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Motivations

• We developed several skeletal frameworks, 
both academic and industrial:
– P3L (Uni Pisa , 1991, C)
– SkIE (Uni Pisa + QSW ltd., 1998, C++, Fortran, Java)
– Lithium (Uni Pisa, 2002, Java based, macro-data-flow)
– ASSIST (Uni Pisa + Italian Space Agency, 2003 ?, GRID-

targeted (not GREED)
– Many variants of them

• Many “real world” applications developed with 
these frameworks:
– Massive data-mining, computational chemistry, numerical analysis, 

image analysis and processing, remote sensing, …
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Lack of expressiveness

• “missing skeleton” problem
• skeletons as “pure” functions

– enable static source-to-source optimizations, but
– how to manage large data-sets, possibly accessed 

in a scattered, unpredictable way?
– primary targeted to speedup (memory?, 

bandwidth?)
• No support for dynamic data structures

– neither for “irregular” problems (B&B)
– hierarchical organized data (C4.5 classificator …)
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ESkIMO approach

• Mainly a library to experiment solutions to 
scheduling and mapping

– for the framework developer more than app dev
• Extend the C language with skeletal ops
• Layered implementation

– Based on Soft-DSM (exploiting DAG consistency)
– Targeted to loosely coupled architectures (NUMA)
– Exploiting multiprocessing (inter-PEs), 

multithreading (intra-PE), MMX/Altivec fine 
grained SIMD/vectorial parallelism within the 
runtime (Intel performance libs / Apple gcc port)

– Working on Linux/Pentium and PPC/MacOs X 
equipped with TCP/IP net (homogeneous)
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eskimo provides abstraction 1

• on the programming model
– parallel entities (e-flows)

• share the memory
• not limited in number
• number not fixed at the program run (as in MPI)

– skeletal operations
• native foreach (on several data structures)
• Divide&Conquer
• ad hoc parallelism (pipes, sockets, …)
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eskimo provides abstraction 2

• on data structures (ADT)
– seen as single entities (as Kuchen lib)
– shared among e-flows
– spread across the system 
– static and dynamic 

• native k-trees, arrays and regions
• any linked data structure by means of 

references in the shared address



8

eskimo programming model

• Programs start with a single flow
• The flow may be split (then joined) with fork/join-like 

constructs: e_call and e_join

• These constructs originate C fun instances, i.e. e-flows
• e-flows are not processes/threads but abstract entities

– rather, they are similar to Athapascan tasks (JL. Roch et al.) 
– bound to PEs once created (spawned)

• e-flows have a private and a shared memory:
– private is HW accessed
– shared memory accesses are software mediated
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eskimo e-flows and their execution

e-calling a fun means
claim a 

“concurrency capability”

e-flows may be
executed in parallel
or sequentialized
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foreach/joinall

• n-way extensions of e_call/e_join
• work on 

– arrays
– k_trees (e_foreach_child)
– generic set of references (e_foreach_ref)
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Different runs -- same program/data
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eskimo data structures
• SADT (Shared Abstract Data Types)

– simple parametric types, 
– may be instanced with any C type to obtain a SDT
– SDT typed variables are shared variables
– C standard vars are private, global/static forbidden 

within e-flows
– sh. vars may grow beyond (logical) address space of 

the platform
• They are:

– k-trees (because we know the acc. patterns)
– lists = 1-trees, graphs = spanning tree + refs
– arrays and regions … lists = 1-trees, graphs

• In addition:
– references, addresses in shmem: eref_t
– handlers, in order to match call/join: ehandler_t
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Example: a couple of binary trees

edeclare_tree(binary_tree_t, int, 2);

binary_tree_t t1 = TREE_INITIALIZER;
binary_tree_t *t2;
t2=(binary_tree_t *)malloc(sizeof(binary_tree_t));
…
etree_init(t2);

This yields two shared/spread empty trees t1 and *t2

These can be dynamically, concurrently populated with 
nodes by using enode_add or either joined, split …
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Trees: example

typedef struct {
int foo;
eref_t next;  //The head of a list for example

} list_cell_t;

sh_declare_tree(bin_tree_ll_t,list_cell_t,2);
bin_tree_ll_t t1 = TREE_INITIALIZER;
eref_t node,root;

root = eadd_node(bin_tree_ll,E_NULL,0); // the root
node = eadd_node(bin_tree_ll,root,0);   // its child
node = eadd_node(bin_tree_ll,root,0);   // another one
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Reading and writing the shared memory

• A shared variable cannot r/w directly
• It must be linked to a private pointer

list_cell_t *body;  // C (private) pointer
body = (list_cell_t *) r(root)

• From r/rw on, the priv. pointer may be used to 
access shared variable (no further mediation …)

• Shared variables obey to DAG consistency 
no lock/unlock/barrier (Leiserson+, Cilk)

• No OS traps, no signal-handlers, fully POSIX 
threads compliant, address translation time 31 
clock cycles (in the case of cache hit)
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DAG consistency

X=0

X=1

X=2

X==?

