
Towards Grid-aware Program
Adaptivity in ASSIST

M. Aldinucci
Italian National Research Council

& University of Pisa
www.di.unipi.it/~aldinuc

Edinburgh, March 16th 2005

Skeletons

• First time here ... however, [Col89] and Prag.
Manifesto appear in dozen of my papers

• Since ‘91 Pisa active in the field: P3L,

• OCaml-P3L,
• SkIE 1998(C+MPI),
• Skel-BSP 2000, FAN 2000
• Lithium 2001 (Java MacroDataFlow),
• eskimo 2002 (Cilk-like DSM-based),
• Muskel 2003 (Jaxta P2P), ...

• ... now ASSIST (since 2001)
2

Skeletons

• parallelism exploitation patterns (paradigms)
• It is clearly unrealistic assume that skeletons can provide all the

parallelism we need ...

• Structured parallel programming build bridges to the programming
standards of the day, refining or constraining only where strictly
necessary. It should respect the conceptual model of these standards,
offering skeletons as enhancement rather than as competition. We
should construct our systems to allow the integration of skeletal and
ad-hoc parallelism in a well-defined way ...

3

ASSIST in 5 minutes

4

P2 P3

P4P1

input output

Sequential or
parallel module

Typed streams
of data items

Programmable, possibly
nondeterministic input behaviour

ASSIST in 4 minutes

5

P2 P3

P4P1

ASSIST native or wrap
(MPI, CORBA, CCM, WS)

TCP/IP, Globus,
IIOP CORBA,
HTTP/SOAP

ASSIST in 3 minutes

6

P2 P3

P4P1

ASSIST native parallel module
(aka parmod)

farm, deal, haloswap, map,
apply-to-all, forall, ...

ASSIST in 2 minutes

7

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

Data items can be
distributed (scattered,

broadcasted,
multicasted) to a set of

Virtual Processors
which are named
accordingly to a

topology

Data items partitions
are elaborated by
VPs, possibly in

iterative way

while(...)
 forall VP(in, out)
 barrier

data is logically shared by
VPs (owner-computes)

Data is eventually
gathered accordingly to

an user defined way

ASSIST in 1 minute

8

input
manager

VP VP

VP manager (VPM)

VP VP

VP manager (VPM)

input
manager

VP VP

VP manager (VPM)

green boxes are processes

Motivating adaptivity

Boxes performances

• Grid platforms are
supposed to exploit
different “power”
(in the meaning of
Aristotelic power/act)

• and net bandwidth

• both of them may
rapidly change over
time0

0

0

1

1

P2
@2
33
M
Hz

P3
@1
.1G

Hz

G4
@8
00
M
Hz

G4
@8
67
M
Hz

P4
@1
.7G

Hz

P4
@2
.8G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

2x
G5
@2
GH

z

4x
P4
@2
.8G

Hz

80 X

Performance metrics

±1400%
0

0

0

1

1

P2
@2
33
M
Hz

P3
@1
.1G

Hz

G4
@8
00
M
Hz

G4
@8
67
M
Hz

P4
@1
.7G

Hz

P4
@2
.8G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

2x
G5
@2
GH

z

4x
P4
@2
.8G

Hz

0

0

0

1

1

4x
P4
@2
.8G

Hz

P2
@2
33
M
Hz

G4
@8
00
M
Hz

2x
G5
@2
GH

z

G4
@8
67
M
Hz

P4
@1
.7G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

P4
@2
.8G

Hz

P3
@1
.1G

Hz

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

REJECTED

Speedup ... ?

0

9

18

27

36

45

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Ideal

Ideal

REJECTED

QoS Contract
(where CS meets c-business)

• Logical formula with constraints

• Service time, PEs number and kind, ...

• Entertainment in UK

• the software should elaborate on-demand
of 5 OLAP entries per second per 100
users for the 98% of running time

• the software should be seamlessly
portable on clusters, NOW, single PE, SMP
to meet different customers needs

13
Aldinucci, Gusmeroli, Vanneschi, Villa
[ACM INTEROP-05 (accepted) , FMOODS/DAIS-05 (submitted), e-challenges-05 (submitted)]

Adaptivity

Program adaptivity

• Adaptivity aims to control program
configuration (e.g. parallel degree)
and mapping

• for performance (high-performance is a
natural sub-target)

• for fault-tolerance (enable to cope with
unsteadiness of resources, and some kind
of faults)

15

16

Executing programs

QoS
contract

ASSIST
program

ASSIST
compiler

resource
description

XML

executable
code

(linux, mac,
uindoz)

launch

query new
resources

re
co

n
f

co
m

m
an

d
s

Managers

AM+MAMs

Grid execution

agent (GEA)

ISM OSM

VPM

seqseq

Network of processes

Run

Run-time computation re-shaping

1. Mechanism for adaptivity

• reconf-safe points
• where place them? Who place them?

