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HOC (Herd of Object Caches)

A very basic storage facility

No hardwired policies for deployment, allocation, data coherence, ...

pluggable into different, third-party applications/frameworks

proving data management as external service for applications

implemented as high-throughput distributed server

decoupling computational and storage management in (distributed) 
application design 

enforcing a structured development

and exploiting persistency, scalability, re-configurability



Permanent, shared storage facility
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distributed storage facility

a facility (distributed server) 
providing permanent, shared 
storage to apps (clients)

clients may dynamically join/
leave the storage facility

HOC set  may be hotly enlarged/
reduced on need - storage room 
change accordingly

interaction with HOCs may be 
delegated to application-specific 
protocol 



Why using HOC

is efficient (because essential)

HOC provide few primitives and no policies for data integrity (e.g. coherence, 
consistency, ...)

these are application specific and may be deployed upon HOC (at the protocol level)

is a basic building block for broad class of applications 

may be considered a storage component

massive storage, out-of-core applications, high-throughput data servers, shared 
memory support

extendible with application-specific primitives

enhances both memory size and throughput by means of 
parallelism



... using HOC
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requirements on data integrity 
acting as mediator between 
the application and HOC

it is linked to the application 
and use HOC API 

e.g. Apache module
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HOC API  may also be easily 
extended (provided some 

knowledge of HOC internals)

protocol may actually is a 
distributed application (e.g. 
reaching consensus, cache 

invalidation, ...) 



HOC internals 
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O.S. kernel [read(), write(), select(), poll(), ...]

Poller interface

...
allocator

I/O layer
RND LFU

cache/storage

HOC interface

...

C++, single-threaded, manage concurrent connections using non-blocking I/O based  
services (each of them being  a state machine managing a single connection)

supporting both level-triggered (select, poll, ...) and edge-triggered (RTsignal, kqueue, ...) I/O events

object storage may be managed either as a memory or a cache, remote objects may be 
cached in a separate write-through cache. Policies are configurable.

tested on Linux, MacOS X, and heterogeneous cluster of them 



HOC API

get, put, remove arbitrary length objects. Each object is 
identified by a key and a home node

execute(key, op, data) remotely execute method op with 
parameter data on object identified by key

Why does the web work so well?
A language with few verbs (get, put, post) ...
Gannon said ... (Europar04, invited talk)

We also believe on such philosophy. As matter 
of a fact HOC have a four operations API



The Apache Web server

Worldwide most used Web server

broadly accepted, well-known, well supported

opensource

MultiThread-MultiProcessor Web server

good performance, nevertheless  several attempts to improve 
yet more performances 

usually used in farm configurations

Easy to extend via plug-in modules

already existing “native” memory-based cache module



How accelerate a web server/service

farming servers out 

caching, typically reverse proxy (in front of the server)

worsen requests latency (miss)

complex as much as the web server

We would like to improve web server performance 
without changing web server core, thus relying on 

correctness, people expertise, ...

... thus we add an HOC-based distributed cache 
behind the server (or the server farm)



The big picture



The Apache plug-in for HOC
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The Apache plug-in for HOC
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High-level functional behavior 
of the Apache 2.0.47 native cache 

module (mod_mem_cache)
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High-level functional behavior 
of the protocol for HOC+Apache 

architecture 
(a simple patch to mod_mem_cache)



Experiments

experimenting HOC

experimenting Apache+HOC

RLX blade - 24 P4@800MHz
(outside the room ...)



Performance figures (1PE)

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net 
throughput
(Bytes/Sec)

net
throughput 
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker. 

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker. 
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%



Speedup  (Hit per sec VS N. servers)
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Sustained aggregate throughput
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Summarizing

HOC is a building block for storage-oriented components

distributed caches, distributed memories, parallel repositories

configurable, hot-pluggable, 

very good performances

close-to-ideal net throughput over thousands of concurrent 
connections

close-to-ideal speedup 
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Hoc+Apache architecture

Three architectures experimented:

1 HOC - 1 Apache

1 HOC - n Apaches

n HOCs - n Apaches



Experimental environment  summary

Raw data set
Total size 4GB
N. of files 100K    
N. of requests 250K
N. of files < ~100K
Static pages 100%

Access log
Data transfered ~9GB
N. of distinct files requested ~75K (2.8GB)
Avg. file size ~37KB
N. of distinct files < 256 KB ~100K
Static pages 100%

Apache 2.0.47 MPM worker configuration (hybrid multi-threaded multi-process)

StartServers 4 ThreadPerChild 64
ServerLimit 8 MaxRequestsPerChild 0
MaxClients 512 Log level Notice
MinSpare Threads 32 Access log None
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1 HOC -1 Apache, compared 
architectures:

1. MPMT Apache native cache (per process)

2. SPMT Apache native cache (shared)

3. MPMT with no cache

4. MPMT Apache with HOC cache (on the same PE)

5. MPMT Apache with HOC cache (on different PEs)



Comparing reply rate (1-Hoc/1-Apache/k-httperf)
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1 HOC -n Apache

A single HOC acting as external, shared 
cache  for many Apaches (Apache farm). 
Speedup measure.

How many Apaches a single HOC may 
support? Does  “optimal number n” exist?



Speedup
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Apache 2n-farm vs Apache+HOC n-farm
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Current & future work

Supporting heterogeneous cluster (done!)

integration with the ASSIST environment  (ongoing)

ASSIST has “external shared objects” at the language level

supporting dynamic reconfiguration (state migration)

distributed in-memory File System  PVSF-like (beta)

SMP scalability (multi-threading) (in agenda)

web-services interface (in agenda)



Conclusions

HOC is fast and scalable storage component running  heterogeneous 
clusters

hot-pluggable, sustain thousands of flowing concurrent connections

easily adaptable for different I/O bound applications, e.g. Apache, FS, ...

Apache+HOC improves Apache performances without any change to the 
Apache core code

in the sequential architecture (20% on the same PE, 100% with an 
additional PE) 

in several flavors of parallel architectures:1-n, n-n, n-m  (with a 
300-400% gain with equal resource cost) 

HOC is open source, and come with the ASSIST package 

Thank you!
Questions?

Thanks to Alessandro Petrocelli and the whole Pisa HPClab people  


