
Fault-tolerant data sharing for
high-level grid programming:

a hierarchical storage architecture

Marco Aldinucci, Marco Danelutto
Dept. of Computer Science, University of Pisa, Italy

Integration Workshop
Krakow, Poland

October 19, 2006

Gabriel Antoniu, Mathieu Jan
INRIA Rennes, France

Robust data sharing
service for the grid

Grid-enabled high-level
programming model
(with data sharing)

Marian’s exercise ...

2

INRIA RennesUniPisa

Institute on PM

Marian’s exercise ...

2

INRIA RennesUniPisa

JuxMem Jxta-
based fault-

tolerant sharing
service

ASSIST with its
cluster-oriented
sharing service

Memory hierarchy transparently supporting
grid-level coherent, fault-tolerant, persistent
data sharing. First prototype supports data

sharing in ASSIST applications

Institute on PM

Marian’s exercise ...

2

INRIA RennesUniPisa

JuxMem Jxta-
based fault-

tolerant sharing
service

ASSIST with its
cluster-oriented
sharing service

Memory hierarchy transparently supporting
grid-level coherent, fault-tolerant, persistent
data sharing. First prototype supports data

sharing in ASSIST applications

Institute on PM

... while waiting for the
“Philosophy of the Grid”Not innovative?At the bottom line, Grid

appears more evolutionary

than revolutionary, isn’t it?

The two software tools
ASSIST (high-level programming model)
JuxMem (grid data service)
exploit their complementarity

How they have been integrated
a memory hierarchy, with locality

Prototype, experiments (preliminary)

Outline

3

Data management in grid

Memory storage features
Persistency (survive to application instances)
Robustness (fault-tolerance)
Efficiency (not only in ftp, but real RAM storage)

In high-level programming models
Transparent access from programming model
Run-time supp. implementation (e.g. FT message logs)

4

ASSIST @ UniPisa

High-level programming model
Based on parallel modules

GCM components ongoing

Modules exchange data via streams and/or
shared memory

sharing implemented via distributed memory server
(called ASSIST/ad-HOC)
read, write (in parallel) distributed “objects” identified
by a logical ID

5

6 7

input output

app = graph of modules

P1
P2 P3

P4

6 7

input output

app = graph of modules

P1
P2 P3

P4

6 7

input output

Sequential or parallel
module

(native or wrap e.g.
MPI, CCM)

app = graph of modules

P1
P2 P3

P4

6 7

input output

Sequential or parallel
module

(native or wrap e.g.
MPI, CCM)

Typed streams of data
items (TCP/IP, Globus,

IIOP CORBA, HTTP/SOAP)

Programmable, possibly nondeterministic
input behavior

app = graph of modules

P1
P2 P3

P4

7 7

Supports data sharing

P1
P2 P3

P4

ad-HOC distr.
data component

ad-HOC distr.
data component

7 7

Supports data sharing

P1
P2 P3

P4

ad-HOC distr.
data component

ad-HOC distr.
data component

1. Shared state within a parmod (attributes)

7 7

Supports data sharing

P1
P2 P3

P4

ad-HOC distr.
data component

ad-HOC distr.
data component

1. Shared state within a parmod (attributes)

7 7

Supports data sharing

P1
P2 P3

P4

ad-HOC distr.
data component

ad-HOC distr.
data component

1. Shared state within a parmod (attributes)
2. Shared state among parmods (references)

JuxMem @ INRIA Rennes

Grid data service
P2P JXTA-based prototype
Transparent access to data blocks
 Persistent storage
Mutable data: consistency guarantees
Active support for peer volatility

API
alloc, map, get, put, lock, unlock

8

Overview of JuxMem’s architecture

User should define:
1. on how many cluster replicate data;
2. how many providers in each cluster,
3. consistency protocol

9

Overview of JuxMem’s architecture

User should define:
1. on how many cluster replicate data;
2. how many providers in each cluster,
3. consistency protocol

9

Juxmem group

Cluster group A

Cluster group B

Cluster group C

JuxMem layers

10

13

Fault tolerance protocols

Consistency protocols
Group membership

Atomic multicast

Consensus

Failure detector

Self organizing group

Memory storage

Communication Discovery
1

2

3

JuxMem core (juk)

JuxMem core layers used to test P2P techniques over grid
infrastructures

Comparison at hand

11

No free lunches in nature ... Cluster sharing
(ad-HOC)

Grid sharing
(JuxMem)