• reconf-safe point distributed agreement
• add/remove/migrate

• what? (processes, threads, data,...)

2. Policies for adaptivity

• QoS contracts
• Describes QoS qualified data for components/applications

• “self-optimizing” components/module
• under the control of managers, which are hiearchically

organized (Application Manager being the root)
• Different levels manage different aspects of QoS control

17

Mechanisms

P1 P2

reconf-safe points
• In which points of the code the execution

can be reconfigured?

• Parallel entities exploit an intrinsic coherence

• low-level approach

• the programmer places in the code calls to a
suitable API, e.g. safe_point();

• error-prone, time-consuming

• ASSIST

• automatically generated by the compiler
• driven by program semantics

19

reconf-safe points /2

• transparent to the programmer

• defined to match “natural”
synchronization points of the parmod

• on-stream-item
• on-barrier

• no artifactual synchronization added

• already existing synchronizations are rather
instrumented

• overhead w.r.t. not adaptive code < 0.04%

20

Distributed agreement

• The program reconfiguration actually
starts only when all interested
entities are ready to react

• i.e. all processes have reached a suitable
reconf-safe point

• they agreed on which one
• possbily fresh resources are up and

running

• distributed protocol

21

Basic operations

• Change parallelism degree

• Add n VPMs to parmod
• Remove n VPMs from a parmod

• Change mapping

• Move k VPs from a VPM to another
• Move a VPM from a PE to another
• Adaptive Load-balancing as sequence of

Move operations

22

VPM

Example: Add VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

VP VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

3. move VP and data

Only 3. is in the critical path 23

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

Overheads of mechanisms
(milliseconds)

GrADS papers reports overhead in the order of
hundres of seconds (K. Kennedy et al. 2004)

24

Management,
Perf. Models &

Policies
Perf(P1)

Perf(P2)

Perf(P3)

Perf(P4)

High-level applications

• Policies are developed starting from
computational paradigms

• Mechanism are highly optimized taking in
account program semantics

• because it is high-level, and structured

• even if there is no deal, pipe, farm, haloswap, etc
keywords

• it is a cultural heritage of skeletons
community

26

Autonomic Managers

Grid execution agent

(Globlus, ACE, ...)

ISM OSM

VPM

seqseq

Network of processes

QoS
data

Execute
next

config

broken
contracts

Analyze

PlanMonitor
Managers

AM+MAMs

Launch Launch

Reconf. commands

new resources

queries

27

M
4

MAM
4

M
2

MAM
2

M
3

MAM
3

AM

M
1

MAM
1

MAM3MAM2MAM1 MAM4

AMb AMc

AMa

AM (hierarchically distrib.)

Hierarchy of managers

MAM3MAM2MAM1 MAM4

AMa AMb

AM (with redundancy)

28

Why hyerarchical
• Enanche locality of decisions

• match Grid cluster-of-clusters structure
• avoid single point of failure

• Distinguish responsibility of tiers

• tier-0 provide load-balancing within the
single parmod

• upper tiers provide higher-level policies
(e.g. rebalancing across parmods)

• Deal with loops

• insulate subgraphs that needs stationary
configurations

• Anne, Jane: Help! (blackboard)
29

Performance models:
an example (DP load balancing)

Time

barrier

barrier

idle

T1=T2=3 T3=2 T4=1

n1=n2=n3=n4=7

barrier

barrier

T1=T2=3 T3=2 T4=1

n1=5 n2=5 n3=7 n4=12
idle

30

A simple formalization

31

m−1
∑

i=0

ni = n

∀i, niti = t

⇒

Ht =
m

m−1
∑

i=0

1

ti

ni =
nHt

mti

ni num. of VPs mapped onto VPMi

m num. of VPMs
ti execution time of VPMi

t execution time for the next RWindow
n total num. of VPs
Ht harmonic mean H(t0, · · · , tm−1)

Two experiments
revised

0

200

400

600

800

1000

1200

0 1 2 3 4

BogoPower

T
im

e
(s

ec
s)

Experim 1
Experim 2
Ideal

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

Some experiments

Start with 1 VPM (3PEs)