• Independent e-flows ought to write different memory words

• A DAG consistency serious problem

• Accumulation behavior can be achieved with reduce used with an 
user-defined associative/commutative operations (…)

Reads “sees” writes along paths on the eflow graph
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Build & Visit  a k-tree

edeclare_tree(k_tree_t,int,K);
k_tree_t a_tree = TREE_INITIALIZER;

typedef struct {int child_n; int level} arg_t;

main() {
eref_t root;
arg_t arg = {0, 16  /* tree depth */ };
e_initialize();
root = tree_par_build(E_NULL,&arg); 
tree_visit(root,&arg);
e_terminate();    

}
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Visiting a k-tree
eref_t tree_visit(eref_t node) {
int *body;
ehandler_t it;

efun_init();
ehandler_init(it);
body = r(node);
*body += *body/3;
e_foreach_child(hand,tree_visit,body) 
e_joinall(it ,NULL);

return(E_NULL);
}
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The speedup-overhead tradeoff
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To parallelize or not to parallelize

eskimo mission

• exploit enough parallelism to maintain a fair amount 
of active threads (exploit speedup), but

• not too much in order to avoid unnecessary 
overheads. They come from many sources:
– accesses to remote data (network, protocol, cache, …)
– parallelism management (synchronizations, scheduling, …)

• runtime decisions (that depend on programmer hints, 
algorithm, data, system status …)
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eflows proactive scheduling

• No work-stealing (as cilk, athapascan)

• Policy: at ecall/eforeach time
The local node is overwhelmed w.r.t. to the others?

Yes – spawn it remotely 
No - The new e-flows will use mostly local addresses ?

Yes – enough locally active threads ?
Yes – sequentialize it
No – map it on a local thread

No – Spawn it remotely where data is
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eflows scheduling 2

• How known if the PE is overwhelmed w.r.t 
others
– keep statistics (#active threads, CPU load, mem) and 

exchange with others
• How known what data the new flow will access?

– Expect an hint from the programmer
• If the programmer gives no hints?

– Use system-wide lazy-managed statistics
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The programmer insight

1. Allocate data exploiting accesses spatial locality 
within the same e-flows

2. Pass the reference of mostly accessed data as the 
first parameter of functions

• The more you follow these guidelines the faster is 
the application. The application is “anyway correct”.

• Quite usual in seq. programming. How C 
programmers navigate arrays? And fortran ones?

We need a prog. env. where performances improves gradually with 
programming skills. It should neither requires an inordinate effort 
to adapt application to ready-made skeletons nor to code all 
parallelism details       (M. Cole)
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Performances

1. 12 Pentium II @ 233MHz
Switched Eth 100MB/s
(exclusive use)

2. 2x2-ways PIII @ 550MHz 
Switched Eth 100MB/s
(shared with all the dept.)

3. 1 int x node (worst case)
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Overhead allocate+write (d22/4Mnodes)

shared memory accesses (SW)

private memory accesses (HW)
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Overhead visit -- read -- (22/4Mnodes)
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Visit time (depth 20, 1Mnodes, 37µs load)
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Visit speedup (d20, 1Mnodes, 37µs load)
sp

ee
du

p

processing elements

eskimo

perfect speedup
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Barnes-Hut (system step in 2 phases)

2) top-down1) bottom-up
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eskimo Barnes-Hut bottom-up phase 
eref_t sys_step_bottom_up(eref_t anode){

eref_t ret_array[4]; ehandler_t hand;
eref_t float_list, sink_list; node_t *np;
np = (node_t *) rw(anode);
if (np->leaf) {

<figure out acceleration (implies a visit from the root
update bodies position (np->x = …; np->y = …;)>
if (!within_borders(anode)) push(float_list,anode);

} else {
/* Divide */
e_foreach_child(hand, sys_step_bottom_up,np);
e_joinall(hand,ret_array);
/* Conquer */
for(i=0;i<4;i++)

while(elem=pop(ret_array[i]))
if (within_borders(elem)) push(sink_list,elem);         
else push(float_list,elem);

np = (node_t *) rw(anode); np->ancestor_list = elem;
return(float_list); }
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Ellipse dataset (balanced)
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Cross dataset (unbalanced)
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Barnes-Hut speedup 

