
Marco Aldinucci
ISTI - National Research Council

Pisa - Italy

Dagstuhl Seminar 04451 - Future Generation Grids 2004
November 4th, 2004

Rendering Grid
Heterogeneity
 Harmless

with S. Campa, M. Danelutto, C. Zoccolo

Marco Aldinucci
ISTI - National Research Council

Pisa - Italy

Dagstuhl Seminar 04451 - Future Generation Grids 2004
November 4th, 2004

Rendering Grid
Heterogeneity
 Harmless

(performance)
(mostly)

with S. Campa, M. Danelutto, C. Zoccolo

Motivation
Grid as collection of heterogeneous resources

Presenting experimental results
A simple, even simplistic model
Defining the asymptotic performance

Detect Grid current status and react
Re-distributing work & load through WS

Outline

Motivation

Researchers in the Grid community hardly agree
programming model (and either if it should exists)
components (and either if they are an useful vehicle)
legacy code existence ...

but them all agree
THE GRID IS A HIGHLY HETEROGENEOUS,
HIGHLY DYNAMIC EXECUTION ENVIRONMENT

However ...

How many platforms GTx supports?
Java seems to be the panacea for heterogeneity:

Maybe we relying too much on Sun’s researchers

Look at conference proceedings:
few of them present experimental results
very few of them present result for heterogeneous environments

we agreed on heterogeneity, thought

Experimental results
on >2 PEs

Performance figures for
>2 heterogeneous PEs

EuroPar 04 (Grid & P2P)
LNCS 3149 2−4/20 1?

(as far I known)

Grid Computing 04
LNCS 3165 3/30 No

(as far I known)

Grid & Cooperative
Computing 04 LNCS 3251 6/150 No

(as far I known)

Testbed:
wait(4*365*24*60*60);
unfortunately();

TaskPool (input)

blur()

oil()

TaskPool (output)

blur() it

TaskPool (input)

blur()

oil()

TaskPool (output)

oil() it

TaskPool (input)

blur()

oil()

TaskPool (output)

These can be
parallel as well

Why speedup is important

We would like deploy HPC applications on Grid
not just seti@home
they may have time/performance/memory/... critical
requirements

Known in advance what I can expect from my
run, at least as asymptotically optimal curve

speedup for example (widely used in COW)
any measure able to give informations on the quality of
the algorithm, implementation, configuration, ...

Eth100

Eth100 Eth100
802.11b

802.11g

Italian

backbone

(ATM)

di.unipi.it (Pisa)

isti.cnr.it (Ghezzano)

Experimental env: a home-made Grid

BogoPower

BogoPower:
Models machine power on
(tasks/sec) on a single PE

neglect net performance

What speedup means in
this scenario?

another metric is needed ...

P2
@23

3M
Hz

P3
@1.1

GHz

G4@
80

0M
Hz

G4@
86

7M
Hz

P4
@1.7

GHz

P4
@2.8

GHz

2x
P3

@55
0M

hz

2x
P4

@80
0M

Hz

2x
G5@

2G
Hz

4x
P4

@2.8
GHz

0

0.17

0.35

0.52

0.70

80 X

Two experiments

±1400% P2
@23

3M
Hz

P3
@1.1

GHz

G4@
80

0M
Hz

G4@
86

7M
Hz

P4
@1.7

GHz

P4
@2.8

GHz

2x
P3

@55
0M

hz

2x
P4

@80
0M

Hz

2x
G5@

2G
Hz

4x
P4

@2.8
GHz

0

0.17

0.35

0.52

0.70

4x
P4

@2.8
GHz

P2
@23

3M
Hz

G4@
80

0M
Hz

2x
G5@

2G
Hz

G4@
86

7M
Hz

P4
@1.7

GHz

2x
P3

@55
0M

hz

2x
P4

@80
0M

Hz

P4
@2.8

GHz

P3
@1.1

GHz

0

0.17

0.35

0.52

0.70

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

Two experiments

±1400% P2
@23

3M
Hz

P3
@1.1

GHz

G4@
80

0M
Hz

G4@
86

7M
Hz

P4
@1.7

GHz

P4
@2.8

GHz

2x
P3

@55
0M

hz

2x
P4

@80
0M

Hz

2x
G5@

2G
Hz

4x
P4

@2.8
GHz

0

0.17

0.35

0.52

0.70

4x
P4

@2.8
GHz

P2
@23

3M
Hz

G4@
80

0M
Hz

2x
G5@

2G
Hz

G4@
86

7M
Hz

P4
@1.7

GHz

2x
P3

@55
0M

hz

2x
P4

@80
0M

Hz

P4
@2.8

GHz

P3
@1.1

GHz

0

0.17

0.35

0.52

0.70

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

REJECTED

Speedup ... ?

