
Behavioural skeletons for
component autonomic management

on grids

Marco Aldinucci, M. Danelutto, S. Campa
University of Pisa, Italy

P. Kilpatrick
Queen’s University Belfast, UK

D. Laforenza, N. Tonellotto, P.Dazzi
ISTI-CNR, Italy

12-13 June 2007
Ηράκλειο, Κρήτη Marco Aldinucci,

UNIPI
www.di.unipi.it/~aldinuc

CyberInfrastructure

http://www.di.unipi.it/~aldinuc
http://www.di.unipi.it/~aldinuc

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Outline

Motivation
Why behavioural (and autonomic management)
Why skeletons

Behavioural Skeletons
parametric composite component with management
functional and non-functional description
families of behavioural skeletons

GCM implementation
some running applications

2

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

CGM model key points

Hierarchic model
Expressiveness
Structured composition

Interactions among components
Collective/group
Configurable/programmable
Not only RPC, but also stream/event

NF aspects and QoS control
Autonomic computing paradigm

3

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why Autonomic Computing

// programming & the grid
concurrency exploitation, concurrent activities set up, mapping/scheduling,
communication/synchronization handling and data allocation, ...

manage resources heterogeneity and unreliability, networks latency and
bandwidth unsteadiness, resources topology and availability changes,
firewalls, private networks, reservation and jobs schedulers, ...

4

... and a non trivial QoS for applications
not easy leveraging only on middleware

GrADS@Rice, ASSIST, ...

high-level methodologies + tools

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Autonomic Computing paradigm

5

Monitor Plan

Execute

Analyse
broken
contract

next
configuration

QoS data

monitor: collect execution stats: machine load, service time, input/output queues lengths, ...
analyse: instantiate performance models with monitored data, detect broken contract, in and
in the case try to detect the cause of the problem
plan: select a (predefined or user defined) strategy to re-convey the contract to validity. The
strategy is actually a “program” using execute API
execute: leverage on mechanism to apply the plan

C1

C2

C3

C4

C5

C6

Managed
components

Manager

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why skeletons 1/2

Management is difficult
Application change along time (ADL not enough)
How “describe” functional, non-functional features and
their inter-relations?
The low-level programming of component and its
management is simply too complex

Component reuse is already a problem
Specialising component yet more with management strategy
would just worsen the problem
Especially if the component should be reverse engineered
to be used (its behaviour may change along the run)

6

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Why skeletons 2/2

Skeletons represent patterns of parallel computations
(expressed in GCM as graphs of components)
Exploit the inherent skeleton semantics

thus, restrict the general case of skeleton assembly
graph of any component ➠ parametric networks of
components exhibiting a given property
enough general to enable reuse
enough restricted to predetermine management strategies

Can be enforced with additional requirements
E.g.: Any adaptation does not change the functional semantics

7

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioural Skeletons idea

represent an evolution of the algorithmic skeleton
concept for component management

abstract parametric paradigms of component assembly
specialised to solve one or more management goals

self-configuration/optimisation/healing/protection.

are higher-order components
are not exclusive

can be composed with non-skeletal assemblies via standard
components connectors

overcome a classic limitation of skeletal systems

8

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Behavioural Skeletons proprieties

expose a description of its functional behaviour
establish a parametric orchestration schema of inner
components
may carry constraints that inner components are
required to comply with
may carry a number of pre-defined plans aiming to
cope with a given self-management goal
carry an implementation (they are factories)

9

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Be-Skeletons families

Functional Replication
Farm/parameter sweep (self-optimization)
Simple Data-Parallel (self-configuring map-reduce)
Active/Passive Replication (self-healing)

Proxy
Pipeline (coupled self-protecting proxies)

Wrappers
Facade (self-protection)

Many others can be borrowed from Design Patterns

10

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Functional replication

Farm
S = unicast, C = from_any, W = stateless inner component

Data Patallel
S = scatter, C = gather, W = stateless inner component

Fault-tolerant Active Replication
S = broadcast, C = get_one_in_a_set, W= stateless inner ...

11

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Functional replication

Meant to parametrically expose all allowed adaptation
Any AM policy that does not change this semantics is correct
As an example changing i in this schema is correct
Functional semantics is invariant from i, non-functional one is not (and
changing i means changing the number of Ws for self-* purpose

12

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

AC

Functional
server port

Functional
client port

AM

Wi(ini, outi) !
ini.get > tk > process(tk) > r > (outi.put(r) | Wi(ini, outi))

Functional behaviour
description

(orchestration)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

system(data, S,G, W, in, out, N) !
S(data, in) | (| i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

ABC

GCM implementation

13

W

W

W

W

W

W

1. Choose a schema
(.e.g. functional replication)
ABC API is chosen
accordingly

2. Choose an inner component
(compliant to Be-Ske constraints)

3. Choose behaviour of ports
(e.g. unicast/from_any,
 scatter/gather)

W

W

B/LC

S CS C

4. Wire it in your application.
Run it, then trigger adaptations

AM

ABC = Autonomic Behaviour Controller (implements mechanisms)
AM = Autonomic Manager (implements policies)

B/LC = Binding + Lifecycle Controller

5. Possibly, automatise the
process with a Manager

Farm example (Mandelbroot)

14

screen
output

mandel
broot

mandel
broot

mandel
broot

ABC

lines
gen S C

mandel
broot

mandel
broot

mandel
broot

farm

unicast from_any

get_service_time

change // degree

raise "contract violation"

new contract (e.g. Ts<k)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Not just farm (i.e. param sweep)

Many other skeletons already developed for GCM
some mentioned before

Easy extendible to stateful variants
imposing inner component expose NF ports for state access

Policies not discussed here
expressed with a when-event-if-cond-then-action list of rules

some exist, work ongoing ...

15

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Conclusions

Behavioural Skeletons
templates with built-in management for the App designer
methodology for the skeleton designer

management can be changed/refined

just prove your own management is correct against skeleton functional description

can be freely mixed with standard GCM components
because once instanced, they are standard

actually what Gannon called “application factories”

Already implemented on GCM
not happy about GCM runtime perf. (can be improved)

We also implemented in ASSIST with different performances

16

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Communication Time (Int)

17

Communication time

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

int[N]

ti
m

e
 (

m
s)

int[]

Communication Bandwidth (Theoretical 12800 KB/s)

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

int[N]

B
a
n

d
w

id
th

 (
K

B
/

s)

int[]

Grid programming with components: an advanced COMPonent platform for an effective invisible grid

CoreGRID: The European Research Network on Foundations, Software
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Farm SpeedUp

18

Speedup vs n. of workers (Tw=40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

N. of workers

S
p

e
e
d

u
p

1024

2048

4096

8196

ideal

Tw(jobsize=*)=40 ms Tc(jobsize=1)=30 ms

Thank you
P.S. the

COREGRILLEDFISH

effect

is written in Quartz,

which is a hierarchical

component model based on

streams

Less than one hour of

development time, because
of code reuse.

ALL the PARAMETRIC

components was already

available (sprite, oscillators,
streams mixer, ...)