43.03.11.81.6eskimo 2 x SMP/2 

21.81.91.11.2eskimo 1 x SMP/2

43.13.21.00.9MPI 1 x SMP/2

21.81.91.00.9MPI 1 x 2 SMP/2

optim20k10k20k10k#bodies

unbalanced balanced

A non-trivial MPI implementation (thanks to C. Zoccolo)
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Payback of the approach
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data and tasks 

• an e-flow is bound to a PE for the life
– no stack data migration (no cactus stack)

• e-flows and data orthogonalized
– e-flows may be spawned towards data, or
– data may migrate towards requesting e-flow, or
– both
– it depends on programs, input data, system 

status, …
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Skeletons

foreach (“dynamic” data parallelism)
– exploit nondeterminism in e-flows scheduling by 

executing first e-flows having data in cache

build your own using both ecall/ejoin/…
– As for example Divide&Conquer in many variants

programmer does not deal with load balancing, 
data mapping  but with an abstraction of them  
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Summary

A platform to experiment, mainly
Introduces dynamic data structures
Introduces data/task co-scheduling
– parallel activities not limited in number nor 

bound to a given processing elements
– extendible to support  some flavors of hot-

swappable resources ( … )
Frames skeletons in the shared address 
model
Implemented, fairly efficient
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To Do

• Move to C++ framework:
– It simplify syntax through polymorphism
– It provides static typ checking
– It enables the compilation of some part through 

templates and ad-hoc polymorphism

• Improve language hooks:
– many parts of the runtime are configurable but 

there are no hooks at the language level (as for 
example cache replacing algorithm)
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“eskimo works if and only if you absolutely believe it should work”

My kayak maestro

Questions ?

www.di.unipi.it/~aldinuc
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Building a k-tree
eref_t tree_par_build(eref_t father,void *argsv){

arg_t myvalue = *argsv;
efun_init(); 
if ((myvalue.level--)>0) {

ehandler_t h[K]; ehandler_init(h, K);
node = eadd_node(a_tree,father,myvalue.child_n);
body = ((int *) rw(node));  *body= … ;  
for (i=0;i<K;i++) {
myvalue.child_n=i;
e_call_w_arg(&h[i],tree_par_build,node,

&myvalue,sizeof(arg_t));     
}
e_joinall(a_child,tid,K);   
for (i=0;i<K;i++)

e_setchild(k_tree_t,node,i,a_child[i]);
return(node);
}     
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Some implementation details
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Trees are stored blocked in segments

• of any size (no mmap allocation), even within the 
same tree

• better if size match arch. working-grain (cpu/net 
balance)

• have internal organization (configurable, 
programmable at lower level)

• segms with different organizations can be mixed, 
even in th same tree

• their size may match architecture working-grain
• is the consistency-unit (diff+twin)
• segms boundaries trigger scheduling actions



43

Tree visit (d18, 256knodes)

42.231.980.202 x SMP/2

21.571.350.101 x SMP/2

--8.514.800.152 x SMP/2

--12.077.030.301 x SMP/2

--19.019.950.03seq

optim73 µs37µs0 µs oload

speedup

time
(secs)
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Tree organizations (heap)

• good for random accesses
• internal fragmentation 

rebuild with +1 level = + 56 segms (fill perc. 98% → 25%)
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Tree organizations (first-fit)

• little internal fragmentation
rebuild with +1 level = + 8 segms (fill perc. 73% → 80%)

• good if allocated as visited (but it is a not rare case)
• heap-root block improves scheduling (because …)
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Shared Addresses

• memory in segments
• Independent from machine word
• Configurable
• Addr. Trasl. 31 clock cycles (PIII@450MHz), hit. 

– Miss time higher, but it depends on other factors
• Zero copy
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L1 TCP coalesing
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Runtime - schema
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Flow of control (unfolds dynamically)

Main sbuild visit

visit

visit

visit

visit

…

visit

visit

visit Main

Seq edge
(originated by call)

Nondet edge
(originated by nondet-call)

Seq edge
(originated by call)

Local variables keep values because in 
the same e-flow
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Tree visit overhead (zero load)

0.700.150.402 x 2-way SMP (secs)

1.500.300.801 x 2-way SMP (secs)

0.150.030.01seq (secs)

12M3M768ksize (MBytes)

1M256k64k# nodes

201816tree depth
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Visit time (d16, 64knodes, 37µs load)
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Visit speedup (d16, 64knodes, 37µs load)
Ti

m
e 

(s
ec

s)

Processing elements

eskimo

perfect speedup
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Visit time vs load (d20, 1Mnodes)

true seq
eskimo seq
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tier0 (producer-consumer sync)

Upper bound
(asynch)
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tier0 – throughput (prod-cons)
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etier0 three stages pipeline
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etier0 four stages pipeline