1 2 3 4 5 6 7 8 9 10
0

9

18

27

36

45

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Ideal

Ideal

REJECTED

As simple as speedup

Speedup does not give any information
does not provide any reference curve, i.e. an upper
bound for algorithm and implementation quality

It can be replaced with another simple measure
with the same features in order to keep the intuition
suitable for heterogeneous (in power) envs

BogoPower can be used (sometime)

Two experiments revised

0

200

400

600

800

1000

1200

0 1 2 3 4

BogoPower

T
im

e
(s

ec
s)

Experim 1
Experim 2
Ideal

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

Naive scheduling (and not)

Time

barrier

barrier

idle

T1=T2=3 T3=2 T4=1

n1=n2=n3=n4=7

barrier

barrier

T1=T2=3 T3=2 T4=1

n1=5 n2=5 n3=7 n4=12

idle

Describing sub-optimal Performance

Suppose to have an idea of the performance T (time) of a
given task T on a given platform

i.e. platform BogoPower - it maybe figured out from any suitable measure of
performance, e.g. GridBench, GGF BenchGroup, ...

if task haven’t constant time consider the average of a bulk of tasks

dynamically adapt knowledge through monitoring, adjusted by current load

compute a scheduling, miming on-demand policy
that is sub-optimal, but easy to compute, to understand and to present as
“ideal” performance in a paper

ni =
N H(T1, · · · , Tn)

n Ti




N = # of tasks

H = Harmonic Mean

Ti = Time for 1 task on PEi

ni = optimal number of tasks for PEi

Motivation
Grid as collection of heterogeneous resources
Detect Grid current status and react

The ASSIST framework
A service to find them, a GTx to bring them all and in the
darkness bind them, a model to rule them all ...

Re-distributing work & load through WS

Outline

It is not a joke,
it is e-fantasy !

from Danelutto’s yesterday talk

An ASSIST program

Stream

uses-provides
RPC-style
dependencies

Managers may interact through non
functional interfaces realizing a global,
distributed control for the application.
I.e. the Application Manager (AM)

Stream

messages may flow
through different media:
native, WS/SOAP, Corba streams
(compiler provides the full support)

Application Manager

Parmod component

VPVPVPVPVPVP
VPVPVPVPVPVP

VPVPVPVPVPVP

Shared global
persistent state

Parmod component

Parmod Manager

VP
VP
VP
VP

VP
VP
VP
VP

VP
VP
VP
VP

Monitor Actuator

Strategy AM cooperation

Run & Monitor

Check the strategy

Possibly interact with other
Parmod Managers

Parmod component

Run & Monitor

Check the strategy

Possibly interact with other
Parmod Managers

Parmod Manager

VP
VP
VP
VP

VP
VP
VP
VP

VP
VP
VP
VP

Monitor Actuator

Strategy AM cooperation

Make a decision (local or global)

Reconfigure the Parmod

Parmod component

Run & Monitor

Check the strategy

Possibly interact with other
Parmod Managers

Make a decision (local or global)

Reconfigure the Parmod Parmod reconfigured !

Parmod Manager

VP
VP
VP

VP
VP

VP
VPVP

VP
VP
VP

Monitor Actuator

Strategy AM cooperation

VP

This maybe is
e-autonomous-computing
(even if since yesterday

I did not known it)

Two key issues

Check the strategy
simulate possible scenarios by using the suitable model

respect the performance contract: service time, resources, ...

e.g. the one I’ve presented seems quite efficient for HPF “do
parallel” or BSP style computations
we already working to support other paradigms

Reconfigure the parmod
keep the shared state in a “storage component” that is
distributed, persistent, WS accessible, high-performance
E.g. HOC / WS-HOC already available as part of ASSIST

... and it work

Motivation
Grid as collection of heterogeneous resources
Detect Grid current status and react
Re-distributing work & load through WS

decouple management of data e computation
the “storage component” idea

Outline

Redistribute data

Storage Component
(distributed, HOC-based)

Parmod Manager

VP
VP
VP

VP
VP

VP
VPVP

VP
VP
VP

Monitor Actuator

Strategy AM cooperation

VP

Native
Interface

WS

HOC (Herd of Object Caches)

A very basic storage facility

No hardwired policies for deployment, allocation, data coherence, ...

pluggable into different, third-party applications/frameworks

proving data management as external service for applications

implemented as high-throughput distributed server

decoupling computational and storage management in (distributed)
application design

enforcing a structured development

and exploiting persistency, scalability, re-configurability

Permanent, shared storage facility

protocol

app

protocol

app

protocol

app

protocol

app

HOC

P1

P2

P3

P4

protocol

app

P5

HOC

protocol

app

P6

HOC

PcPa Pb

distributed storage facility

a facility (distributed server)
providing permanent, shared
storage to apps (clients)

clients may dynamically join/
leave the storage facility

HOC set may be hotly enlarged/
reduced on need - storage room
change accordingly

interaction with HOCs may be
delegated to application-specific
protocol

Why using HOC

is efficient (because essential)

HOC provide few primitives and no policies for data integrity (e.g. coherence,
consistency, ...)

