
ESkIMO
an Easy Skeleton Interface

(Memory Oriented)

HLPP 2003, Paris, France

Marco Aldinucci
Computer Science Dept., Pisa, Italy
www.di.unipi.it/~aldinuc/

2

Outline

• Motivations
• Programming model
• (Some) experimental results
• The payback of the approach
• if (elaps. time<30min)

development issues

3

Motivations

• We developed several skeletal frameworks,
both academic and industrial:
– P3L (Uni Pisa , 1991, C)
– SkIE (Uni Pisa + QSW ltd., 1998, C++, Fortran, Java)
– Lithium (Uni Pisa, 2002, Java based, macro-data-flow)
– ASSIST (Uni Pisa + Italian Space Agency, 2003 ?, GRID-

targeted (not GREED)
– Many variants of them

• Many “real world” applications developed with
these frameworks:
– Massive data-mining, computational chemistry, numerical analysis,

image analysis and processing, remote sensing, …

4

Lack of expressiveness

• “missing skeleton” problem
• skeletons as “pure” functions

– enable static source-to-source optimizations, but
– how to manage large data-sets, possibly accessed

in a scattered, unpredictable way?
– primary targeted to speedup (memory?,

bandwidth?)
• No support for dynamic data structures

– neither for “irregular” problems (B&B)
– hierarchical organized data (C4.5 classificator …)

5

ESkIMO approach

• Mainly a library to experiment solutions to
scheduling and mapping

– for the framework developer more than app dev
• Extend the C language with skeletal ops
• Layered implementation

– Based on Soft-DSM (exploiting DAG consistency)
– Targeted to loosely coupled architectures (NUMA)
– Exploiting multiprocessing (inter-PEs),

multithreading (intra-PE), MMX/Altivec fine
grained SIMD/vectorial parallelism within the
runtime (Intel performance libs / Apple gcc port)

– Working on Linux/Pentium and PPC/MacOs X
equipped with TCP/IP net (homogeneous)

6

eskimo provides abstraction 1

• on the programming model
– parallel entities (e-flows)

• share the memory
• not limited in number
• number not fixed at the program run (as in MPI)

– skeletal operations
• native foreach (on several data structures)
• Divide&Conquer
• ad hoc parallelism (pipes, sockets, …)

7

eskimo provides abstraction 2

• on data structures (ADT)
– seen as single entities (as Kuchen lib)
– shared among e-flows
– spread across the system
– static and dynamic

• native k-trees, arrays and regions
• any linked data structure by means of

references in the shared address

8

eskimo programming model

• Programs start with a single flow
• The flow may be split (then joined) with fork/join-like

constructs: e_call and e_join

• These constructs originate C fun instances, i.e. e-flows
• e-flows are not processes/threads but abstract entities

– rather, they are similar to Athapascan tasks (JL. Roch et al.)
– bound to PEs once created (spawned)

• e-flows have a private and a shared memory:
– private is HW accessed
– shared memory accesses are software mediated

9

eskimo e-flows and their execution

e-calling a fun means
claim a

“concurrency capability”

e-flows may be
executed in parallel
or sequentialized

10

foreach/joinall

• n-way extensions of e_call/e_join
• work on

– arrays
– k_trees (e_foreach_child)
– generic set of references (e_foreach_ref)

11

Different runs -- same program/data

12

eskimo data structures
• SADT (Shared Abstract Data Types)

– simple parametric types,
– may be instanced with any C type to obtain a SDT
– SDT typed variables are shared variables
– C standard vars are private, global/static forbidden

within e-flows
– sh. vars may grow beyond (logical) address space of

the platform
• They are:

– k-trees (because we know the acc. patterns)
– lists = 1-trees, graphs = spanning tree + refs
– arrays and regions … lists = 1-trees, graphs

• In addition:
– references, addresses in shmem: eref_t
– handlers, in order to match call/join: ehandler_t

13

Example: a couple of binary trees

edeclare_tree(binary_tree_t, int, 2);

binary_tree_t t1 = TREE_INITIALIZER;
binary_tree_t *t2;
t2=(binary_tree_t *)malloc(sizeof(binary_tree_t));
…
etree_init(t2);

This yields two shared/spread empty trees t1 and *t2

These can be dynamically, concurrently populated with
nodes by using enode_add or either joined, split …

14

Trees: example

typedef struct {
int foo;
eref_t next; //The head of a list for example

} list_cell_t;

sh_declare_tree(bin_tree_ll_t,list_cell_t,2);
bin_tree_ll_t t1 = TREE_INITIALIZER;
eref_t node,root;

root = eadd_node(bin_tree_ll,E_NULL,0); // the root
node = eadd_node(bin_tree_ll,root,0); // its child
node = eadd_node(bin_tree_ll,root,0); // another one

15

Reading and writing the shared memory

• A shared variable cannot r/w directly
• It must be linked to a private pointer

list_cell_t *body; // C (private) pointer
body = (list_cell_t *) r(root)

• From r/rw on, the priv. pointer may be used to
access shared variable (no further mediation …)

• Shared variables obey to DAG consistency
no lock/unlock/barrier (Leiserson+, Cilk)

• No OS traps, no signal-handlers, fully POSIX
threads compliant, address translation time 31
clock cycles (in the case of cache hit)

16

DAG consistency

X=0

X=1

X=2

X==?