Run begin
4 fresh VPMs

launched (7 PES)
3 VPMs removed (3PEs)Same cycle

repeated 2 times

34

 120 80 60 40 20 140 160
 0

 50
 100

 200 180

N. of VPMs in parmod

F
ill

 %

Wall Clock Time (s)

It
e

m
s
/s

 2
 4
 6
 8

 10

Input stream pressure
VPMs aggregated power

N
.

o
f

V
P

M
s

 8
 6
 4
 2

Input stream queue fill level

 100

Farm:
	 contract: optimize time-resources tradeoff
	 byproduct: reduce load spikes

35

N. of VPMs in parmod

Input stream pressure
VPMs aggregated power

QoS contract

Wall Clock Time (s)

 0
 50

It
e
m

s
/s

N
.
o
f
V

P
M

s

 100

 2
 4
 6
 8

 10

 2
 4
 6
 8

 20 80 60
Input stream queue fill level

 200 40 180 160 140 120

F
ill

 %

 100

Farm:
	 contract: keep a given service time
	 contract change along the run

36

0

0.2

0.4

0.6

0.8

1

1.2

P4@2.5GHz P4@2GHz P3@868MHz P4@2.8GHz

Platform kind

A
p

p
.

p
ro

f.
 (

it
e

ra
ti
o

n
s
/s

)

0K

1K

2K

3K

4K

5K

6K

L
in

u
x
 B

o
g

o
M

IP
S

App. pro!ling
 BogoMIPS

A B C D

Running Env
37

!"#"$"%
!"#"%

!"#"$
!"#

!"$
!

&

&'(

)

)'(

*

*'(

+

+'(

&',)'*)', *'* *', +'*

!ggregate 3ower

3
a
rm

o
d
 8

a
n
d
w

id
t;

Meas>red
Per@eAt

$%#

Forecast short-term performance
(and evaluate it against QoS contract)

0

0.2

0.4

0.6

0.8

1

1.2

P4@2.5GHz P4@2GHz P3@868MHz P4@2.8GHz

Platform kind

A
p

p
.

p
ro

f.
 (

it
e

ra
ti
o

n
s
/s

)

0K

1K

2K

3K

4K

5K

6K

L
in

u
x
 B

o
g

o
M

IP
S

App. pro!ling
 BogoMIPS

A B C D

38

 0

 400
 350
 300
 250

 150
 200

 100
 50

D

A

C

B

additional load started on platform B

V
P

s
 t

o
 V

P
M

s
 m

a
p

p
in

g
s
e

c
o

n
d

s

Iteration count
 0 50 100 150 200 250 300 350 400

Max unbalance time
Iteration time 3

 1

 4

 2

Data parallel (shortest path)
Machine externally overloaded

0

0.2

0.4

0.6

0.8

1

1.2

P4@2.5GHz P4@2GHz P3@868MHz P4@2.8GHz

Platform kind

A
p

p
.

p
ro

f.
 (

it
e

ra
ti
o

n
s
/s

)

0K

1K

2K

3K

4K

5K

6K

L
in

u
x
 B

o
g

o
M

IP
S

App. pro!ling
 BogoMIPS

A B C D

39

 350

V
P

s
to

 V
P

M
s

m
a
p

p
in

g

 400

A

B

C

D

 0
 0 50 100 150 200 250 300 350 400

 1

 0.5
Iteration time

Max unbalance time

 50
 100

Iteration count

 150
 200
 250
 300

se
co

n
d
s

Data parallel shortest path
workstations in typical daily usage

0

0.2

0.4

0.6

0.8

1

1.2

P4@2.5GHz P4@2GHz P3@868MHz P4@2.8GHz

Platform kind

A
p

p
.

p
ro

f.
 (

it
e

ra
ti
o

n
s
/s

)

0K

1K

2K

3K

4K

5K

6K

L
in

u
x
 B

o
g

o
M

IP
S

App. pro!ling
 BogoMIPS

A B C D

40

References

41

• ASSIST started in 2001

• developed across several projects
• http://www.di.unipi.it/groups/architetture/

• Adaptivity started in 4Q-2004

• very ongoing work
• almost all publications are currently submitted (Aldinucci et al.:

Europar-05, FGG-05, INTEROP-05, FMOODS/DAIS-05, ParCo-05,
e-challenges-05, ...)

• mail me if interested: aldinuc@di.unipi.it

• however
• mechanisms already at stable release (v 1.3) on Linux/Mac, and

heterogenous clusters of them
• policies alpha testing stage
• supports for TCP and Globus 3.0

ASSIST is the result of the collective effort
 of several persons, I owe thanks to them, and

to you

