
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

WP3
Update on non

functional Features
M a r c o A l d i n u c c i

&
M . D a n e l u t t o , S . C a m p a ,

D . L a f o r e n z A , N . T o n e l l o t t o , P. D a z z i

U n i P i s a & I S T I - C N R

e-mail: aldinuc@di.unipi.it

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID GCM NF features

Autonomic behavior
EU 7 FP, NGG3, blah blah ...

Renewed proposal based on:
Fractal style level of compliance

Passive or active vertical interaction

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Insulated AC Element Cycle

Monitor: collect execution stats: machine load, service time, input/output
queues lengths, ...
Analyze: instantiate performance models with monitored data, detect broken
contract, in and in the case try to individuate the problem
Plan: select a (predefined or user defined) strategy to re-convey the contract
to valid status. The strategy is actually a list of mechanism to apply.
Execute: leverage on mechanism to apply the plan

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

27

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Fractal Conformance levels

28

Minor (κ) 1 1 1 1

Major (Θ) 0 0 1 1 2 2 3 3

Component ✓ ✓ ✓ ✓ ✓ ✓

Interface ✓ ✓ ✓ ✓
Component Type
Interface Type ✓ ✓
Attribute, Content, Binding
LifeCycle Controller ✓ ✓ ✓ ✓

Factory

Template

2 3

3 3

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

Conformance level Θ.κ

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Fractal Conformance levels
Rephrased and GCM

Major (Θ) ≥ 1 ⇔ “it is a component”

Minor (κ) ≥ 1 ⇔ “it exhibits AC, CC, BC, LC”

Minor (κ) =2&3 have a bit uneven meaning (F, T)

Add another counter describing NF behavior
Θ.κ.α (as partial function)
α=0 ⊥, only if (Θ<1 or κ<1) (observationally undecidable)

α=1 No autonomicity

α=2 Passive autonomicity (low-level, server only NF intf)

α=3 Active autonomicity (high-level, client/server NF intf)

29

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Several Aspect still not Clear

Relation between Fractal and GCM
Conformance levels, Sharing, Client NF ports

Introspection & Intercession
Intercession is mentioned just in the intro of Fractal
specification, not sure the concept has been correctly
interpreted in GCM
Life cycle too restrictive

Why require to stop all components to change bindings?

Membrane, what is?
Is group communication sem implemented by controllers?
Are controllers components? (No, if possible)
How controllers interoperate and how are programmed?
Has it a distributed implementation? (Yes, if possible)

30

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Partial Conclusions (GCM)

On going refinement
Avoid choices that make implementation too
complex, or inefficient

Personally, not really liking Fractal approach on
“everything is optional and can be under-specified”

What is a cat? A thing, at level 0, an animal at level 1, a feline at
level 2

Early experimentation in GridCOMP is
important

Usability feedback

Performance feedback

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Our Fractal/ProActive
experience (First 6 months)

Understanding
Install, learn, understand Fractal & ProActive

Understand Fractal/Proactive architecture
Documentation; not layered architecture

Fractal interoperability
Proactive vs Julia implementations

AOP with Fractlet

Case study
Self-optimizing only (performance)

pipe(S1, Farm(S2), S3)

Fractal/ProActive features to support NF control

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Self-optimizing
Pipe(g,Farm(f),h)

A simple three stages application, working on
a data stream (e.g. video frames)

pipe performance max(Tg,Tfarm(f),Th)

farm performance Tf/#n, n variable along run

Self-optimizing w.r.t. nodes power along time

33

g h

f

f

f

...

stage 1 stage 2 stage 3

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Self-optimizing
Pipe(g,Farm(f),h)

A simple three stages application, working on
a data stream (e.g. video frames)

pipe performance max(Tg,Tfarm(f),Th)

farm performance Tf/#n, n variable along run

Self-optimizing w.r.t. nodes power along time

33

g h

f

f

f

...

stage 1 stage 2 stage 3

User programmable
unicast

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Self-optimizing
Pipe(g,Farm(f),h)

A simple three stages application, working on
a data stream (e.g. video frames)

pipe performance max(Tg,Tfarm(f),Th)

farm performance Tf/#n, n variable along run

Self-optimizing w.r.t. nodes power along time

33

g h

f

f

f

...

stage 1 stage 2 stage 3

User programmable
unicast Collects from any

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Farm

A clean implementation needs:
Unicast “programmable” communications

send to a single ID in a set, collect from any (not all)

probably not excluded by GCM specification, not clear our to implement in
the current version

Distributed implementation of the membrane
is it a single Active Objects?

Currently two inner components act as
distributor and collector

34

f

f

f

...

f

f

f

...

e c

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Pipe

Two versions
Passive inner components

Each component exposes server NF interface (GetBandwidth)

They are periodically polled from a controller in the membrane, which then
expose a GetBandwidth server port for the pipe component

Implementation pretty tricky, polling is programmed at hand within the
controller

Active inner components
How to open server ports on the membrane toward the inner part (import-
binding)? Is it possible?

We simulated with a functional component

Both versions expose all ports through a single JVM
Membrane and Active Objects

35

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Pipe with Passive NF stages

Implemented, works
Overheads not yet measured

Managing code completely up to the user
NF binding programmatically described

36

stage 1 stage 2 stage 3

long getBW(){

return min(...);

}

getBW getBWgetBW

getBW

producer consumer

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Pipe with Active NF Stages

Not succeed to express this
Maybe not impossible, but we don’t
succeeded in several weeks

Can be simulated by inserting an
functional component (explicit manager)

Import/export bindings for NF
controllers appears under-specified (-
studied, -implemented

37

stage 1 stage 2 stage 3

setBW
stage BW

violation

pipe BW

violation

set pipe

BW

stage 1 stage 2 stage 3

setBW

stage BW

violation

pipe BW

violation hook

set pipe

BW

F/NF

mediator

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Points needing further
investigation

Programming controllers
GCM specification should be refined

Interactions among controllers
Ports exposed by controllers, toward in and out

Interaction among ports

Mapping membrane & controllers
VN, ActiveObjects, JVM, nodes, ...

Low-level points
Sent to Proactive Q&A

38

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

Conclusion

High-level research issues
Formalization of QoS property ongoing

Interaction among managers is still a black hole

Implementation issues
Middleware expressiveness/effectiveness tradeoff
can (should?) be improved

Low-level issues submitted to Proactive Q&A

Layering of features
In our idea, some of middleware features may require a promotion
to QoS features (e.g. load balancing, communication
synchronicity, group communication semantics, security ...)
because they are supposed to be dependent by semantics of GCM
application not on ProActive

