
Accelerating Apache farms through
ad-HOC distributed scalable object repository

Marco Aldinucci, ISTI-CNR, Pisa, Italy
Massimo Torquati, CS dept. Uni. Pisa, Italy

Euro-Par 2004 - Pisa - Italy

Outline

HOC (Herd of Object Caches)

Motivation

Features

Apache+HOC parallel web server architecture

Experiments (a lot of)
HOC

Apache+HOC

 Ongoing & Future work

HOC (Herd of Object Caches)

A very basic storage facility

No hardwired policies for deployment, allocation, data coherence, ...

pluggable into different, third-party applications/frameworks

proving data management as external service for applications

implemented as high-throughput distributed server

decoupling computational and storage management in (distributed)
application design

enforcing a structured development

and exploiting persistency, scalability, re-configurability

Permanent, shared storage facility

protocol

app

protocol

app

protocol

app

protocol

app

HOC

P1

P2

P3

P4

protocol

app
P5

HOC

protocol

app
P6

HOC

PcPa Pb

distributed storage facility

a facility (distributed server)
providing permanent, shared
storage to apps (clients)

clients may dynamically join/
leave the storage facility

HOC set may be hotly enlarged/
reduced on need - storage room
change accordingly

interaction with HOCs may be
delegated to application-specific
protocol

Why using HOC

is efficient (because essential)

HOC provide few primitives and no policies for data integrity (e.g. coherence,
consistency, ...)

these are application specific and may be deployed upon HOC (at the protocol level)

is a basic building block for broad class of applications

may be considered a storage component

massive storage, out-of-core applications, high-throughput data servers, shared
memory support

extendible with application-specific primitives

enhances both memory size and throughput by means of
parallelism

... using HOC

HOC

protocol

app

HOC HOC

protocol

app

protocol

app

protocol

app

protocol enforces application
requirements on data integrity
acting as mediator between
the application and HOC

it is linked to the application
and use HOC API

e.g. Apache module

app app app app

protocol

HOC

protocol

HOC

protocol

HOC

HOC API may also be easily
extended (provided some

knowledge of HOC internals)

protocol may actually is a
distributed application (e.g.
reaching consensus, cache

invalidation, ...)

HOC internals

switching
engine

objects
storage

local
cache

service

allocator

home nodes
table

client client client

 clients connections

o
th

e
r

s
e

rv
e
rs

 c
o
n
n
e

c
ti
o
n
s

HOC

client client client

HOC

client client client

HOC

select poll RTsig

services (clients & servers)

O.S. kernel [read(), write(), select(), poll(), ...]

Poller interface

...
allocator

I/O layer
RND LFU

cache/storage

HOC interface

...

C++, single-threaded, manage concurrent connections using non-blocking I/O based
services (each of them being a state machine managing a single connection)

supporting both level-triggered (select, poll, ...) and edge-triggered (RTsignal, kqueue, ...) I/O events

object storage may be managed either as a memory or a cache, remote objects may be
cached in a separate write-through cache. Policies are configurable.

tested on Linux, MacOS X, and heterogeneous cluster of them

HOC API

get, put, remove arbitrary length objects. Each object is
identified by a key and a home node

execute(key, op, data) remotely execute method op with
parameter data on object identified by key

Why does the web work so well?
A language with few verbs (get, put, post) ...
Gannon said ... (Europar04, invited talk)

We also believe on such philosophy. As matter
of a fact HOC have a four operations API

The Apache Web server

Worldwide most used Web server

broadly accepted, well-known, well supported

opensource

MultiThread-MultiProcessor Web server

good performance, nevertheless several attempts to improve
yet more performances

usually used in farm configurations

Easy to extend via plug-in modules

already existing “native” memory-based cache module

How accelerate a web server/service

farming servers out

caching, typically reverse proxy (in front of the server)

worsen requests latency (miss)

complex as much as the web server

We would like to improve web server performance
without changing web server core, thus relying on

correctness, people expertise, ...