• Independent e-flows ought to write different memory words

• A DAG consistency serious problem

• Accumulation behavior can be achieved with reduce used with an
user-defined associative/commutative operations (…)

Reads “sees” writes along paths on the eflow graph

17

Build & Visit a k-tree

edeclare_tree(k_tree_t,int,K);
k_tree_t a_tree = TREE_INITIALIZER;

typedef struct {int child_n; int level} arg_t;

main() {
eref_t root;
arg_t arg = {0, 16 /* tree depth */ };
e_initialize();
root = tree_par_build(E_NULL,&arg);
tree_visit(root,&arg);
e_terminate();

}

18

Visiting a k-tree
eref_t tree_visit(eref_t node) {
int *body;
ehandler_t it;

efun_init();
ehandler_init(it);
body = r(node);
*body += *body/3;
e_foreach_child(hand,tree_visit,body)
e_joinall(it ,NULL);

return(E_NULL);
}

19

The speedup-overhead tradeoff

20

To parallelize or not to parallelize

eskimo mission

• exploit enough parallelism to maintain a fair amount
of active threads (exploit speedup), but

• not too much in order to avoid unnecessary
overheads. They come from many sources:
– accesses to remote data (network, protocol, cache, …)
– parallelism management (synchronizations, scheduling, …)

• runtime decisions (that depend on programmer hints,
algorithm, data, system status …)

21

eflows proactive scheduling

• No work-stealing (as cilk, athapascan)

• Policy: at ecall/eforeach time
The local node is overwhelmed w.r.t. to the others?

Yes – spawn it remotely
No - The new e-flows will use mostly local addresses ?

Yes – enough locally active threads ?
Yes – sequentialize it
No – map it on a local thread

No – Spawn it remotely where data is

22

eflows scheduling 2

• How known if the PE is overwhelmed w.r.t
others
– keep statistics (#active threads, CPU load, mem) and

exchange with others
• How known what data the new flow will access?

– Expect an hint from the programmer
• If the programmer gives no hints?

– Use system-wide lazy-managed statistics

23

The programmer insight

1. Allocate data exploiting accesses spatial locality
within the same e-flows

2. Pass the reference of mostly accessed data as the
first parameter of functions

• The more you follow these guidelines the faster is
the application. The application is “anyway correct”.

• Quite usual in seq. programming. How C
programmers navigate arrays? And fortran ones?

We need a prog. env. where performances improves gradually with
programming skills. It should neither requires an inordinate effort
to adapt application to ready-made skeletons nor to code all
parallelism details (M. Cole)

24

Performances

1. 12 Pentium II @ 233MHz
Switched Eth 100MB/s
(exclusive use)

2. 2x2-ways PIII @ 550MHz
Switched Eth 100MB/s
(shared with all the dept.)

3. 1 int x node (worst case)

25

Overhead allocate+write (d22/4Mnodes)

shared memory accesses (SW)

private memory accesses (HW)

eskimo

(true) sequential

ratio

processing elements

Ti
m

e
(s

ec
s)

26

Overhead visit -- read -- (22/4Mnodes)

eskimo

(true) sequential

ratio

Ti
m

e
(s

ec
s)

processing elements

27

Visit time (depth 20, 1Mnodes, 37µs load)
Ti

m
e

(s
ec

s)

processing elements

(true) sequential

eskimo

28

Visit speedup (d20, 1Mnodes, 37µs load)
sp

ee
du

p

processing elements

eskimo

perfect speedup

29

Barnes-Hut (system step in 2 phases)

2) top-down1) bottom-up

30

eskimo Barnes-Hut bottom-up phase
eref_t sys_step_bottom_up(eref_t anode){

eref_t ret_array[4]; ehandler_t hand;
eref_t float_list, sink_list; node_t *np;
np = (node_t *) rw(anode);
if (np->leaf) {

<figure out acceleration (implies a visit from the root
update bodies position (np->x = …; np->y = …;)>
if (!within_borders(anode)) push(float_list,anode);

} else {
/* Divide */
e_foreach_child(hand, sys_step_bottom_up,np);
e_joinall(hand,ret_array);
/* Conquer */
for(i=0;i<4;i++)

while(elem=pop(ret_array[i]))
if (within_borders(elem)) push(sink_list,elem);
else push(float_list,elem);

np = (node_t *) rw(anode); np->ancestor_list = elem;
return(float_list); }

31

Ellipse dataset (balanced)

32

Cross dataset (unbalanced)