Throughput High High-Medium

Latency Low High

Parallel access to a
single data item

Read/Write Read only

Data consistency No Yes

Fault-tolerance
(data replication)

No Yes

Dynamically reconfigurable Yes Yes

Data location transparency Yes Yes

A memory hierarchy for the grid

JuxMem and ad-HOC can be organized in
a two-tier memory hierarchy

robust almost as JuxMem
fast almost as ad-HOC

provided that
data locality is promoted by the programming model
data is transparently exchanged between the two tiers

12

Integrated architecture

13

ASSIST

// comp 1

ASSIST

// comp 2

ASSIST

// comp 3

ASSIST

// comp 4

ASSIST

// comp 5

cluster-level storage

(ASSIST-based:

parallel, distributed)

cluster-level storage

(ASSIST-based:

parallel, distributed)

cluster A

cluster B

grid-level storage & data service

 (JuxMem-based: distributed, permanent, fault-tolerant)

stream
connections
data access

connections

Memory Hierarchy

robustness
persistence
access grain

+

access speed,
frequency,
& locality

+

grid tier
(Juxmem)

cluster tier (ASSIST/
ad-HOC)

Data locality

Two kinds
classical spatial/temporal locality
clustered locality

Enforced by programming model
skeletons/paradigms lead to regular interaction
patterns
modules/components helps to enforce locality
delimitating activities with frequent interactions

Fractal, GCM & hierarchic models (provided a proper mapping exists)

14

Useful for what?

Sharing across multiple clusters
sharing among different applications (persistency)
relax co-allocation constraints via stream buffering

Direct Acyclic Graphs does not need strict co-allocation

data is stored in safe w.r.t. node faults

Fault-tolerant data storage/checkpointing
checkpointing driven by app semantics
ASSIST already instruments apps with reconf-safe
points for adaptivity (data on ad-HOC is “coherent”)

15

Prototype & experiments

A preliminary prototype exists
developed by students (master thesis)

software engineering time not fully predictable

CoreGRID does not pay SW engineers

Experiments are also preliminary
focused on the correctness of the system
focused on behavior of parts “in insulation”

some examples follows

16

Prototype & experiments

A preliminary prototype exists
developed by students (master thesis)

software engineering time not fully predictable

CoreGRID does not pay SW engineers

Experiments are also preliminary
focused on the correctness of the system
focused on behavior of parts “in insulation”

some examples follows

16

Implementation

mediators are triggered by application processes (compiler instrumented)
they read/write data between the two memory tiers

17

P2P overlay network

A

H

A

H

A

M

J

A

H

A

JJ

M

node 2node 1 node 3

cluster C cluster A cluster B

node 1 node 2 node 1 node 2

A ASSIST process M mediator (JuxMem client)H ad-HOC process J JuxMem process

JuxMem bandwidth (G-Eth)

18

JuxMem bandwidth (G-Eth)

18

30%

JuxMem bandwidth (G-Eth)

18

30%- Good BW with no replicas
- Latency not excellent
- BW = O(K/(#replicas))
- Hierarchy aims to reduce
 the frequency of the access

ad-HOC figures

19

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net
throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

ad-HOC figures

19

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net
throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

+ 7%

ad-HOC figures

19

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net
throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

+ 7%

+ ~1000%

ad-HOC figures

19

Arch/Net/OS
concurrent
connections

Msg size
(Bytes) Replies/Sec

net
throughput
(Bytes/Sec)

net
throughput
w.r.t. ideal

P4@2GHz
Mem 512MB

GigaEth
Linux ker.

2.4.22

2048 1 M 91 91 M 96%

3072 512 20 M 10 M 11%

P3@800MHz
Mem 1GB
FastEth

Linux ker.
2.4.18

1024 8 K 1429 11.2 M 90%

1024 16 K 718 11.2 M 90%

+ 7%

+ ~1000%

- Good BW for small data size
- Good latency (not shown)
- Good support for concurrent
 connection (firewalls & co)
- No data replication,
 no FT, cluster-oriented

Conclusions

20

Both JuxMem (F) and ASSIST/ad-HOC (I) implement
data storage services.

They exhibit a similar API but complementary aims and features.

They can be composed to set up a parallel,
distributed, efficient, fault-tolerant memory hierarchy

Real integration of existing (and complex) software developed by different
CoreGRID partners

It enables the experimentation of architectural solution for high-
performance robust data services for the grid

It can be used as robust storage for checkpoints

Aims to understanding how memory hierarchies
work in grid env., and how they are related to
programming model (beyond ASSIST ...)