... thus we add an HOC-based distributed cache
behind the server (or the server farm)

The big picture

The Apache plug-in for HOC

HOC

protocol

app

HOC HOC

protocol

app

protocol

app

protocol

app

patched
mod_mem_cache

Apache 2.0.47

The Apache plug-in for HOC

request

fresh

object?
cache

lookup

Apache

read object

cache

write

cache

remove

Reply

cacheable

object?

no

yes

no

hit

miss

yes

High-level functional behavior
of the Apache 2.0.47 native cache

module (mod_mem_cache)

request

fresh

object?

HOC
get

Apache

read object

HOC
put

HOC
remove

Reply

cacheable

object?

no

yes

no

hit

miss

yes

The Apache plug-in for HOC

High-level functional behavior
of the protocol for HOC+Apache

architecture
(a simple patch to mod_mem_cache)

Experiments

experimenting HOC

experimenting Apache+HOC

RLX blade - 24 P4@800MHz
(outside the room ...)

Performance figures (1PE)

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net
throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

Speedup (Hit per sec VS N. servers)

0K

2K

4K

6K

8K

10K

12K

14K

16K

0 1 2 3 4 5 6 7 8 9 10 11

N. of HOC servers

H
it

s
p

er
 s

ec

8K objects

8K objects (perfect)

16K objects (perfect)
16K objects

Sustained aggregate throughput

0

25

50

75

100

125

1 4 6 8 10
Processing Elements

A
gg

re
ga

te
 t

h
ro

u
gh

p
u

t
(M

B
/s

ec
)

8K objects 16K objects

85%
75%

86%85%

88%88%

88%88%

90%90%

Net Asymptotic throughput

Summarizing

HOC is a building block for storage-oriented components

distributed caches, distributed memories, parallel repositories

configurable, hot-pluggable,

very good performances

close-to-ideal net throughput over thousands of concurrent
connections

close-to-ideal speedup

Apache

HOC

httperf httperf httperf
...

Apache...

HOC
...

Apache

HOC

httperf httperf httperf
...

Apache...

httperf httperf httperf

Apache

HOC

...

Hoc+Apache architecture

Three architectures experimented:

1 HOC - 1 Apache

1 HOC - n Apaches

n HOCs - n Apaches

Experimental environment summary

Raw data set
Total size 4GB
N. of files 100K
N. of requests 250K
N. of files < ~100K
Static pages 100%

Access log
Data transfered ~9GB
N. of distinct files requested ~75K (2.8GB)
Avg. file size ~37KB
N. of distinct files < 256 KB ~100K
Static pages 100%

Apache 2.0.47 MPM worker configuration (hybrid multi-threaded multi-process)

StartServers 4 ThreadPerChild 64
ServerLimit 8 MaxRequestsPerChild 0
MaxClients 512 Log level Notice
MinSpare Threads 32 Access log None

Apache

HOC

httperf httperf httperf
...

Apache...

HOC
...

Apache

HOC

httperf httperf httperf
...

Apache...

httperf httperf httperf

Apache

HOC

...

1 HOC -1 Apache, compared
architectures:

1. MPMT Apache native cache (per process)

2. SPMT Apache native cache (shared)

3. MPMT with no cache

4. MPMT Apache with HOC cache (on the same PE)

5. MPMT Apache with HOC cache (on different PEs)

Comparing reply rate (1-Hoc/1-Apache/k-httperf)

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Requests issued per second

R
ep

li
es

 p
er

 s
ec

on
d

PE0

httperf

switch

httperf

PEn-1

PEn

...

native cache

Apache

MPMT Apache (native cache)

replies measuring points

MultiProcessMultiThreaded (150MB native cache per process)

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Requests issued per second

R
ep

li
es

 p
er

 s
ec

on
d

PE0

httperf

switch

httperf

PEn-1

PEn

...

native cache

Apache

SPMT Apache (native cache)

replies measuring points

SingleProcessMultiThreaded Apache (900MB shared native cache)

Comparing reply rate (1-Hoc/1-Apache/k-httperf)

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Requests issued per second

R
ep

li
es

 p
er

 s
ec

on
d

PE0

httperf

switch

httperf

PEn-1

PEn

...