33

Barnes-Hut speedup

43.03.11.81.6eskimo 2 x SMP/2

21.81.91.11.2eskimo 1 x SMP/2

43.13.21.00.9MPI 1 x SMP/2

21.81.91.00.9MPI 1 x 2 SMP/2

optim20k10k20k10k#bodies

unbalanced balanced

A non-trivial MPI implementation (thanks to C. Zoccolo)

34

Payback of the approach

35

data and tasks

• an e-flow is bound to a PE for the life
– no stack data migration (no cactus stack)

• e-flows and data orthogonalized
– e-flows may be spawned towards data, or
– data may migrate towards requesting e-flow, or
– both
– it depends on programs, input data, system

status, …

36

Skeletons

foreach (“dynamic” data parallelism)
– exploit nondeterminism in e-flows scheduling by

executing first e-flows having data in cache

build your own using both ecall/ejoin/…
– As for example Divide&Conquer in many variants

programmer does not deal with load balancing,
data mapping but with an abstraction of them

37

Summary

A platform to experiment, mainly
Introduces dynamic data structures
Introduces data/task co-scheduling
– parallel activities not limited in number nor

bound to a given processing elements
– extendible to support some flavors of hot-

swappable resources (…)
Frames skeletons in the shared address
model
Implemented, fairly efficient

38

To Do

• Move to C++ framework:
– It simplify syntax through polymorphism
– It provides static typ checking
– It enables the compilation of some part through

templates and ad-hoc polymorphism

• Improve language hooks:
– many parts of the runtime are configurable but

there are no hooks at the language level (as for
example cache replacing algorithm)

39
“eskimo works if and only if you absolutely believe it should work”

My kayak maestro

Questions ?

www.di.unipi.it/~aldinuc

40

Building a k-tree
eref_t tree_par_build(eref_t father,void *argsv){

arg_t myvalue = *argsv;
efun_init();
if ((myvalue.level--)>0) {

ehandler_t h[K]; ehandler_init(h, K);
node = eadd_node(a_tree,father,myvalue.child_n);
body = ((int *) rw(node)); *body= … ;
for (i=0;i<K;i++) {
myvalue.child_n=i;
e_call_w_arg(&h[i],tree_par_build,node,

&myvalue,sizeof(arg_t));
}
e_joinall(a_child,tid,K);
for (i=0;i<K;i++)

e_setchild(k_tree_t,node,i,a_child[i]);
return(node);
}

41

Some implementation details

42

Trees are stored blocked in segments

• of any size (no mmap allocation), even within the
same tree

• better if size match arch. working-grain (cpu/net
balance)

• have internal organization (configurable,
programmable at lower level)

• segms with different organizations can be mixed,
even in th same tree

• their size may match architecture working-grain
• is the consistency-unit (diff+twin)
• segms boundaries trigger scheduling actions

43

Tree visit (d18, 256knodes)

42.231.980.202 x SMP/2

21.571.350.101 x SMP/2

--8.514.800.152 x SMP/2

--12.077.030.301 x SMP/2

--19.019.950.03seq

optim73 µs37µs0 µs oload

speedup

time
(secs)

44

Tree organizations (heap)

• good for random accesses
• internal fragmentation

rebuild with +1 level = + 56 segms (fill perc. 98% → 25%)

45

Tree organizations (first-fit)

• little internal fragmentation
rebuild with +1 level = + 8 segms (fill perc. 73% → 80%)

• good if allocated as visited (but it is a not rare case)
• heap-root block improves scheduling (because …)

46

Shared Addresses

• memory in segments
• Independent from machine word
• Configurable
• Addr. Trasl. 31 clock cycles (PIII@450MHz), hit.

– Miss time higher, but it depends on other factors
• Zero copy

47

L1 TCP coalesing

48

Runtime - schema

49

Flow of control (unfolds dynamically)

Main sbuild visit

visit

visit

visit

visit

…

visit

visit

visit Main

Seq edge
(originated by call)

Nondet edge
(originated by nondet-call)

Seq edge
(originated by call)

Local variables keep values because in
the same e-flow

50

Tree visit overhead (zero load)

0.700.150.402 x 2-way SMP (secs)

1.500.300.801 x 2-way SMP (secs)

0.150.030.01seq (secs)

12M3M768ksize (MBytes)

1M256k64k# nodes

201816tree depth

51

Visit time (d16, 64knodes, 37µs load)

eskimo

(true) sequential

Ti
m

e
(s

ec
s)

Processing elements

52

Visit speedup (d16, 64knodes, 37µs load)
Ti

m
e

(s
ec

s)

Processing elements

eskimo

perfect speedup

53

Visit time vs load (d20, 1Mnodes)

true seq
eskimo seq

4 PEs

8 PEs

Ti
m

e
(s

ec
s)

cpu active load x node (µsecs)

54

tier0 (producer-consumer sync)

Upper bound
(asynch)

55

tier0 – throughput (prod-cons)

56

etier0 three stages pipeline

57

etier0 four stages pipeline

