
An Operational Semantics
for Skeletons

Marco Aldinucci

ISTI – CNR
National Research Council

Pisa, Italy

Marco Danelutto

Computer Science Dept.
University of Pisa

Pisa, Italy

ParCo 2003, Dresden, Germany

2

Outline

Skeletons
Semantics – motivations
The schema of semantics
Axioms – rules
Example
Concluding remarks

3

Skeletons

Skeletons are language constructs
well-defined input-output behavior
parallelism exploitation patterns
(sometimes) can be nested
several prepackaged implementations

Two main families
Data Parallel (map, reduce, scan …)
Task & Stream parallel (farm, pipeline, …)

4

Motivations

Usually formal functional semantics, informal parallel
behavior

Describe skeletons
in-out relationship (functional behavior)

parallel behavior

in uniform and precise way (non steady state)

in structural way

Theoretical work motivated by concrete needs
Enable and automate performance-driven source-to-source
optimizations

same in/out different parallel behaviors

Compare different skeleton sets expressive power

5

ABB

farm (pipe (seq f1) (seq f2)

BAB

pipe

pipe

f1 f2

f1 f2

farm

channel,
network …

sc
he

d

ga
th

er

PE1 – PE4

e.g. with ASI

f1 = filter
f2 = render

DI1

Slide 5

DI1
sequential source code just plugged in
data items arrives in sequence, we cannot assume data is already distributed, data distribution cost is large, several farm scheduling policies are possible, as
well as several data mappings
DipInf; 31/08/2003

6

pipe (map fc (seq f1) fd) (map gc (seq f2) gd)

I IIII IIIIIII I III II

mapmap

pipe

f1

f1

f1

f2

f2

f2
fd gc

PE1 – PE6

gdfc

7

Running example language: Lithium

Stream and Data Parallel
farm, pipe

map, reduce, D&C, …

Can be freely nested

All skeletons have a stream as in/out

Java-based (skeletons are Java classes)

Implemented and running [FGCS 19(5):2003]
http://www.di.unipi.it/~marcod/Lithium/ or sourceforge

Macro data-flow run-time

Support heterogeneous COWs

Includes parallel structure optimization
performance-driven, source-to-source

8

The schema of semantics

Axioms, three kind per skeleton:
1. Describe skeletons within the steady state
2. Mark the begin of stream *
3. Manage the end of stream *

Six rules:
1. Two describing parallel execution (SP, DP)

– Have a cost
2. Four to navigate in the program structure

– No cost, ensure strict execution order

Look to SP/DP rules only to figure out program
performance

9

The meaning of labels

Label represent an enumeration of PEs
Two kind of labels:

On streams represent data mapping:

means x is available on PE3

On arrows represent computation mapping

means such computation is performed by PE4

Re-label O(l,x) a stream means communicate it

Semantics may embed an user-defined policy O(l,x)

Cost depend on label (topology) and data item x (size)

3
x

4
→

10

Axioms (steady state)

1. Apply inner skeleton F ∈ param to the stream head x

a. The arrow label gets left-hand side stream label
()

b. Labels in the right-hand side may change
(stream items may be bounced elsewhere)

1

2

3

2. Recur on the tail of the stream

3. Expressions 1 & 2 are joined by :: operator

11

a. arrow label gets stream one – happens locally
b. label doesn’t change – keep 1st stage ∆1 locally

c. re-label R inserted in between 1st & 2nd stage – it will
map 2nd stage elsewhere

d. tail is expected from the same source

Lithium axioms (for stream par skeletons)

Embed seq code
Stream unfolded, Labels unchanged

a. stream item is distributed accordingly O policy

b. a reference of tail of the stream follows the head

a

b dc

12

Lithium axioms (DP skeletons)

13

Lithium rules overview

14

sp rules details

Many semantics for each program
i=j=1 always possible, i.e. no stream parallelism is
exploited
All of them are “functionally confluent”, describe the
same in-out relationship
All of them describe the same parallel behavior, but
with different degrees of parallelism

15

• Apply the farm inner skeleton to 1st elem

• Recur on tail and change the stream label

• Assume a round-robin scheduling policy O(l,x)
with 2 elements (2 pipelines)

• Iterate the same operation on the whole stream

• farm now disappeared

• two different labels on streams: 0 and 1

• Mark the begin of the stream

• Add the stream label

Example (2-ways-2-stages pipeline)
〉〈 765432121 ,,,,,, xxxxxxxff)) (seq) (seq farm(pipe

• Apply pipe inner skeletons (stages) to the item

•A re-labeling operation R is introduced in the middle

• Iterate the same operation on the whole stream

• pipe now disappeared

• two different labels on streams: 0 and 1

• two different labels on R : 02, 12

16

Example (continued)

• This formula no longer can be reduced by axioms

• sp rule can be applied:

“Any rightmost sequence of expressions can be reduced
provided streams exploits different labels”

• In this case the longest sequence includes two expressions,
i.e. the max. par degree is 2 (matching the double-pipeline
startup phase)

17

Example (continued)

Due to the re-labeling we have 4 adjacent expressions
exploiting different labels: 02, 12, 0, 1 – i.e. a max.
parallelism degree of 4
The step can be iterated up to the end of stream
Max parallelism degree 4 since no more than 4
different labels appear adjacently (easy to prove)

18

Example (continued)

Count parallelism
Count communications
or reason about it

By iterating SP rule we eventually get

That can be joined to form the output stream

19

Summary

Operational semantics for skeletons
Describes both functional and parallel behavior
User-defined mapping/scheduling
User-defined comm/comp costs
General, easy to extend
No similar results within the skeleton community

Enable performance reasoning
Skeleton normal-form [PDCS99, FGCS03, web]
Provably correct automatic optimizations

Formally describe your brand new skeleton
and its performance

20

Mammography app. (lithium)

raw

optimized
15 – 20% better

Thank you
Questions ?

www.di.unipi.it/~aldinuc

22

Stream skeletons

farm
functionally the identity !
a.k.a. parameter sweeping, embarrassingly
parallel, replica manager …
instead for some other group it is apply-to-all

pipe
parallel functional composition
pipe f1 f2 < x > computes f2 (f1 x)
f1 , f2 executed in parallel on different data items

23

Describe skeletons

Usually functional behavior only described
Parallel behavior does matter for performance

Usually performance described by cost formulas

() OpOp tp
p
nlpgt

p
nOpT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+++−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 211)(comm_size scan

Doesn’t describe the behavior just the cost
What happens if Op is parallel ?

Not compositional
handmade for each architecture
Data layout not described

24

Axioms (begin/end of the stream)

Begin of stream marking:

End of stream management:

25

An example of reduction