Apache

MPMT Apache (FS cache)

replies measuring points

FileSystem cache

NoCache MPMT Apache (FileSystem buffer behaves as cache)

Comparing reply rate (1-Hoc/1-Apache/k-httperf)

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Requests issued per second

R
ep

li
es

 p
er

 s
ec

on
d

PE0

httperf

switch

httperf

PEn-1

PEn

...

plug-in

Apache

MPMT Apache with HOC
(in separate processes)

replies measuring points

HOC

MPMT Apache with 450MB HOC on the same box

Comparing reply rate (1-Hoc/1-Apache/k-httperf)

0

10

20

30

40

50

60

70

80

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Requests issued per second

R
ep

li
es

 p
er

 s
ec

on
d

PE0

switch1

switch0

httperf httperf

PEn-2

PEn

...

plug-in

Apache

MPMT Apache with HOC (2 PEs)

replies measuring points

HOC

PEn-1

MPMT Apache with 900MB HOC on 2 boxes

Comparing reply rate (1-Hoc/1-Apache/k-httperf)

httperf httperf httperf

Apache

HOC

...

Apache

HOC

httperf httperf httperf
...

Apache...

HOC
...

Apache

HOC

httperf httperf httperf
...

Apache...

1 HOC -n Apache

A single HOC acting as external, shared
cache for many Apaches (Apache farm).
Speedup measure.

How many Apaches a single HOC may
support? Does “optimal number n” exist?

Speedup

M
ax

 r
ep

li
es

 p
er

 s
ec

N. of Apaches per HOC

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

httperf httperf httperf

Apache

HOC

...

Apache

HOC

httperf httperf httperf
...

Apache...

HOC
...

Apache

HOC

httperf httperf httperf
...

Apache...

n HOC -n Apache

Many HOC acting as external, shared
cache for many Apaches (Apache farm).
Speedup measure.

How many Apaches a single HOC may
support? Does “optimal number n” exist?

Apache 2n-farm vs Apache+HOC n-farm

2n Apache
n Apache+HOC

httperf httperf httperf httperf

PE
a

PE
b PE

c

eth0

eth2

eth1eth1

PE
d

HOC

plug-in

Apache

HOC

plug-in

Apache

PE3PE2

PE1PE0

...

...

httperf httperf httperf httperf

PE
a

PE
b PE

c

eth0

PE
d

PE2

Apache

Apache Apache

Apache

PE0 PE1

PE3
...

...

HOC+Apache farm
outperform standard farm by
3x with equal HW resources

+279% +271% +268% +312%

0

750

1,500

2,250

3,000

2 4 8 12 16

R
ep

li
es

 p
er

 s
ec

on
d

Processing Elements

Current & future work

Supporting heterogeneous cluster (done!)

integration with the ASSIST environment (ongoing)

ASSIST has “external shared objects” at the language level

supporting dynamic reconfiguration (state migration)

distributed in-memory File System PVSF-like (beta)

SMP scalability (multi-threading) (in agenda)

web-services interface (in agenda)

Conclusions

HOC is fast and scalable storage component running heterogeneous
clusters

hot-pluggable, sustain thousands of flowing concurrent connections

easily adaptable for different I/O bound applications, e.g. Apache, FS, ...

Apache+HOC improves Apache performances without any change to the
Apache core code

in the sequential architecture (20% on the same PE, 100% with an
additional PE)

in several flavors of parallel architectures:1-n, n-n, n-m (with a
300-400% gain with equal resource cost)

HOC is open source, and come with the ASSIST package

Thank you!
Questions?

Thanks to Alessandro Petrocelli and the whole Pisa HPClab people