these are application specific and may be deployed upon HOC (at the protocol level)

is a basic building block for broad class of applications

may be considered a storage component

massive storage, out-of-core applications, high-throughput data servers, shared
memory support

extendible with application-specific primitives

enhances both memory size and throughput by means of
parallelism

... using HOC

HOC

protocol

app

HOC HOC

protocol

app

protocol

app

protocol

app

protocol enforces application
requirements on data integrity
acting as mediator between
the application and HOC

it is linked to the application
and use HOC API

e.g. Apache module

app app app app

protocol

HOC

protocol

HOC

protocol

HOC

HOC API may also be easily
extended (provided some

knowledge of HOC internals)

protocol may actually is a
distributed application (e.g.
reaching consensus, cache

invalidation, ...)

HOC internals

switching
engine

objects
storage

local
cache

service

allocator

home nodes
table

client client client

 clients connections

o
th

e
r

s
e
rv

e
rs

 c
o
n

n
e
c
ti
o
n

s

HOC

client client client

HOC

client client client

HOC

select poll RTsig

services (clients & servers)

O.S. kernel [read(), write(), select(), poll(), ...]

Poller interface

...
allocator

I/O layer
RND LFU

cache/storage

HOC interface

...

C++, single-threaded, manage concurrent connections using non-blocking I/O based
services (each of them being a state machine managing a single connection)

supporting both level-triggered (select, poll, ...) and edge-triggered (RTsignal, kqueue, ...) I/O events

object storage may be managed either as a memory or a cache, remote objects may be
cached in a separate write-through cache. Policies are configurable.

tested on Linux, MacOS X, and heterogeneous cluster of them

HOC API

get, put, remove arbitrary length objects. Each object is
identified by a key and a home node

execute(key, op, data) remotely execute method op with
parameter data on object identified by key

Why does the web work so well?
A language with few verbs (get, put, post) ...
Gannon said ... (Europar04, invited talk)

We also believe on such philosophy. As matter
of a fact HOC have a four operations API

Performance figures (1PE)

Arch/Net/OS
concurrent
connections

Msg size
(Bytes)

Replies/Sec
net

throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

Speedup (Hit per sec VS N. servers)

0K

2K

4K

6K

8K

10K

12K

14K

16K

0 1 2 3 4 5 6 7 8 9 10 11

N. of HOC servers

H
it

s
p

er
 s

ec

8K objects

8K objects (perfect)

16K objects (perfect)
16K objects

Sustained aggregate throughput

1 4 6 8 10
0

25

50

75

100

125

Processing Elements

A
gg

re
ga

te
 t

h
ro

u
gh

p
u

t
(M

B
/s

ec
)

8K objects 16K objects

85%
75%

86%85%

88%88%

88%88%

90%90%

Net Asymptotic throughput

Summarizing

HOC is a building block for storage-oriented components

distributed caches, distributed memories, parallel repositories

configurable, hot-pluggable,

very good performances

close-to-ideal net throughput over thousands of concurrent
connections

close-to-ideal speedup

Conclusions

A simple model able to describe what we can
expect from our Grid applications

Usable as “Ideal performance” slope in papers

A first effort toward a serious AM
A very ongoing work, as asked by Alexander

Exploit the potentiality of
ASSIST+WS+StorageComponent

THANK YOU!
QUESTIONS?

Some references
M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, C. Zoccolo.
ASSIST as a research framework for high-performance Grid programming environments.
Grid Computing: Software Environments and Tools, Springer, 2004, to appear.

M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi, M. Vanneschi, C. Zoccolo.
Components for high-performance Grid programming in the Grid.it project.
In Component Models and Systems for Grid Applications. Proc. of the Workshop on Component Models and Systems
for Grid Applications, June 26, 2004 held in Saint Malo, France. Springer, 2005, to appear.

M. Aldinucci, S. Campa, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo, M. Torquati, C. Zoccolo.
Targeting interoperability and heterogeneous architectures in ASSIST.
In Proc. of Intl. Conference EuroPar2003: Parallel and Distributed Computing, Pisa, Italy, LCNS n. 3149,Springer,
August 2003.

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo, M. Torquati, M.
Vanneschi, C. Zoccolo.
The Implementation of ASSIST, an Environment for Parallel and Distributed Programming.
In Proc. of Intl. Conference EuroPar2003: Parallel and Distributed Computing, Klagenfurt, Austria, LNCS n. 2790,
Springer, August 2003.

M. Aldinucci, M. Torquati.
Accelerating Apache farms through ad-HOC distributed scalable objects repository.
In Proc. of Intl. Conference EuroPar2003: Parallel and Distributed Computing, Pisa, Italy, LNCS n. 3149, Springer,
August 2004

M. Aldinucci, M. Danelutto, J. Dünnweber, S. Gorlatch.
Optimization techniques for implementing parallel skeletons in Grid.
Parallel Processing Letters, World Scientific, Singapore, 2005, submitted, to appear (maybe).

