opl a))

¢ = projl (projl (reduce Op3 (pair(a,a))))

If Opl distributes forward over Op4

(a1,b1) Op3 (a2,b2) = (a1 Op4 (by Oplaz), by Opd bs)
(a1,b1) Op4d (az,b2) = (a1 Op2az, by Op2bs)

Rule CS-CM
b = scanL Op (copy n a)
b= mapy f (copy n a)
fix = fst(repeat i (z,x))
repeat k x = if k = 0 then z else repeat (k div 2) (if (k mod 2 = 0) then e z else o )
e(t,u) = (t,u Op u), o(t,u) = (t Op u,u Op u)
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FAN rules (2)

Rule M#M-M#

b=mapy fa
c=mapghb
c=mapy ha
hixz=g(fiz)

Rule M# AM-M#

b=mapy fa

¢ = map g (pair (d,b))

¢ = mapy h (pair (d,a))
hi(zy)=g(z. fiy)

FAN Operation | Time required

map f x mxty

projl x 0

pair (z,y) 2% m * teopy

copy n T p*ts—i—www

part (r,s) x 2%t + (r+8) * ty

reduce (@) z mxtg +logp * (ts + tw +ta)

scanL (@) = 2xmxtg +logp* (ts+ty +2%tg)

Rule Time left hand side Time right hand side Improves if

SR-ARA 3xm+logpx (2% (ts+tw) +3)) | 2xm+logp* (ts + 2%ty + 2) always

AR-RA m+logp * (ts + ty + 1) 2% m+logp* (ts + 2% (tw + 1)) never

SAR-ARA 3xm+logp* (2% (ts +ty) +3) 5%m+logp* (ts +ty + 1) (ts + tw +2) % logp > 2m

CS-CM p*ts—i—m*(tw—i—%“—}—l) p*ts—km*(tw—i—%—}—l) always
+logp * (ts + ty + 2)

MyuM-M g 2xm m always

My AM-My 4xm m always
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